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Abstract

The concern of this paper is the study of local approximation properties of the
Bernstein–Durrmeyer operators Mn. We derive the complete asymptotic expan-
sion of the operators Mn and their derivatives as n tends to infinity. It turns
out that the appropriate representation is a series of reciprocal factorials. All
coefficients are calculated explicitly in a very concise form. Our main theorem
contains several earlier partial results as special cases. Moreover, it may be
useful for further investigations on Bernstein–Durrmeyer operators. Finally,
we obtain a Voronovskaja–type formula for the simultaneous approximation by
linear combinations of the Mn.
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1 Introduction

The Bernstein–Durrmeyer operators Mn introduced by Durrmeyer [14] and,
independently, by Lupas [21, p. 68] associate with each function f integrable
on I = [0, 1] the polynomial Mnf defined by

(Mnf)(x) = (n+ 1)
n∑

k=0

pn,k(x)
∫ 1

0
pn,k(t)f(t) dt (x ∈ I),

where

pn,k(x) =
(
n

k

)
xk(1− x)n−k (0 ≤ k ≤ n).

They result from the classical Bernstein operators (Bnf) (x) =
∑n

k=0 pn,k(x)f( k
n)

by replacing the discrete values f( k
n) by the integral

∫ 1
0 pn,k(t)f(t) dt in order

to approximate Lp functions (1 ≤ p ≤ ∞).

The operators Mn were studied by Derriennic [11] and several other authors.
It was shown that Mn are positive contractions in Lp (I) and self adjoint on
L2 (I). Moreover, the operators commute, that is, MnMkf = MkMnf for all
n, k ∈ N. Among other things Derriennic [11, Théorème II.5] (see also [16,
Lemma 1.1] and [10, (i), p. 59]) found the Voronovskaja–type formula

lim
n→∞

n ((Mnf) (x)− f(x)) = (1− 2x)f ′(x) + x(1− x)f ′′(x) (1)

for all bounded integrable functions f on I admitting a derivative of second
order at x (x ∈ I). The first result of this type was given by Voronovskaja [24]
for the classical Bernstein polynomials and then generalized by Bernstein [9].

Our Theorem 1 contains (as special case r = 0) the complete asymptotic expan-
sion for the Bernstein–Durrmeyer operators by means of a series of reciprocal
factorials, i.e.,

(Mnf)(x) ∼ f(x) +
∞∑

k=1

1

(n+ 2)k

(
(x(1− x))kf (k)(x)

k!

)(k)

(n→∞), (2)

provided f ∈ L∞(I) and f possesses derivatives of sufficiently high order at
x (x ∈ I). Throughout the paper nk resp. nk denotes the rising factorial nk =
n(n+1) · · · (n+k−1), n0 = 1 resp. falling factorial nk = n(n−1) · · · (n−k+1),
n0 = 1. Formula (2) means that, for all q ∈ N,

(Mnf)(x) = f(x) +
q∑

k=1

1

(n+ 2)k

(
(x(1− x))kf (k)(x)

k!

)(k)

+ o(n−q)

as n → ∞. The above–mentioned Voronovskaja–type result (1) is the special
case q = 1.

It is amazing that to our best knowledge such a nice result does not appear in
the literature up to the present. In particular, the special case for polynomial
f may be useful for further investigations on Bernstein–Durrmeyer operators.
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We remark that in [1, 3, 2, 4, 7] the author gave analogous results for the
operators of Meyer–König and Zeller, for the operators of Bleimann, Butzer
and Hahn, the Bernstein–Kantorovich operators, and the operators of K. Balázs
and Szabados, respectively. Asymptotic expansions of bivariate operators can
be found in [5, 6].

Concerning simultaneous approximation already Derriennic [11, Théorème II.6]
showed that

lim
n→∞

(
d

dx

)r

(Mnf)(x) = f (r)(x)

for all f ∈ L∞(I) admitting a derivative of order r at the point x ∈ I. Agrawal
and Kasana [8] proved the generalization

lim
n→∞

n

(
(n+ r + 1)! (n− r)!

(n+ 1)! n!
(M (r)

n f)(x)− f (r)(x)
)

= (r + 1)(1− 2x)f (r+1)(x) + x(1− x)f (r+2)(x), (3)

if f admits, in addition, a derivative of order r + 2 at x.

Using an auxiliary operator introduced by Heilmann and Müller [17] we prove in
Theorem 1 that the complete asymptotic expansion for the differentiated oper-
ators (M (r)

n f) can be obtained by differentiating r times the terms in expansion
(2), i.e.,

(M (r)
n f)(x) ∼ f (r)(x) +

∞∑
k=1

1

(n+ 2)k

(
(x(1− x))kf (k)(x)

k!

