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1 Introduction

1.1 Motivation

Until 1995 a personal computer's graphics card was only a pixel buffer preparing incom-
ing images to be displayed on the screen. Since Central Processing Units (CPUs) were
too slow to handle massive amounts of three-dimensional (3D) data as they are pro-
duced with 3D games, the game market's need for faster solutions made arise a revolu-
tionary development of graphic adapters: the Graphics Processing Unit (GPU). In 1995
the 3Dfx Voodoo was introduced and the CPU was neither responsible for 3D transfor-
mations any longer nor for rendering of anti-aliased, textured,  and shaded geometric
primitives having more time to handle the logic of applications. Still driven by the game
market the GPUs' performance grew faster than the microchips' development was pre-
dicted by Moore’s Law (Moore 1965). The initially simple graphical auxiliary adapter
arose to a ubiquitous flexible high performance device supporting computer aided de-
sign processes, scientific visualization, computer generated movies, 3D games, enter-
tainment  business  and  even  nongraphical  application  development  (Fernando  et  al.
2004,  Luebke 2004, Zeller 2004b). Thus, today's graphics cards have become an indis-
pensable coprocessor of the CPU and therefore are a central element of nowadays' PCs.

In the beginning,  the GPU's functionality was limited  by a  fixed  function rendering
pipeline giving the programmers only little space for variation. In contrast to that, recent
graphics architectures provide tremendous memory bandwidth and speed combined with
almost fully programmable vertex and pixel processing units. Although this programma-
bility was initially meant to serve the needs of real-time shading, it was proven that it
was suitable for general purpose computation as well. The latest models even provide
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32bit floating point numbers creating possibilities in the field of scientific applications
that require high precision. Some examples are Fast Fourier Transform (Moreland &
Angel 2003), linear algebra (Krüger & Westermann 2003), raytracer (Purcell et al. 2002,
Carr et al. 2002), physical simulation (Harris et al. 2002), and cloud dynamics (Harris et
al. 2003).

Commodity GPUs are a cost effective chance to equip PCs with a device that tops CPU
performance. They can be an alternative to expensive special-purpose hardware. Thus,
there are many areas of research where possibilities of this processing unit are closely
investigated to make use of its advantages. One of these areas is the field of bioinfor-
matics. With the genomic research's speed of producing faster sequencing methods re-
sulting in faster data gathering, the amount of stored information about Deoxyribonucle-
ic Acid (DNA), genes, proteins, and other elements of biological interest grew to enor-
mous dimensions.  This automatically causes  a need for more effective data analysis
techniques. An essential technique of those is sequence comparison. Scanning whole
databases is a highly computation intensive task requiring high performance systems to
complete in an acceptable time. GPUs can be a low cost alternative to specialized hard-
ware such as a field-programmable gate array (FPGA) as it has been used by Hirschberg
et al. (1996), although they are not quite reaching the same performance.

Furthermore, the programming complexity of GPUs and the required expertise are much
lower compared to FPGAs. This is mainly due to the rose of high level programming
languages. Nowadays, GPUs are not programmed with only assembly languages any
longer but with languages that can be compared to C/C++. Hence, more programmers
can start implementing their algorithms in an environment that is similar to the one they
are familiar with. Since one still has to deal with computer graphics primitives like tex-
tures, triangles, and pixels, the next abstraction layer called general-purpose program-
ming language treats the GPUs as a streaming architecture lifting the use of GPUs up to
a higher usability level. With that, the programmer will be able to use the GPU without
taking care of particularities related to graphics card technology, yet having to accept a
loss of performance compared to lower level languages.
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1.2 Purpose of this Thesis

The objective of this diploma thesis is to describe the use of GPUs for general-purpose
computation. Furthermore, a computational problem from the field of bioinformatics
shall be mapped to the GPU, implemented and investigated. The algorithm that is inves-
tigated  in the practical part is based on the Smith-Waterman algorithm (Smith & Water-
man 1981) which was enhanced by Gotoh (1982). It is used for DNA-DNA and protein-
protein comparisons. While describing bioinformatics the focus will therefore lie on ge-
netics and sequence comparison.

In chapter 2, the context that produced the Smith-Waterman algorithm is described. As
it origins from bioinformatics, an overview over bioinformatics is given first, followed
by subchapters that lead to the concrete cases where the algorithm is used. Therefore,
genetics with focus on DNA and proteins is discussed to show the origin and properties
of the sequences that are compared by the algorithm. Projects that investigated on the
human genome produced huge amounts of data which are stored in databases. These
databases  use  different  algorithms  for  searching  and  data  evaluation  including  the
Smith-Waterman. Thus, the progression and features of the databases are presented fol-
lowed by the basics of sequence alignment. In the context of sequence alignment several
important algorithms like Basic Local Alignment Search Tool (BLAST) (Altschul et al.
1990) and the Smith-Waterman in detail are described.

The subject of chapter 3 is general-purpose programming on GPUs (GPGPU). It lays
down the overall framework of the consequent implementation chapter by describing the
graphics hardware architecture and introducing the terminology and concepts. The histo-
ry of GPUs and general-purpose programming on GPUs introduce to this subject. The
second part of this chapter refers to the programming itself by presenting CPU-GPU
analogies and the methods of how to control the GPU. In this context, 3D application
programming interfaces (API) as well as GPU programming languages are presented as
elementary tools. Hereby the focus lies on the OpenGL API and OpenGL Shading Lan-
guage (GLSL) since this combination is used in the implementation part of this thesis.
The discussion of the  principles of efficient computing on GPUs and shader optimiza-
tion form the end of the GPGPU chapter.

Chapter 4 deals with the implementation of the Smith-Waterman algorithm on graphics
hardware. First, the concept of efficiently mapping the algorithm onto GPUs is present-
ed. This is followed by a description of the specific implementation and the application
structure.  Furthermore,  test  scenarios  of the  created application and their  results  are
analysed and evaluated. Test scenarios consist of artificial random sequence tests as well
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as scans of the Swiss-Prot database that contains over 170.000 protein sequences to see
the performance in  a practical  context.  A comparison to values of a reference CPU
implementation  shows  whether  the  GPU  implementation  excels  the  reference
implementation  or  not.  Finally,  a  conclusion  is  drawn  and  possible  improvement
suggestions are depicted.
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2 Bioinformatics

2.1 Introduction

The algorithm chosen for implementing origins from the field of bioinformatics. More
precisely, it origins from sequence analysis which is a part of genetics. Implementing the
algorithm in this thesis goes along with a common need to develop more and more im-
proved sequence comparison algorithms and implementations. To understand where this
need comes from this chapter first describes the fundamentals of bioinformatics, fol-
lowed by the history and progression of genetics in the past years. It is explained what
bioinformatics is and what the major research areas and challenges are. As bioinformat-
ics is always related to the analysis, evaluation and storing of  information that occurs in
the context of biology, a closer look on these areas is taken. Analysis and evaluation are
those parts in which algorithms like the Smith-Waterman are used. Because the infor-
mation  itself  is  stored  in  huge  databases,  the  development  and  properties  of  those
databases are discussed as well. In this context, major databases, the kind of information
they store,  and the data formats they use are presented.  One of these databases,  the
Swiss-Prot database, will be used for tests of the implementation. Finally, the subjects
of databases and genetics are brought together in the section about sequence comparison
algorithms. These algorithms search databases to find patterns in genetic sequences. The
major algorithms are presented with a closer look at the Smith-Waterman. Since these
algorithms including the Smith-Waterman use so-called scoring matrices for compari-
son evaluation, their meaning and derivation from genetics is discussed as well.

The following chapter starts with the basic introduction into bioinformatics.
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2.2 Bioinformatics

Bioinformatics  is  also called computational  biology (BCHM 2001,  Wikipedia  2005,
Leòn 1999). The name already implies that this scientific field is about processing infor-
mation created in a biological and especially genetic context. In fact, bioinformatics uses
techniques from applied mathematics, informatics, statistics, and computer science to
aid research in the field of biology. It compromises all aspects of gathering, storage, or-
ganization, access, analysis, interpretation, and preparation of biological data. To guar-
antee efficient processing of huge amounts of data such as  occur in databases in a rela-
tively short time powerful computers and state of the art methods are necessary. Thus,
bioinformatics is responsible for the development and implementation of algorithms, ap-
plications and systems to provide the required performance. The company Celera Ge-
nomics emphasizes on its website1 that “Bioinformatics played a critical role in manag-
ing the data from the human genome, and the conversion of that raw sequence data into
the assembled genome sequence”. More about genomics and Celera Genomics is de-
scribed in the chapters “Genomics: DNA, Amino Acids and Proteins” and “Genetics:
Sequencing”. 

The major research areas of bioinformatics are
– Sequence Analysis
– Expression Analysis
– Protein Structure Prediction
– Modelling of Biological Systems.

Sequence analysis mainly tries to find similarities between different DNA or protein se-
quences which involves the usage of algorithms like the Smith-Waterman method. As
genes or proteins with similar sequences (homologous genes) are likely to have similar
functions, it is a common method to look for those in a pool of well known sequences
which are homologous to the yet unknown one. This can speed up the research process
of  new proteins  and  genes.  The  comparison  is  mostly  performed  between different
species but also within a species. Another range of application is the matching of DNA
sequence fragments. A technique called shutgun DNA sequencing produces thousands
of  small  DNA fragments  that  are  scanned and gathered.  As  they overlap,  sequence
analysis can find the right overlapping partners to build up a complete sequence (Istrail
et al. 2003). A closer look on sequence analysis is taken in chapter “Sequence Align-
ment”.