)(r+k)

(4)

as n → ∞, provided f (r) ∈ L∞(I) and f possesses derivatives of sufficiently
high order at x (x ∈ I).
The Voronovskaja–type formula

lim
n→∞

n ((Mnf) (x)− f(x))(r) =
(
x(1− x)f ′(x)

)(r+1)

contained in Eq. (4) is due to Heilmann [17, Theorem 8].

Note that our Formula (4) immediately implies the result (3) of Agrawal and
Kasana since

(n+ r + 1)! (n− r)!
(n+ 1)! n!

= 1 +
2
n

(
r + 1

2

)
+O(n−2) (n→∞).

We close the manuscript with the complete asymptotic expansion for the simul-
taneous approximation by linear combinations

(On,`f) (x) =
`−1∑
i=0

αi(n) (Mnif) (x)

of the Bernstein–Durrmeyer operators Mn used by Ditzian and Ivanov [13] (see
also Heilmann [18, pp. 87ff]).
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2 The main result

For r, q = 0, 1, 2, . . . and x ∈ I, let K[r, q;x] be the class of all functions f ∈
Lr
∞(I) which are r+ q times differentiable at x. Throughout the paper put, as

usual, ϕ(x) =
√
x(1− x). As main result we formulate the following theorem.

Theorem 1 Let r ∈ N0, q ∈ N and x ∈ I. Then, the Bernstein–Durrmeyer
operators Mn satisfy, for f ∈ K[r, 2q;x], the asymptotic relation

(M (r)
n f)(x) = f (r)(x) +

q∑
k=1

1

(n+ 2)k

(
ϕ2k(x)f (k)(x)

k!

)(r+k)

+ o(n−q) (5)

as n→∞, where ϕ(x) =
√
x(1− x).

Remark 1 For f ∈
⋂∞

q=1K[r, q;x], the Bernstein–Durrmeyer operators Mn

possess the complete asymptotic expansion

(M (r)
n f)(x) ∼ f (r)(x) +

∞∑
k=1

1

(n+ 2)k

(
ϕ2k(x)f (k)(x)

k!

)(r+k)

as n→∞.

For the convenience of the reader we calculate the explicit form of the asymp-
totic expansion (5) for q = 2.

Corollary 2 Let r ∈ N0 and x ∈ I. Then, the Bernstein–Durrmeyer operators
Mn satisfy, for f ∈ K[r, 4;x], the asymptotic relation

(M (r)
n f)(x) = f (r)(x)

+
1

n+ 2

(
x(1− x)f (r+2)(x) + (r + 1)(1− 2x)f (r+1)(x)− (r2 + r)f (r)(x)

)
+

1
(n+ 2)(n+ 3)

(
(x4 − 2x3 + x2)f (r+4)(x)

+ 2(r + 2)(2x3 − 3x2 + x)f (r+3)(x) + (r + 2)(r + 1)(6x2 − 6x+ 1)f (r+2)(x)

−2(r + 2)(r2 + r)f (r+1)(x)− (r + 2)(r3 − r)f (r)(x)
)

+ o(n−2)

as n→∞.

3 Linear combinations of Mn–operators

In this section we give an application of Theorem 1. We study the local si-
multaneous approximation by linear combinations of the Bernstein–Durrmeyer
operators Mn.
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As in [13, Eq. (5.1), (5.3)] we define, for fixed ` ∈ N,

(On,`f) (x) =
`−1∑
i=0

αi(n) (Mnif) (x) , (6)

where
n = n0 < n1 < · · · < n`−1 ≤ An (7)

with a constant A independent of n. In the following we put

αi(n) = (ni + 2)`−1
`−1∏
j=0
j 6=i

(ni − nj)−1. (8)

In the case ` = 1 the On,` reduce to the operators Mn if in definition (8) the
coefficient is interpreted to be αi(n) = 1.

Ditzian and Ivanov [13] as well as Heilmann [18] proposed the further condition

`−1∑
i=0

|αi(n)| ≤ B (9)

with a constant B independent of n. We do not require (9) here. We point
out that the choice (8) guarantees that condition (9) is valid, if we assume, in
addition, that ni+1 ≥ γni (i = 0, . . . , `− 1) with some constant γ > 1.

Theorem 3 Let `, q ∈ N, r ∈ N0, and x ∈ I. Then, the linear combinations
On,` as defined in Eqs. (6)–(8) satisfy, for f ∈ K[r, 2(q + `);x], the asymptotic
relation

(O(r)
n,`f)(x) = f (r)(x) +

q∑
k=0

S(k, `;n0, . . . , n`−1)

(
ϕ2(k+`)(x)f (k+`)(x)

(k + `)!