1 http://www.celera.com/celera/discovery_platforms
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The expression of the genetic information stored in DNA involves transcription of DNA
into  messenger RNA and translation  of linear mRNA nucleotide sequences  into  se-
quences of amino acids in proteins (Shamir 2002, Wikipedia 2005, Wikipedia 2005b).
The flow is: DNA→ RNA → Protein. In other words a gene expression is the process
by which a gene's information is converted into proteins that form the structures and
functions of a cell . The task of expression analysis is to measure the amount of mRNA
in the cell i.e. the expression level of each gene. This can be performed with different
techniques such as microarrays, expressed cDNA sequence tag (EST) sequencing, serial
analysis of gene expression (SAGE), tag sequencing, massively parallel signature se-
quencing (MPSS), or by measuring protein concentrations with high-throughput mass
spectroscopy.

A protein has several physical structural levels: the primary, secondary, tertiary and qua-
ternary structure (see chapter “Proteins and Sequences”). The prediction of the structure
of a protein by analysing its amino acid sequence is a field of bioinformatics where a lot
of problems still have to be solved to get reliable results. Like homologous sequences
can be used to predict the functions of a gene, they can also be used to predict the struc-
ture. This is called homology modelling and the only way to get reliable results so far.

The modelling of biological systems deals with their observation and simulation to un-
derstand the biological processes running in them. Therefore relationships and interac-
tions between different parts of biological systems are studied. Systems like cells, or-
ganels and organisms are of interest as well as subsystems like gene regulatory networks
and  signal  transduction  pathways.  This  is  like  a  process  of  reverse  engineering  by
analysing real life with the purpose of creating artificial life in simulations. Apart from
that simulations are used to understand evolutionary processes.

This was a rough overview over bioinformatics. The further chapters will deal only with
sequence analysis where the Smith-Waterman algorithm origins.

2.3 Genetics: DNA, Amino Acids and Proteins

The Smith-Waterman algorithm is used for sequence comparison and alignment which
is a part of sequence analysis. To understand sequence analysis it is important to under-
stand where the sequences that are dealt with come from. This is most important for the
creation of scoring matrices which are discussed later. This chapter describes the origin
of the sequences that are analyzed with sequence alignment algorithms.
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The construction information and hereditary material for almost every lifeform is encod-
ed in its genome (LHNCfBC 2005, Shamir 2002, HGMIS 2003). The genome is the full
set of an organism's DNA sequences. DNA is a sequence of four elementary chemical
bases arranged in a double helix: adenine (A), cytosine (C), guanine (G), and thymine
(T). Each is attached to a sugar (deoxy-ribose type) and a phosphate. This structural unit
is called a nucleotide. They occur as nucleic base pairs whereat adenine always pairs
with thymine and cytosine with guanine (see figure 1). 

The order of the bases can be seen as an instruction code to build the elements an organ-
ism consists of. The human genome consists of 3 billion nucleic base pairs of which
99,9 % are identical in every person. In contrast, the genome of a bacterium consists of
only several hundred thousand base pairs. As DNA only occurs  in a double helix with
base pairs, half of the information is redundant. Only one strand is necessary to get the
full information. The sugars have an asymmetrical structure and therefore the strand has
a reading direction. They are connected with their fifth carbon group upstream and with
their  third  downstream.  Hence,  the  direction  goes  from 5'  (five  prime)  to  3'  (three
prime). Because each strand has the reverse direction of his partner strand, a base se-
quence can be written down as the following example: 

5' GTTAGTTTCC 3' and
3' CAATCAAAGG 5'    

In the human genome DNA is organized in 23 distinct chromosomes which consist of
up to 250 million base pairs (HGMIS 2003, LHNCfBC 2005, Alberts et al. 1994). Chro-
mosomes contain up to 3,000 genes. Genes, specific DNA sequences, act as instruction
sets for the production of proteins and thus are the basic physical and functional units of
heredity. According to research results  of the Human Genome Project,  humans have
about 30,000 genes. The fact that an insect like the fruit fly (Drosophila melanogaster)

Fig. 1 - Artistical illustration of a chromosome consisting of DNA
strands with the shape of a double helix (image courtesy of U.S.
Department of Energy's Joint Genome Institute, Walnut Creek, CA,
http://www.jgi.doe.gov).
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already  has  13,000  genes  shows  how  complex  genetics  even  with  quite  primitive
lifeforms is. In relation to the complete genome, the encoding parts (euchromatin) for
protein synthesis instruction, i.e. those parts of the DNA that contain genes, make up
only 2 %. The remaining non-coding part is so called junk-DNA.

With the expression of genes, DNA sequences are translated into amino acid sequences
that form proteins (Alberts et al. 1994). This procedure is divided into two major steps:
transcription and translation (see figure 2).

First, the enzyme RNA polymerase creates a complementary copy of a specific part of
the DNA: the ribonucleic acid (RNA). The following translation of the RNA's nucleic
sequence into the sequence of amino acids is based on the so-called genetic code (see
appendix “The Genetic Code”). Each of the 20 amino acids is encoded by one triplet of
3 nucleotides in series. The amino acids are brought together to form a protein.

Amino acids have a simple structure: each consists of a carbon atom (α carbon), a car-
boxyl group (COO-), an amino group (NH3

+), a hydrogen atom and a specific side chain
commonly referred to as residue. The chemical properties of an amino acid are deter-
mined by its residue (see appendix “The Structure of Amino Acids” and “The Amino
Acids”). As well as DNA amino acid chains have a reading direction. Thus, if written
down with one-letter-code, the sequence ends are marked with C (carboxyl group) and
N (amino group):

N PKRGACMLTNQFKRKSACQ C

Proteins are polymers consisting of up to several thousand amino acids joined by pep-
tide bonds (Cooper 2000, HGMIS 2003, Wikipedia 2005c, LHNCfBC 2005). While the
genetic information lies in the DNA's and RNA's nucleic acids, the structural and life
functions encoded in those sequences are performed by proteins. They make up the ma-
jority of cellular structures and are involved in most life functions. The function they
have depends on their constellation of amino acids. Because of this importance, they got
their name “protein” (Greek: πρωτεϊνη) derived from proteios (of first rank), first men-

Fig. 2 - From DNA to Protein (The central dogma)

DNA

TranslationTranscription

ProteinRNA
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tioned by Jöns Jacob Berzelius in 1838. The sum of all proteins in a cell is called a cell's
proteome  and,  in  contrast  to  the  genome,  varies  continuously  depending  on  their
production. The field of research related to proteins is called proteomics. 

The unique  structure of each protein is  commonly divided into  four  levels  (Cooper
2000, Rupp 2000):

– The primary structure: the amino acid sequence.
– The secondary structure: mainly α-helix and β-sheet, regular arrangements of the

amino acid subsequences formed by hydrogen bonds.
– The tertiary structure: the overall shape of a protein formed by the sum of secondary

structures connected by looped regions.
– The quaternary structure: interactions between different polypeptide chains in pro-

teins composed of more than one polypeptide, e.g. hemoglobin.

The higher level structures are formed by a process called folding and are basically a
consequence of the primary structure (see figure 3 and appendix “Protein Structure”).

Sequence alignment and comparison are the computational part of sequence analysis.
The practical  part  consists  of reading the sequence elements,  nucleotides if  DNA is
scanned and amino acids in the case of proteins. The whole process of preparing and

Fig. 3 - 3D model of the glycoprotein Ribonuclease H – tertiary structure
(image courtesy of E. Meiering, Waterloo University,
http://sciborg.uwaterloo.ca/~meiering/research.html).

β-sheet

α-helix
Looped region
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reading the sequences is called sequencing and presented in the following chapter. 

2.4 Genetics: Sequencing

This chapter explains how the sequence information that is processed with sequence
comparison algorithms is gathered by sequencing. Moreover, it is shown how genetic
databases grew to enormous dimensions in the last decade, caused by genome projects.
Thereby a need for more advanced algorithms and analysis systems was created.

Sequencing is the “determination of the order of nucleotides (base sequences) in a DNA
or RNA molecule or the order of amino acids in a protein” (HGMIS 2003b, Glossary).

The  most  commonly  used  sequencing  method  is  the  Sanger  method  developed  by
Fredrick Sanger and co-workers (Sanger et al. 1977). With this method small DNA frag-
ments with a length of up to 1000 (usually 500 to 800) base pairs (bp) can be created by
a controlled interruption of enzymatic replication. DNA polymerase copies sequences of
single stranded DNA and stops the process when it reaches a dideoxyribonucleotide.
The latter is randomly incorporated into sequences, thus resulting in many different se-
quence lengths. The fragments, which are all labled with a flurophore, are separated by
chromatography and detected with laser and a photometer in a high-throughput machine.

The Sanger method was also used by the publically funded Human Genome Project
(NHGRI 2004).  A  primary goal  of  this  project  was  to  sequence  the  whole  human
genome with its about 3 billion base pairs. Before the sequencing process started, the
whole  human genome was  cloned using  bacteria,  the  so-called  BAC-based  method
(Bacterial Artificial Chromosome). First, the DNA is split into pieces of about 200,000
bp. The position of each resulting sequence in the human genome is stored (mapped) to
ensure that it is pursuable where the information comes from. Then all the sequences are
cloned using bacteria. Each fragment is inserted into one bacterium e.g. Escherichia coli
(E.coli).  The  bacteria  are  multiplied  in  liquid  broth  and then  diluted  so  that  single
colonies can be separated on agar plates. Each colony represents one clone containing
one specific DNA fragment, which then can be purified from the bacteria and used for
sequencing. The sum of different Bacterial Artificial Chromosome (BAC) clones that
contains a whole genome is called a BAC library. Finally, the Sanger method was used
for sequencing.

Competing with the non-profitable Human Genome Project (HGP), there also existed a
commercial attempt to sequence the whole human genome executed by the private com-
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pany Celera, finishing the genome almost at the same time, but much faster. They used
the Sanger method as well, but in contrast to the directed method of the HGP they had a
random approach, called shotgun sequencing (Venter et al. 2003, Golding & Morton
2004) which was not invented until some years after the HGP had started. Randomly
chosen pieces of the entire genome are sequenced in this method. Thus, a mapping pro-
cess does not occur beforehand. This method requires more work afterwards, but on the
other hand many steps of this process can be automated. Therefore, shotgun sequencing
is faster than the BAC-based approach whereas the latter is more accurate.

At this point the practical part ends and the information analysis starts.

The sequencing part of both methods results in a huge amount of fragmented informa-
tion about the entire genome, stored in databases. The BAC clone fragments are existent
in groups whereas the shotgun fragments are totally unrelated. With the assembly pro-
cess all fragments are put together to form the whole DNA sequence. As the fragments
overlap it is a matter of time and good matching algorithms to bring them in correct or-
der whereby the permutation of BAC clone fragments is much less due to the grouping.
For this matching fast sequence alignment algorithms are used like they are presented in
the chapter “Sequence Alignment”. Filling the gaps and finding repetitive areas is that
part of the assembly process that demands most patience and time. In reality, with to-
day's techniques not all gaps are solved and 1 % of the euchromatin remains unrecover-
able. 

Robert W. Holley (Holley et al. 1965) and his team were the first to determine the nu-
cleic sequence of an RNA molecule in 1965. It took them about one year to determine
all of only 77 nucleotides that alanine transfer RNA of yeast consists of. Since then,
technological improvements and automation have increased speed and lowered costs
enormously.  Figure 4 shows the  cost  and quantity progression from 1996 till  2004.
Whereas the cost per base fell extremely, the amount of annually produced sequence
bases raised reciprocally.

How well technology evolved since then was shown by the Human Genome Project
(HGP) and  Celera Genomics by sequencing the whole human genome. The former
started in 1990 with a 3 billion dollar budget and the intention to complete within 15
years. The mapping process was finished in 1994 and in 2001 the initial working draft
of the complete sequence was published. This version still contained several hundred
thousand gaps and it took until 2003 to finish 95 % of the gene-containing part with an
accuracy of 99.99 %. Celera Genomics was founded in 1998 by Craig Venter with the
intention to sequence the human genome within only 3 years. On 17th of June 2000, the
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scientists of this company finished sequencing the 2.91-billion base pairs of the euchro-
matic portion of the human genome (Venter et al. 2001). In fact, they produced it with
5.11-fold coverage (14.8-billion bp in total) by shotgun sequencing within 9 months.
For assembling they combined both the Celera data with the HGP data and announced
the completion of its first draft of the human sequence on 25th  of June 2000. The assem-
bly of a total of 2.586 Gbp of sequence took about 20,000 CPU hours with a quite pow-
erful compute infrastructure. This obviously shows how important computational sup-
port for biological and especially genetic sciences can be. This part can be accelerated
by using faster algorithms, faster architecture, or both. Mapping that uses algorithms on
fast parallel architectures, graphics hardware in this case, is an approach that is done
within this thesis.

Research does not  stop after  assembling the sequences.  In fact,  the most  interesting
work comes on further research (Golding & Morton 2004, Shamir 2002). The next chal-
lenging step is to find the location of all genes within each chromosome. There are some
indicators that allow a vague prediction of the presence of a gene, but still these areas
have to be examined carefully. For other genes there are no helpful hints at all. Hints are
start and stop codons and the similarity of a sequence part to an already discovered gene.
Once a gene is discovered, it is possible to predict proteins, but also the opposite direc-
tion is possible. With mass spectrometry methods proteins can be sequenced in order to
use this information for predicting gene patterns. All in all it is to explore how DNA and
proteins work with each other and how they affect the living systems they are included

Fig.  4 -  Cost  and Quantity  Progression from 1996 till  2004
(Image courtesy of The Human Genome Program of the U.S.
Department  of  Energy  Office  of  Science,
http://www.ornl.gov/sci/techresources/Human_Genome/re-
search/instrumentation.shtml).
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in.

All data about DNA sequences, genes, and amino acid sequences is stored in databases.
In case of ongoing and commercial research it is most likely that the information is kept
privately, but especially in cases of non-profit and publically funded research it is stored
in open databases, accessible for everybody. Independent of the purpose of the database,
it must be structured in such a way that information can be found and used effectively.
In genetics research, as mentioned previously, common tasks are to compare one se-
quence to a set of other sequences in order to find similarities or, on the opposite, to
search a long sequence like a genome for parts that contain certain short sequences. One
example for the former is the comparison of one protein with a database of proteins in
the context of function prediction. The latter occurs in the investigation of a genome to
find regions that resemble known genes for gene prediction purposes.

Both, databases and sequence comparison algorithms are presented in the following two
sections, since the Smith-Waterman algorithms is one of these. Moreover, one of these
databases  will  be  used  to  test  the  scan  performance of  the  implemented  algorithm.
Therefore, the database entry formats will be presented as well, because every sequence
alignment tool has to deal with them if it loads sequences.

2.5 Databases

Swiss-Prot, the database used for testing the Smith-Waterman GPU implementation, is
only one of a huge number of genetic databases. This chapter will give a short overview
over the major databases and presents the database entry format FASTA that is loaded
by the Smith-Waterman implementation.

Each database has a focus on a specific type of information. There are databases focus-
ing on genes,  proteins, complete sequences, sequence fragments,  certain species like
mouse, fly, yeast or bacteria, and many more criteria. Darryl Leòn (Leòn 1999) catego-
rizes databases into the following main groups:

Genomic Information
– General Databases
– Human Genome Databases 
– Non-Human Genome Databases 

Proteomic Information
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– Protein Databases
– Motif Databases 

Other Databases
– SNPs Databases (SNP: Single base Nucleotide Polymorphisms)
– Expression Databases 
– Pathway Databases 

For each group he gives a representative list of the most important ones with their de-
scription. The whole list can be found on his website2. According to Golding and Mor-
ton (2004) the major nucleotide (DNA, RNA, ...) databases are 

– EMBL European Molecular Biology Laboratory
– NCBI U.S. National Center for Biotechnology Information
– DDBJ DNA Data Bank of Japan. 

Referring to the previous subchapter, DNA sequence information generated by the Hu-
man Genome Project is  freely accessible to scientists  through the online GenBank /
NCBI3, a database run by the National Institutes of Health and the National Library of
Medicine's National Center for Biotechnology Information. Furthermore, as the major
protein databases the following are mentioned:

– Swiss-Prot
– PIR Protein Information Resource
– PDB Protein Databank
– PROSITE

Web address of the mentioned databases can be found in the chapter “Links”. In addi-
tion to the sequences, most databases contain other useful data as well, including organ-
ism, tissue, function, and bibliographic information. The amount of additional included
information depends on the format of the database entries. A representative of a mini-
mum of information for entries is the FASTA format which contains only one descrip-
tion line and the sequence in one-letter-code. The following entry is written in FASTA
format:

2 http://home.san.rr.com/dna/darryl/home.html
3 http://ncbi.nih.gov/Genbank/index.html
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>sp|P53765|UNG_EHV2 Uracil-DNA glycosylase (EC 3.2.2.-) (UDG) -
Equine herpesvirus 2 (strain 86/87) (EHV-2).
MERWLQLHVWSKDQQDQDQEHLLDEKIPINRAWMDFLQMSPFLKRKLVTLLETVAKLRTSTVVYPGEE
RVFSWSWLCEPTQVKVIILGQDPYHGGQATGLAFSVSKTDPVPPSLRNIFLEVSACDSQFAVPLHGCL
NNWARQGVLLLNTILTVEKGKPGSHSDLGWIWFTNYIISCLSNELDHCVFMLW-
GSKAIEKASLINTNKHLVLKSQHPSPLAARSNRPSLWPKFLGCGHFKQANEYLELHGKCPVDWNLD

The description line is marked with a “>” character. It contains information like the
database  entry number,  the  sequence  name  abbreviation,  and  the  detailed  sequence
name. A line break terminates the description. The following lines of characters form an
amino acid sequence in one-letter-code. For sequence comparison, only the sequence it-
self is used, but it should always be pursuable where the sequence comes from. Other-
wise the result would be useless.

This example entry was taken from Swiss-Prot. The same format will be used in the im-
plementation part of this thesis and, furthermore, it is also Swiss-Prot that will be used
for performance tests. The original sequence entry in UniProt format has much more de-
tail  and  complexity.  It  can  be  found  in  the  appendix  section  “Swiss-Prot  Entry
Example”. The UniProt format itself is defined on the Expasy website4, the FASTA for-
mat is described by Pearson & Lipman (1988). The most frequently mentioned formats
are EMBL, FASTA, GCG,  GenBank,  UniProt,  IUPAC,  and the  trivial  plain  format
which consists of only the sequence without any additional information.

The study of genomics has caused a true explosion of databases. Figure 5 shows the
growth of the EMBL database with nucleic sequences from 1982 till 25th of march 2005.
Figure 6 is from the same date and presents the growth of protein entries of Swiss-Prot.
These diagrams again show, how fast the amount of data grows, emphasizing the need
for fast solutions that are able to handle such huge amounts of data in a short time. 