)(r+k+`)

(10)
+o(n−(q+`))

as n→∞, where ϕ(x) =
√
x(1− x) and

S(k, `;n0, . . . , n`−1) =
(−1)`+1

k!

k∑
ν=0

(−1)ν

(
k

ν

) `−1∏
j=0

(nj + `+ 1 + ν)−1. (11)

Moreover, we have

S(k, `;n0, . . . , n`−1) = O(n−(k+`)) (n→∞). (12)

Remark 2 Eq. (10) reveals the well–known fact that the operators On,` pre-
serve all polynomials of degree at most `− 1.
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Remark 3 For q = 0, Theorem 2 yields the Voronovskaja–type formula

lim
n→∞

`−1∏
j=0

(nj + `+ 1)

 ((On,`f) (x)− f(x))(r)

= (−1)`+1

(
ϕ2`(x)f (`)(x)

`!

)(r+`)

. (13)

The special case r = 0 of Eq. (13) is due to Heilmann [18, Satz 8.4].

Remark 4 For f ∈
⋂∞

q=1K[r, q;x], we have the complete asymptotic expansion

(O(r)
n,`f)(x) ∼ f (r)(x)

+(−1)`+1
∞∑

k=`

S(k − `, `;n0, . . . , n`−1)

(
ϕ2k(x)f (k)(x)

k!

)(r+k)

as n→∞ with S(k, `;n0, . . . , n`−1) as defined in Eq. (10).

Remark 5 We remark that Eq. (12) follows easily if condition (9) is assumed
(see [18, Lemma 2.3]). We prove (12) without making use of (9).

4 Auxiliary results

The starting–point is the calculation of the moments
(
M

(r)
n em

)
(x) for the dif-

ferentiated Bernstein–Durrmeyer operators, where em(x) = xm (m = 0, 1, 2, . . .).

Proposition 4 For m, r = 0, 1, 2, . . ., the moments for the differentiated Bernstein–
Durrmeyer operators possess the representation

(M (r)
n em)(x) =

m∑
k=0

1

(n+ 2)k

(
m

k

)(
xm(1− x)k

)(r+k)
(n ∈ N). (14)

Remark 6 Formula (14) yields for each polynomial P the representation

(M (r)
n P )(x) =

∞∑
k=0

1

(n+ 2)k

(
(x(1− x))kP (k)(x)

k!

)(r+k)

(n ∈ N), (15)

i.e., Eq. (4) is valid for polynomial f .

Note that the sum in Eq. (15), actually, is finite, since all terms for k > degree P
vanish. Furthermore, M (r)

n P = 0, if r > degree P . In particular, this shows the
well–known fact that (MnP ) is a polynomial with degree MnP ≤ degree P .
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For p ≥ 1 and r ∈ N, let Lr
p(I) be the class of all functions f with f (r−1)

absolutely continuous on I and f (r) ∈ Lp(I). For r = 0, put L0
p(I) = Lp(I).

As in [17, 15] the operators

(Mn,rf)(x) =
(n+ 1)! n!

(n+ r)! (n− r)!

n−r∑
k=0

pn−r,k(x)
∫ 1

0
pn+r,k+r(t)f(t) dt

(r = 0, 1, 2, . . . ;n ≥ r)

play an important role in the following. Integrating by parts r times we obtain,
for f ∈ Lr

p(I), the identity

M (r)
n f = Mn,rf

(r)

(see [11, proof of Théorème II.8]) which is of use in the proofs.

We proceed in deriving the central moments for the operators Mn,r. For each
fixed x ∈ R, put ψx (t) = t− x.

Proposition 5 For r, s = 0, 1, 2, . . . and n ≥ r, we have

(Mn,rψ
s
x) (x) = s!

r+s∑
k=b(s+1)/2c

1

k! (n+ 2)k

(
r + k

2k − s

)(
d

dx

)2k−s

ϕ2k(x).

In order to derive as our main result the complete asymptotic expansion of the
Bernstein–Durrmeyer operators we use a general approximation theorem for
positive linear operators due to Sikkema [22, Theorem 3] (cf. [23, Theorems 1
and 2]).

Theorem 6 For q ∈ N and fixed x ∈ I, let An : L∞(I) → C(I) be a sequence
of positive linear operators with the property

(Anψ
s
x) (x) = O(n−b(s+1)/2c) (n→∞) (s = 0, 1, . . . , 2q + 2).

Then, we have for each f ∈ L∞(I) which is 2q times differentiable at x the
asymptotic relation

(Anf) (x) =
2q∑

s=0

f (s)(x)
s!

(Anψ
s
x) (x) + o(n−q) (n→∞). (16)

If, in addition, f (2q+2)(x) exists, the term o(n−q) in (16) can be replaced by
O(n−(q+1)).
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[24] Voronovskaja, E. V., Détermination de la forme asymptotique de
l’approximation des fonctions par les polynômes de S. Bernstein, Dokl.
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