The actual algorithmic solutions for database scans are shown in the following chapter,
also introducing the Smith-Waterman.

4 http://au.expasy.org/sprot/userman.html#entrystruc
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Fig. 6 - EMBL database growth. 49,654,087 entries (nucleic sequences) on 25th

of  march 2005, http://www3.ebi.ac.uk/Services/DBStats/, as of 25.03.2005.

Fig. 5 - Swiss-Prot database growth. 176,469 entries (protein sequences) in release 46.3 of 15 march
2005. (http://au.expasy.org/sprot/relnotes/relstat.html, as of 25.03.2005)
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2.6 Sequence Alignment

Introduction

The Smith-Waterman method is one of several commonly used algorithms for sequence
alignment in a genetic context. This chapter presents it in the context of different types
of algorithms. Furthermore, the classical Smith-Waterman local alignment with its en-
hancement by Gotoh is presented in detail as a preliminary step for its mapping onto
parallel architecture in chapter 4. Furthermore, scoring matrices are introduced, since
they are used by all of these algorithms.

Because genetic elements share common sequences, it is possible to use their similari-
ties to derive the function or structure of an unknown sequence from a known one. With
this regularity mathematical algorithms can be applied to analyze sequences. Sequence
analysis therefore mainly tries to find similarities between different sequences by align-
ing them.

Some algorithms stretch sequences by inserting gaps in order to get the best alignment.
With the study of evolution of sequences mismatches correspond to mutations, and gaps
indicate insertions of deletions of sequence elements. A gap is a segment in a sequence
consisting only of empty elements. In the following example two DNA sequences S1

and S2 are aligned resulting in S1' and S2' whereby gaps are indicated by “-” and match-
ing elements are marked with “|”:

S1': tcctctgcctctgccatcat---caaccccaaagt
    |||| ||| ||||| |||||   ||||||||||||
S2': tcctgtgcatctgcaatcatgggcaaccccaaagt

The highest similarity corresponds to the lowest sum of distances between correspond-
ing elements (Tompa 2000). For two sequences with equal length l and  x , y  being
the distance function of two elements it is tried to minimize


i=1

l

S 1 ' [i ] , S 2 ' [i ] .

Alignment is  commonly categorized into the following types (Jovanovic 2003, IISR
2003, Wikipedia 2005d):

Pairwise Alignment

The comparison of two sequences is called pairwise alignment. An example for an use
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case is a database search for homologous sequences for function or structure prediction
of genes or proteins. The search of a database in this case is a series of pairwise align-
ments. Another case is the analysis of sequence evolution by mutation.

Multiple Alignment

Determining the similarity among more than two sequences is called multiple  align-
ment. It is also used for structure or function prediction of proteins. This approach does
not look for the best similarity to a concrete protein, though, but to a protein family.
Within a family proteins share specific features. In some databases proteins are grouped
by function, structure or evolutionary history. With the multiple alignment among a pro-
tein family a representative protein can be generated, called a motif. Afterwards, this
motif can be pairwise compared to a new protein in order to find that group of proteins
which it is most similar to. Thus, weak sequence similarity can be helpful in the process
of predicting a protein's structure, function and origin. This technique is used in the pre-
viously mentioned motif databases.

Global Alignment

With global alignment an attempt is made to get the best alignment of entire sequences
whereby the number of matches is maximized and the number of gaps is minimized. For
this kind of alignment the examined sequences should have similar lengths. It is there-
fore suitable for finding closely related sequences as needed in evolutionary investiga-
tions. The previous example is globally aligned. Because many tasks of global align-
ment can be done by local alignment, this technique is regarded deprecated.

Local Alignment

Local alignment tries to find only segments of sequences that show the highest similari-
ty. Due to this fact it is, in contrast to the global approach, useful for the comparison of
sequences with very different lengths such as searching a genome for the occurrence of
a certain pattern. This method can find related regions in a different order in two se-
quences. Thus, another application is the matching process of overlapping DNA frag-
ments after shotgun sequencing.

The difference between local and global alignment is shown in figure 7. The alignment
of two sequences is evaluated in a matrix. In case of global alignment, the path of the
optimal alignment through the matrix (lower right to upper left) starts in the lower right
corner. For a local alignment the cell with the highest score is chosen as starting point
for the alignment path. In this example of figure 7, the highest score is 3 in cell [3; 3] re-
sulting in a maximum subsequence length of 3. The resulting optimal alignments are
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shown below the matrices. Further explanation to this technique is given in the chapter
“Details on Smith-Waterman”.

Optimal Algorithms

Also referred to as rigorous algorithms, these algorithms find the optimal solution to a
problem. By using a technique called dynamic programming the problem gets divided
into smaller subproblems which are solved and reassembled afterwards in order to find a
solution to the entire problem. This approach is very accurate, but compared to heuristic
algorithms these are relatively slow.

Heuristic Algorithms

By using rules of thumb to reach a solution, heuristic algorithms are not that exact, but
they are much faster than optimal approaches like dynamic programming. This kind of
alignment is also not as tolerant as the optimal version and thus it might not find certain
solutions.

The first use of the dynamic programming method was made by Needleman & Wunsch
(1970) for pairwise global alignment and by Smith & Waterman (1981) for pairwise lo-
cal alignment whereby the latter is based on the former. Both algorithms compute all

Fig. 7 - Global and local alignment paths (Image courtesy of W.R. Pearson (2001)).
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possible alignments of two sequences therefore being very computation intensive and
slow. As they can then choose the best of all possible alignments they are optimal algo-
rithms. The Smith & Waterman algorithm is “the gold standard for protein-protein or
nucleotide-nucleotide pairwise alignment” (Wikipedia 2005d) if an exact investigation
needs to be performed. BLITZ is a database searching services of the European Bioin-
formatics Institute5 which uses two different methods of dynamic programming both in-
cluding Smith-Waterman: MPsrch 4 6 and Scanps7 (2.3) for protein vs. protein searches.
SSearch  (Sequence  Similarity  Search)  is  another  well  known Smith-Waterman  tool
which comes along the the FASTA package (Pearson & Lipman 1988). It incorporates
code developed by Huang et al. (1990).

Due to the much better performance heuristic algorithms are commonly used for large
scale searches. FASTA (Pearson & Lipman 1988) was the first tool of this category op-
timized for high speed search. Golding & Morton (2004) mention it to be 100 times
faster than SSearch, Pearson (2001) speaks of 5 to 50 times speed improvement with re-
sults  of  similar  quality.  A  simple  “Comparison  of  Smith-Waterman,  FASTA  and
BLAST” can be found in the appendix. Finally, concerning multiple alignment Golding
& Morton (2004) mention Clustal (Higgins & Sharp 1989) to be the most popular pro-
gram which in fact starts with a pairwise alignment as well.

The Smith-Waterman algorithm is the most accurate one of the presented methods. But
since it  is very computation intensive,  mainly faster heuristic algorithms are use for
large scale database searches. To be able to use the Smith-Waterman algorithm more of-
ten in practice, it is necessary to find ways to speed up it's execution. This thesis dis-
cusses a way to increase it's performance by using parallel streaming architecture. Com-
modity graphics cards are inexpensive streaming architectures that can be used in desk-
top PCs and other devices. The following section will explain the algorithm in detail be-
fore it is mapped to graphics hardware in chapter 4.

Smith-Waterman Algorithm in Detail

The method developed by Smith & Waterman (1981) is an optimal pairwise local align-
ment algorithm dealing with two sequences A=a1, a2, ... an and B=b1, b2, ... bm. The simi-
larity of two elements a and b is evaluated by the function s(ai, bj). It is the aim of the
algorithm is  to  find  two segments  with  maximum similarity.  Another  approach  de-
scribes this process as minimizing the cost for transforming one sequence into another

5 http://www.ebi.ac.uk/searches/blitz_doc.html
6 http://www.ebi.ac.uk/MPsrch/
7 http://www.ebi.ac.uk/scanps/index.html
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one. Therefore s(ai, bj) returns the cost for transforming element a into element b. For
both similarity and cost the function s(ai, bj) refers to a specific substitution lookup table
called scoring matrix. In addition, deletions and insertions cause gaps and are therefore
treated with a penalty (weight) called gap cost. This is referred to as Wk for a gap with
length k. 

In order to find an optimal solution all possible alignments are set up in a matrix H with
size (n+1)×(m+1). This matrix is initialized by setting row 0 and column 0 to zero:

H k0=H 0 l=0, 0≤ k ≤ n and 0≤ l ≤ m

A matrix cell Hij is calculated with

H ij=max H i−1, j−1s ai ,b j , max
k ≥ 1

H i−k , j−W k  , max
l ≥ 1

H i , j−l−W l , 0 ,

1≤ i ≤ n and 1≤ j ≤ m

and it therefore depends on the left, upper left and upper cells Hi-1, j, Hi-1,  j-1, Hi, j-1. The
elements ai and bj being associated is considered by the similarity

H i−1, j−1sai , b j .

The end of a gap with length k at element ai is taken into account with the similarity

H i−k , j−W k

as well as the similarity for an ending gap with length l at element bj

H i , j−l−W l .

To avoid a negative similarity Hij can not be lower than 0.

Because the Smith-Waterman solution requires a large number of steps of order M2N, a
modification was made by Osamu Gotoh (1982). A matrix cell is then described by

H i , j=max H i−1, js ai ,b j , E i , j , E i , j , 0 , 1≤ i ≤ n and 1≤ j ≤ m

Each

E i , j=max H i−k , j−W k 

and

F i , j=max H i , j−l−W l

gets substituted by a recursive expression
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E i , j=max H i−1, j , E i−1, j , 1≤ i ≤ n and 0≤ j ≤ m
=W 1 and =W k1

and

F i , j=max H i , j−1 , F i , j−1 , 0≤ i ≤ n and 1≤ j ≤ m
=W 1 and =W l1

where α is the weight of the first gap element and β is the weight of the following gaps.
This is the so-called affine gap penalty. A linear gap penalty is present if α=β. In this
case the rule definitions for the evaluation of a cell can be simplified to

H i , j=max H i−1, j−1s ai ,b j , H i−k , j− , H i , j−l− , 0 ,
1≤ i ≤ n and 1≤ j ≤ m

Due to the dependency of Hij to Hi-1,  j, Hi-1, j-1, Hi, j-1 the matrix needs to be computed in an
order that satisfies this. The most obvious ways are to go by row from top down and
within a row from left to right or to go by column from left to right and within a column
top down. Figure 8 shows the former version. The Smith-Waterman matrix of two DNA
sequences A=GTCTATCAC and B=ATCTCGTATGATG is shown in the process of
evaluation. In this case, a linear gap penalty of α=β=1 was chosen. In addition, the sub-
stitution cost for matching elements is simply s(ai, ai)=2 and for non-matching s(ai, bj)=-
1, a≠b. The cells are computed by row from top down and from left to right.

Having the full matrix the optimal alignment can be picked out. Beginning with the

Fig.  8 -  Smith-Waterman matrix  computation with two DNA se-
quences A=GTCTATCAC and B=ATCTCGTATGATG.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

i ⊘ A T C T C G T A T G A T G

0 ⊘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 G 0 0 0 0 0 0 2 1 0 0 2 1 0 2

2 T 0 0 2 1 2 1 1 4 3 2 1 1 3 2

3 C 0 0 1 4 3 4 3 3 3 2 1 0 2 2

4 T 0 0 2 3 6 5 4

5 A 0

6 T 0

7 C 0

8 A 0

9 C 0
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highest value of H it is backtracked along the path of cells of which the values were de-
rived from. This is done until  an Hij with value zero is reached. The aligned subse-
quences are determined by projecting the path onto the compared sequences. A more de-
tailed description of the backtrack process can be found in Gotoh (1982).

In figure 9 the backtracking result is shown. Beginning from the highest value (here: 10)
the optimal alignment path is evaluated backwards until a zero cell is reached. The re-
sulting optimally aligned subsequences are 

TC-TATCA
|| ||| |
TCGTATGA

including one gap and one mismatch.

Scoring Matrices

The Smith-Waterman implementation in chapter 4 uses a BLOSUM62 scoring matrix
(Blocks Substitution Matrix) to evaluate a sequence alignment. This chapter explains
what scoring matrices are and why they are used by sequence alignment algorithms.

In the above example s(a, b) simply returned a score of 2 for a=b and -1 for a≠b. But in
reality all substitutions are not equally likely. They have different consequences, and
they therefore need to be weighed to account for this. An example for different conse-
quences are synonymous and nonsynonymous substitutions  in  nucleic  codons.  Many
amino acids are encoded not only by one but by several codons. Thus, a synonymous

Fig. 9 - Result of the traceback.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

i ⊘ A T C T C G T A T G A T G

0 ⊘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 G 0 0 0 0 0 0 2 1 0 0 2 1 0 2

2 T 0 0 2 1 2 1 1 4 3 2 1 1 3 2

3 C 0 0 1 4 3 4 3 3 3 2 1 0 2 2

4 T 0 0 2 3 6 5 4 5 4 5 4 3 2 1

5 A 0 2 1 2 5 5 4 4 7 6 5 6 5 4

6 T 0 1 4 3 4 4 4 6 6 9 8 7 8 7

7 C 0 0 3 6 5 6 5 5 5 8 8 7 7 7

8 A 0 2 2 5 5 5 5 4 7 7 7 10 9 8

9 C 0 1 1 4 4 7 6 5 6 6 6 9 9 8
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change of the triplet does not mean that it results in a different amino acid: GGG, GGA,
GGC as well as GGU encode glycine. However, a nonsynonymous  substitution in GGG
would result in one of the following amino acids: valine (GUG), alanine (GCG), glu-
tamine acid (GAG), tryptophan (UGG), and arginine (CGG, AGG). Following, the most
common types of  scoring matrices are presented  (Golding & Morton 2004,  Pearson
2001, IISR 2003).

Unitary Matrix

This trivial kind of matrix has only two different values, one along the diagonal and one
for the rest of the matrix. The scoring matrix in the example above is of this type. All
matrix elements are set to -1 except the diagonal (a=b) was set to 2. This matrix can be
found in the appendix.

PAM

The term PAM (Point Accepted Mutation) was introducted by Dayhoff et al. (1978).
This matrix is based on an explicit evolutionary model where mutations are counted on
branches of a phylogenetic tree. In other words, the weights of the matrix are derived
from how frequently each amino acid was replaced by another in evolution. The investi-
gations for the original PAM250 by Dayhoff et al. (1978) comprises 1,572 changes in 71
groups of closely related proteins. An evolutionary distance of one PAM corresponds to
mutation ratio of about 1 % meaning that 1 out of 100 amino acids got substituted.
Thus, PAM250 is suitable for distantly related proteins. Proteins having diverged by 250
% still match with about 20 % due to back mutations and silent mutations resulting in a
divergence of still  80 %. It is considered a good general matrix for protein database
searching (IISR 2003).

BLOSUM

The principle of the Blocks Substitution Matrix was introduced by Henikoff & Henikoff
(1992). This matrix is based on a rather implicit model of evolution and gets derived
from groups of aligned sequences that differ by no more than X %. Thus, for the BLO-
SUM62 proteins that do not differ more than 62 % were used. For these purpose the
BLOCKS8 database is searched for highly conserved segments in series of alignments
without gaps.

BLOSUM matrices are best for detecting local alignments and BLOSUM62 which can
be found in the appendix  is  used in BLASTP for protein database searching.  BLO-
SUM62 is best for the majority of weak protein similarities and BLOSUM45 is best for
8 http://blocks.fhcrc.org/
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detecting long and weak alignments (IISR 2003). A list of equivalent PAMs and BLO-
SUMs is shown in table 1.

GONNET

Another method to obtain a scoring matrix is iterative and was developed by Gonnet et
al. (1992). They use classical pairwise protein alignment for distance measurement and
use the derived values to create a distance matrix. This matrix is then used in the next it-
eration step to refine the alignment of the same sequences estimating a new, more pre-
cise matrix. This is repeated until almost no changes in the resulting matrices occur any-
more. The GONNET matrices are similar to PAM, but as they are derived from a larger
set of sequences they are more sensitive and should therefore be used in preference to
PAM (Golding & Morton 2004). GONNET250 is equivalent to PAM250.

2.7 Summary

This chapter introduced the basics of bioinformatics and sequence. In order to under-
stand the algorithms dealt within this biological context, a genetics and its terminology
is helpful. Basics in both genetics with focus on DNA and protein sequences and se-
quence alignment with focus on the Smith-Waterman algorithm were presented. Since
genome projects exist, the amount of genetic data that is produced by research every
year increases exponentially. The processing of this data needs algorithms that are fast
enough to handle the data in an adequate time. On the one hand, the Smith-Waterman
algorithm is an accurate algorithm that is very computation intensive. On the other hand,
implementing the algorithm on parallel streaming architecture can speed up the align-
ment process a lot. This is why this thesis presents an implementation of the Smith-Wa-
terman algorithm realized on inexpensive GPU-based streaming architecture.

The implementation of the algorithm described in chapter 4 is organized by a CPU ap-
plication and computed on a GPU. The program will be able to load a scoring matrix

Table 1 - Equality of PAM and BLOSUM.

PAM BLOSUM

PAM100 ~ BLOSUM90
PAM120 ~ BLOSUM80
PAM160 ~ BLOSUM60
PAM200 ~ BLOSUM52
PAM250 ~ BLOSUM45
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from a file and to load sequences in FASTA format. In following tests a BLOSUM62
will be used during a whole database scan of Swiss-Prot.

The following chapter gives an overview over graphics hardware and GPU program-
ming. It shows state-of-the-art  programming methods and discusses features and the
potential of this technique. This knowledge is necessary to to understand the techniques
used for that Smith-Waterman implementation discussed in chapter 4.
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3 GPGPU

3.1 Introduction

Using GPUs for general-purpose computation (GPGPU) can be a significant speed up
compared to using only CPU power, but the way of programming and the way of think-
ing about the realization of an algorithm is different. The possible advantage in speed
comes along with a series of limitations and disadvantages. Thus, this chapter gives an
idea of how to work in this context.

After an explanation of why GPUs can be suitable for general-purpose computation,
previous work is presented. Furthermore, graphics card technology represented by the
hardware graphics rendering pipeline is discussed. Based on that knowledge computa-
tional concepts on GPUs and CPU-GPU analogies are shown. Finally, GPU program-
ming itself is introduced and different programming languages are presented and com-
pared. This chapter presents all techniques that are used for the implementation in chap-
ter 4. The focus will therefore lie on these techniques.

3.2 GPUs are usable for General Purpose Computation

GPUs are fast. Table 2 shows a CPU – GPU performance comparison (floating point
operations per second and data throughput) from 2004 (Harris 2004b, Houston 2005).

The value marked with * has been reached in a synthetic benchmark which consisted
only of a long pixel shader with nothing but MUL (multiplication) instructions. The ob-
served  peak  GFLOPS  performances  of  the  listed  GPUs  are  4.4  and  5.6  times  the
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theoretical peak performance of the CPU. 

CPUs are designed for low latency computations whereas GPUs are optimized for high
throughput. Increasing the throughput includes adding transistors to GPUs which consist
of several processors and functional units. This is why the growth of the amount of tran-
sistors used on GPUs is greater than it was predicted for microprocessors by Gordon
Moore (1965). Derived from observations of past years he predicted in his so-called
Moore's Law that the number of transistors per square inch on integrated circuits would
continue doubling every year. In fact, an exponential growth proved to be true but with
an exponent of 1.5 like shown in table 3 (still referred to as Moore's Law).

In contrast, the relatively young technology of GPUs shows an annual growth of more
than 2 which means that the number of transistors is multiplied by more than 1,000
within 10 years. That means that within the next years GPUs will become even more at-
tractive as an computation alternative to CPUs. In addition, the time between new gen-
erations of GPUs is with 6 months much lesser than for CPUs, making improvements in
technology available more frequently.

The fast  development  is  driven by the  game industry (Luebke 2004,  Harris  2004b,
Lefohn 2004, Fernando et al. 2004). Thus, GPUs are designed to render more and more
realistic complex 3D scenes in realtime (see figure 10). They are also inexpensive, easi-
ly upgradable, and compatible with multiple operating systems and hardware architec-
tures. They are already present in many different devices: desktop PCs, laptops, hand-
held PCs, PDAs and even cell phones.

Initially, GPUs had a fixed function render pipeline giving the software developers only
little space to influence the result. But since 2001 they started becoming programmable,

Table  3 -  Growth  rate of  number  of  transistors on  CPU and
GPU.

Processor Annual Growth Decade Growth

CPU 1.5× 60×
GPU > 2.0× > 1000×

Table 2 - CPU - GPU performance comparison.

Processor Type Case Gflops Throughput (peak)

Pentium4 3.4 GHz CPU theoretical: 13.6 5.96 GB/sec
Nvidia GeForce 6800 Ultra GPU observed*: 51.2 32.7 GB/sec
ATI Raden X800 XT GPU theoretical: 66.6 33.4 GB/sec
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starting with vertex programs executed by the vertex processors and later fragment pro-
grams executed by the fragment processors. 2002 16bit floating point numbers where
added, enhanced to 32bit in 2004. GPUs therefore became suitable for general purpose
computations  beyond  graphic  applications  including  scientific  computation.  Further-
more, high level languages like NVIDIA's C for graphics (Cg), OpenGL's GLSL and
Microsoft's HLSL. More about these languages can be found in the chapter “Program-
ming the GPU”.

Regarding the architecture, GPUs are parallel streaming processors optimized for vector
operations (Lindholm et al. 2001). Parallel architectures have advantages that can speed
up suitable applications like in-game physics simulation enormously. Thus, it is already
spoken of the “beginning of the desktop parallel computing age” (Lefohn 2004). Some
example implementations are presented in the next chapter.

Of course, this technology brings along some disadvantages and limitations and the pro-
gramming model is different as well, tied to computer graphics (Luebke 2004). Code
written for a CPU cannot simply be ported to a GPU solution. However, because of its
speed it is tried to make the inexpensive computational power available to developers as
a sort of coprocessor. GPUs are made more flexible and new programming languages
make application development easier.

3.3 A Brief History of GPUs and GPGPU

Before the rise of 3D support for PCs in 1995 the CPU had to handle all vertex transfor-
mation and pixel rendering (Fernando 2004, Fernando et al. 2004, Zeller 2004b). Al-

Fig. 10 - GPUs are designed to render 3D scenes: From triangles to pixels in real-time.
(Figures Courtesy of NVIDIA)



3  GPGPU 31

though it was very comfortable that everything about vertex and pixel processing was
programmable, the CPU was simply too slow to render complex 3D scenes in realtime.
The 3dfx Voodoo which was released in 1996 is generally credited as the first graphics
processor for PC architecture. It is a 3D accelerator card that was used in addition to a
common graphics card and it was limited to processing two-dimensional (2D) triangles
only. Thus, the geometry was still computed by the CPU. Later, models of other GPU
developers like NVIDIA, Matrox and ATI Technologies Inc. (ATI) outmatched 3dfx
cards and established themselves, combining the classical graphics card with 3D accel-
eration that included vertex processing as well. A big advantage of GPU technology was
also, that 3D game developers didn't have to implement their own 3D rendering algo-
rithms anymore. Instead they used 3D APIs like DirectX and OpenGL as communica-
tion interface between the application and the graphics card.

Table 4 gives a rough description of the release of further GPU features:

Figure 14 shows the performance development of GPUs in the last decade in a logarith-
mic graph. The per-pixel rate grows from far less than 100 Mpixels/s to almost 10,000
Mpixels/s. Below the graph the year related technological progress (bus type and speed,
video memory) are listed together with the at that time available versions the 3D APIs
Microsoft DirectX and OpenGL. The improvement of render quality that occured at the
same time shall be emphasized by the figures 11 to 13 (Fernando et al. 2004). Two of
these are games whereas the third one is a demo application. All three cases show quite
similar scenarios with one or two characters being in the focus of interest. The second
figure has a 3D background whereas the remaining two only have an environment image
in background. Quality evolves from poorly shaded low polygon models to almost pho-
torealistic characters with multitexturing, translucency and hair.

Table 4 - Introduction of new GPU features.

Year Introduced feature

1995 Texture mapping and z-buffer

1998 Multitexturing

1999 Transform and lighting

2001 Programmable vertex shader

2002 Programmable pixel shader

2004 Shader model 3.0 and 64-bit color support
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Fig. 11 - Virtua Fighter (SEGA Corporation)

Fig. 12 - 2001: Dead of Alive 3 (Tecmo Corporation)

Fig. 13 - 2003: Dawn Demo (NVIDIA Corporation)

2003: Dawn Demo

(NVIDIA Corporation)
NVIDIA GeForce FX (NV30)
120M transistors
200M triangles/sec
2G pixel ops/sec
64-bit color 
1024×768
8:1 Anisotropic filtering 

1995: Virtua Fighter

(SEGA Corporation)
NVIDIA NV1
1M transistors
50K triangles/sec
1M pixel ops/sec
16-bit color 
640×480
Nearest filtering

2001: Dead or Alive 3

(Tecmo Corporation)
Xbox (NV20)
20M transistors
100M triangles/sec
1G pixel ops/sec
32-bit color
640×480
Trilinear filtering



3  GPGPU 33

The history of GPU programmability is short: it did not start before 2001 when NVIDIA
and ATI made the vertex units of their new GPU models programmable. The new fea-
ture was the ability to upload a small vertex program usually referred to as vertex shader
which then was executed. In 2002/2003 both companies introduced programmable frag-
ment processors as well. In contrast to the initial 8-bit fixed point format, 32-bit floating
point precision is standard for today's high-end cards and is very important for accurate
calculations as they occur in scientific applications. In addition, these GPUs have up to
512 MB memory, 6 vertex shader units and 16 pixel shader units. The PCIe bus gives a
high bandwidth between CPU and GPU with a peak of 4GB/s up- and download.

The idea of using the power of graphics hardware for general purpose computation or
simply for applications they are not designed for is not new. The first approaches have
been done on machines like the Ikonas (England 1978), the Pixel Machine (Potmesil &
Hoffert 1989), and Pixel-Planes 5 (Rhoades et al. 1992) before the age of GPUs. Exam-
ples for papers and implementations using GPUs for general-purpose computation be-
tween 1990 and 2004 deal with robot motion planning (Lengyel et al. 1990), procedural
texturing and shading (Olano & Lastra 1998, Peercy et al. 2000, Proudfoot et al. 2001,
Rhoades et al. 1992), collision detection (Hoff et al. 2001; Govindaraju et al., 2003), ray
tracing (Carr et al. 2002, Purcell et al. 2002), image based modelling (Yang et al. 2002;
Hillesland  et  al.  2003),  photon  mapping (Purcell  et  al.  2003),  multigrid  solvers  for
boundary value problems (Goodnight et al. 2003), physically-based visual simulation

Fig. 14 - Performance evolution of the GPU (image courtasy of C. Zeller).
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(Harris et al. 2002), simulation of cloud dynamics (Harris et al. 2003), simulation of
dendritic ice crystal growth (Kim & Lin 2003), and database operations (Govindaraju et
al. 2004). This list was a small excerpt of what has been done so far.

By mapping the Smith-Waterman algorithm to graphics hardware, this thesis ties up to
the presented examples. The following chapters present the techniques used to imple-
ment general-purpose applications on GPUs including the consequent implementation.
To understand these techniques a basic understanding of graphics hardware is required.
The next chapter therefore introduces the hardware graphics pipeline.

3.4 Introduction to the Hardware Graphics Pipeline

Efficient GPU programming requires a basic knowledge of graphics hardware. It is the
prerequisite to taking advantage of its features. The fundamentals are described in this
chapter whereas the following chapter focuses on using this technology for general-pur-
pose computing.

The rendering of a 3D scene consists of many different steps commonly referred to as
the Graphics Pipeline (see figure 15). The entire process consists of three main stages:
the application stage,  the geometry stage, and the rasterization stage. The application
stage organizes all 3D objects, their properties and transforming nodes depending on
game- or application logic and animation. The geometry stage is responsible for all ver-
tex transformations from world space to view space and to image space. This stage
mainly consists of multiplications of transformation matrices with vectors and vector
normalizations. Drawing the pixels is a task of the rasterization stage. First, the triangles
get rasterized before their surface properties like shading, texture and transparency are
evaluated. Geometry stage and rasterization stage can be processed by software or by
hardware like GPUs. Thus, it is either spoken of Software Graphics Pipeline or Hard-
ware Graphics Pipeline.

In the case of GPUs, the rasterization stage gets divided into two stages, thus having
three stages in total: vertex processing, rasterization, and fragment processing (see fig-
ure 16) (Lindholm et al. 2001, Buck et al. 2004). The vertex and fragment stages be-
came programmable with the introduction of vertex and fragment processors. In fact,
there are several processors working parallely. Modern graphic cards have 6 vertex pro-
cessors (6 vertex shader units) and 16 fragment processors (16 pixel pipelines). Each
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type of them is able to execute user defined assembly-level programs, also referred to as
shaders or shader programs.

These programs basically allow mathematical  operations,  texture fetching,  and some
special purpose operations. Due to high-level shading languages shaders can be written
with C-like syntax and get translated into assembly-level code. Furthermore, there are
two important major differences to classical programming:

– Elements are independent: while processing a vertex, it is not possible to access other
vertices. While processing a fragment, it is not possible to access other fragments as
well.

– Registers can only be read or written, but never both at a time (except temporary
ones). The information the processors get from the previous stage can only be read
whereas the output (e.g. framebuffer) can only be written.

Fig. 15 - Graphics Pipeline Stages: Application Stage, Geometry Stage, and Rasterization Stage (Fig-
ure Courtesy of C. Zeller (2004b)).
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Each stage is described in the following (Kessenich et al. 2004, van der Linden 2004,
Luebke 2004):

Vertex Processor

The (programmable) vertex processor transforms vertices from world space into image
space (no viewport mapping, see figure 17), generates and transforms texture coordi-
nates, and computes the per-vertex lighting and material color. It gets the required infor-
mation such as transformation, lighting and material from the application. Each proces-
sor handles only one vertex at a time and has no access to the others.

Rasterizer

In contrast to the vertex and fragment processing, this step is not limited to single vertex
or single fragment operations, but it is not programmable. This step creates fragments
(preliminary pixels) by rasterizing primitives (see figure 18) and it is therefore responsi-

Fig. 16 - Three stages on the GPU (image courtesy of Randy Fernando (2004), modified).

Vertex Rasterizer Fragment

Primitive
Assembly Rasterization

3D Vertices Transformed
and lit 2D vertices

Primitives Fragments
with interpolated
vertex attributes

Pixels

Processor Processor

Fig. 17 - Transformation from world space to
image space by vertex processors (image cour-
tesy of Luebke (2004)).
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ble  for  primitive  assembly as  well.  Furthermore,  it  computes  perspective  divisions,
viewport mapping, clipping, and backface culling. Per-vertex information like color are
interpolated between vertices  and  are  output  as  per-fragment  information.  This  also
includes values like depth and stencil.

Fragment Processor

The fragment processor calculates the pixel color for every fragment that the rasterizer
sends.  A pixel  color  usually  consists  of  4  components:  red,  green,  blue,  and  alpha
(RGBA). In addition to per-fragment values global information like textures is accessi-
ble. Texture coordinates and z-depth (e.g. for fog) in contrast are per-fragment values.
Since  multitexturing  is  available,  complex  materials  can  be  applied.  In  figure  19
bumpmapping is used to simulate a detailed surface structure of a man's face, a color
map determines the surface color, and  a gloss map makes areas on the surface more
shiny than others

It is important to consider an adequate arithmetic intensity (compute-to-bandwidth ratio)
(Buck 2004): a vertex needs a bandwidth of 32 bytes and shouldn't be computed with
more then 100 to 500 32bit floating point operations (f32-ops). A fragment in contrast
needs a bandwidth of only 10 bytes and can therefore be evaluated by more complex al-
gorithms with 300 up to 1000 8-bit operations (i8-ops). 8-bit color components (RGBA

Fig.  19 - Multitexturing (image courtesy of Luebke (2004), modified con-
trast).

Fig.  18 - Rasterization of primitives
(image courtesy of Luebke (2004)).
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= 4 × 8 bit = 32 bit color) are used in classical GPUs before 16-bit, 24-bit (ATI GPUs)
and 32-bit  (Nvidia GPUs) floating point precision was available. With this precision
high dynamic range images (HDRI) can be used as well as accurate general purpose
computations can be done. A number format in between was 12-bit fixed point. The
output for display devices remains 8 bit per component.

Figure 20 shows a simplified model of the graphics pipeline with today's shader model
3.0 graphics cards such as the Nvidia Geforce 6800 (Nvidia 2004) and ATI Radeon
X800 (ATI 2004). The application runs on the CPU and passes geometry (commonly tri-
angles, but more formats exist) and textures as well as additional information like trans-
formation instructions to the GPU. Both are connected via a PCIe bus (Peripheral Com-
ponent Interconnect Express) which was introduced in 2004. Until then the AGP bus
(Accelerated Graphics Port, introduced in1997) has been used. Much older cards use the
PCI bus (Peripheral Component Interconnect, introduced 1992). With Shader Model 3.0
both the vertex processor and the fragment processor are programmable and can have
multiple textures as input. Shader Model 2.0 only allowed the fragment processor to get
texture input. Especially for iterative algorithms it is very important that rendered values
can be reused by loading a rendered buffer as texture.

How to use the graphics pipeline (with focus on fragment processing) and how to reuse
buffers is described in the following chapters.

Fig. 20 - Graphics Pipeline with Shader Model 3.0 (image Courtesy of Cyril Zeller (2004b)).
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3.5 Mapping Computational Concepts to the GPU

The memory and processing model of GPUs is different to that of CPUs. General-pur-
pose programming on GPUs requires a basic knowledge of computational concepts on
graphics hardware. These as well as GPU-CPU analogies are presented in this chapter.

GPUs are designed for graphics applications and therefore they fit their characteristics
(Owens 2004, Harris 2004, Lefohn 2004b). Graphics applications are arithmetic inten-
sive tasks which are suitable to compute parts of it on parallel systems. GPUs feature
lots of parallelism with their parallel feed forward pipelines, but these bring along some
properties that need to be taken into account.

Purcell et al. (2002) describe modern GPUs as streaming processors. Streaming proces-
sors read an input stream, apply kernels (filters) to the stream and write results to an out-
put stream. In case of several kernels, the output stream of leading kernels is the input
stream for the following (see figure 21).

Streams 

A stream is a collection of data records that require a similar computation and that can
be operated on in parallel. Stream elements can be e.g. vertices, pixels of an image in
case of image processing, voxels, or finite element method cells.

Kernels

A kernel is the computation / function that is applied on each stream element. This can
be, for instance, a  transformation or a partial differential equation. As elements are pro-
cessed parallely, no computational dependency between stream elements must exist. It is
neither possible to access other elements nor is it possible to read the output. The ana-
logue to a kernel is a vertex or fragment program.

Two properties make stream processing so fast: explicit parallelism and explicit memo-
ry locality (Lefohn 2004b, Harris 2004, Lefohn 2004b). Stream elements are indepen-
dent and no communication between stream elements or kernels is possible. There's no
shared or static memory like global variables. Every temporary value in a kernel is local

Fig. 21 - Streaming model that applies kernels to an input stream and writes to an output
stream.

Input Stream Filter 1 Output StreamFilter n
Kernels
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and each temporary register is zeroed after execution. As there are no read-modify-write
buffers  kernels  are  neither able  to  write  into input  streams nor to  read from output
streams.

Most general-purpose applications use only fragment programs for computation where-
by the input comes from textures. Thus, textures are considered input streams and the
buffers that is written into are output streams. Because fragment processors are SIMD9

(Single Instruction Multiple Data) architectures, only one program can be loaded at a
time. Applying several kernels thus means to do several passes (see figure 22).

This method implies the  three basic concepts most general-purpose GPU applications
are based on (Fernando et al. 2004):

1. Textures are data input.
2. Input is processed by a vertex or fragment program.
3. Feedback is realized by using the output buffer of a completed pass as input texture

for the following one.

Textures

The analogue of arrays on the CPU are textures on the GPU (see figure 23) (Fernando et
al. 2004, Harris 2004). Textures are best suitable to represent one, two, or three dimen-
sional grids and they are therefore used for grid simulation computation. That means
that an algorithm that originally does not use grids needs to be remapped to a grid algo-
rithm. Many algorithms map to grids. Some examples are physical matrix algebra, im-
age and volume processing, global illumination, ray tracing, and fluid simulation. Tex-
tures are optimized to contain data with up to four components like RGBA color. They
can therefore be used to store vectors with up to four components or up to four scalars
which then can be interpreted as four grid layers. The analogue of an array read is a tex-

9 On  parallel  SIMD  systems  several  processors  apply  instructions  on  independent  elements  syn-
chronously (Alaghband 1997). MIMD (Multiple Instructions Multiple Data) systems in contrast have
several processing units that work asynchronously and apply distinct instructions sets independently on
streams.

Fig. 22 - Multipass method for applying n instruction sets.

Input Textures Program 1

Program n Result

Output Buffer

Input Textures
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ture lookup. The integer array offset therefore corresponds to a floating point texture co-
ordinate with the same dimension of the texture. Texture-lookups are very fast if they
can be pre-fetched. This is the case if the textures lookup coordinates are foreseeable,
e.g.  if  the  coordinates  are  constant  or  if  the  fragment  texture  coordinate  is  used.
Dynamic  texture-lookups  in  contrast  are  quite  slow.  If  the  texture  coordinate  is
computed at runtime because it depends on values that result from a previous lookup, it
cannot be prefetched.

Programs

If an algorithm is applied to a grid using a CPU, nested loops are usually used to iterate
over the grid whereby the loop body contains the instructions (Fernando et al. 2004).
The analogue to the loop body is the kernel or fragment / vertex program. Figure 24
shows a simple C++ loop and its equivalent fragment program written in GLSL. The
two nested loops iterate over a grid whereby the loop body is applied to each grid ele-
ment. The fragment program is automatically executed for each pixel of the buffer area
that is rendered. The application passes a stream of elements to the GPU which then ap-
plies the loaded kernel to each element on all available processors in parallel. If an ap-
plication starts a rendering on the GPU it is always a for-each-call. 

GPU programs can either scatter or gather information (Harris 2004, Fernando et al.

Fig. 23 - The analogue to an array in the CPU is a tex-
ture in the GPU (Image courtesy of Harris (2004)).

Fig.  24 - The loop bodies of CPU programs that iterate over arrays correspond to kernels
applied to streams.

uniform sampler2DRect grid;
uniform vec2          uv;

void main(void)
{
   vec2 a = texture2DRect
            (grid, gl_TexCoord[0]);
   gl_FragColor = a * uv;
}

C++ GLSL

for(int i = 0; i < height; i++)
{
   for(int j = 0; j < height; j++)
   {
      Vec2f a = grid(i, j);
      a.x *= u;
      a.y *= v;
      grid(i, j) = a;
   }
}
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2004). A vertex   program cannot gather information, because it cannot access other ver-
tices but  the processed one.  On the other hand it  can change the vertex coordinates
which influences the position the pixels  that are rendered. Therefore, it  can perform
scattering algorithms.  The fragment  program in  contrast  can  randomly access  every
input texel of the texture, but it can write only the pixel it is processing. Thus, it can
perform only gathering algorithms (see figure 25).

GPU programs have two levels of parallelism.  First,  multiple processors execute the
program in parallel. Second, some arithmetic operations can be applied to multiple val-
ues in parallel. This is because GPUs are optimized for vector mathematics. Built-in
vector functions are executed within one cycle. Thus, if four scalars are put into a vec-
tor, it is possible to execute four scalar operations in one cycle.

Feedback

Getting feedback is not as trivial as it is in CPU applications which normally have read-
and-write variables (Harris 2004). GPU programs can only read input and write output
within one pass. Thus, iterative algorithms need multiple passes whereby the result of a
completed pass is the input for the upcoming pass (see figure 26). There are two tech-
niques to realize that:

1. CTT (Copy-To-Texture) is the older and much slower method of both. A pass ren-
ders its result to framebuffer. To use the data in the framebuffer as input for the next
pass it first needs to be copied into a texture first. Then it can be used as input. This
process is very slow, because the buffer is transferred from GPU memory to CPU
memory where it is copied to a texture and transferred back when the texture is load-
ed.

2. RTT (Render-To-Texture) is  a method which is supported by Shader Model 2.0+
GPUs. This technique requires a buffer that can be bound as render target and as tex-
ture. Therefore, the render result can directly be used as input for the next pass with-
out the need to copy it. Actually, there are two buffer models that support this tech-
nique: pbuffers and framebuffer objects.

Fig. 25 - Scattering and gathering in a grid
(image courtesy of Harris (2004)).

Scatter                               Gather
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Invoking Computation

Computation  is  invoked  by drawing geometry (Harris  2004).  Commonly  a  quad  is
drawn into the render buffer in form of a rectangle covering the pixels that shall be
evaluated. A quad is a polygon consisting of four vertices. Therefore, all four vertices
must be defined. In addition, texture coordinates are defined for the textures that are
used. In graphic applications, this is called texture projection or texture mapping and it
is used to apply images onto geometry. Each vertex has its individual coordinate on each
texture. Texture coordinates for pixels in between are interpolated. If this is done, the
fragment program automatically gets the texture coordinates that correspond to the rela-
tive location of the pixel in the rendered quad with respect to the mapping (see figure
27). After the rasterization stage, the fragment program is executed for each of the frag-
ments the quad got converted into.

Example

How to use the presented methods shall be clarified with the example of a reduction

Fig. 26 - Feedback by using the output buffer as input for a following
pass (image courtesy of Harris (2004), only partially shown).

Feedback

Fig. 27 - Point P in the rendered quad Q corresponds to sample P'
in the mapped quad Q'.
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function. The purpose is to find the minimum value within a large quantity. The values
are stored in a 9×9 matrix (see figure 28).

The algorithm computes the overall minimum value by iteratively evaluating the mini-
mum value of 3×3 submatrices (see figures 29 and 30). Determining the minimum value
of a submatrix is done by a fragment program.  With one pass, the matrix is reduced by
factor  9.  This  is  done  until  a  matrix  of  size  1×1  is  reached.  Therefore,  log9(m×n)
=log981=2 passes are necessary to complete the example, where m is the width of the
matrix and n is the height. In case of a GPU with 16 pipelines, only nine pipelines
would be used in the first pass and only 1 pipeline in the second. Thus, this example is
too small to be able to make optimal use of the parallelism.

Buffers can only be created with a size of 2a×2b. It is assumed that a 16×16 buffer exists
containing the 9×9 matrix as shown in figure 31. This buffer is used as input texture.
The render buffer that is still empty has the same size. 

For each pass, a quad Q is drawn into the render buffer with border lengths of a third of

Fig.  29 - The reduction is done by calculating the minimum
of 3×3 submatrices.

Fig.  30 - With this technique two passes are needed to com-
plete 9×9 matrix.

Fig.  28 - 9×9 matrix of which the minimum value is
evaluated.
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the matrix in the texture buffer. Q is mapped to the corresponding coordinates Q' of the
texture. The fragment program is then executed for each pixel in the render buffer that is
covered by the quad. If there is a following pass, the render buffer is bound as texture
whereas the texture buffer is used as render target. The result can be found in the final
1×1 matrix.

How to implement these techniques on CPU and GPU side and how both work together
is discussed in the following two chapters.

3.6 The 3D API

Introduction

Programming using a GPU consists of two parts: the CPU programming part and the
GPU programming part. This chapter deals with the CPU side of the graphics pipeline:
the application and the 3D API that is used to control the GPU on a high abstraction lay-
er.

The interface between software and hardware is the hardware driver which is a piece of
software as well (Fernando et al. 2004). The driver is hardware specific and contains in-

Fig. 31 - Quad Q = {q1, q2, q3, q4} is drawn into the render buffer and its coordi-
nates are mapped to a quad Q' = {q1', q2', q3', q4'} in the texture buffer. Thus,  the
marked pixel in the render buffer corresponds to the marked sample point in the
texture buffer.
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formation and functions to interact with the hardware. There is one more abstraction
layer between application and hardware driver, the API. It makes programming indepen-
dent from hardware specifications (see figure 32). Hardware and driver can therefore be
changed without  the  need  for  recompiling  a  program as  long as  the  new hardware
supports the features  requested by the application. In case of graphics applications, it is
referred to APIs that are optimized for 3D graphics: 3D APIs. The two available APIs
are DirectX10 developed by the Microsoft Corporation, and OpenGL11 maintained by the
OpenGL Architectural Review Board (ARB). All three parts dynamically link to each
other at runtime.

DirectX

Microsoft's API is C++ based and a new version is released about every year (Strzodka
2004, Buck 2004, Zeller 2004). It is compatible with the Microsoft Windows12 operating
system only. It uses window manager like Windows itself, GLUT, or Qt. It is very popu-
lar in the PC game industry as most PC games are written for Windows only. For shader
programming, Microsoft's HLSL (High Level Shading Language), NVIDIA's and Mi-
crosoft's Cg, and DirectX pixel- and vertex-shader can be used. More on these languages
can be found in chapter “Programming the GPU”. Many Tools and Shader Debugger for
DirectX exist. Some selected can be found in chapter “Links”. The slow readback from
GPU to CPU of about 50 MB/sec is a negative aspect. More information about DirectX
can be found in the DirectX Documentation13.

10 http://www.microsoft.com/windows/directx/
11 http://www.opengl.org/
12 http://www.microsoft.com/windows/
13 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/directx/directx9cpp.asp

Fig. 32 - Layers of a graphics application: Application, 3D
API, and Driver (Figure Courtesy of Cyril Zeller (2004)).
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OpenGL

OpenGL is C based and does not evolve through complete reviews but through a system
of OpenGL Extensions14 (Strzodka 2004, Buck 2004, Zeller 2004). This system allows
software developers to add and access technological innovations above and beyond the
features specified in the official OpenGL standard, the so-called OpenGL core. If an ex-
tension proves itself, it can ultimately be integrated into the core. All known extension
specifications can be found in the OpenGL Extension Registry15 which is maintained by
SGI. OpenGL is available for most common operating systems like Windows, Linux,
Unix, MacOS, OS/2, and BeOS. It is very popular in the academic world and all non
game–related graphics industries. Some fields of usage are Computer Aided Design, and
scientific visualization. GPU programs can be written in GLSL, Cg, and as OpenGL
fragment- and vertex-shader. Brook and Sh are available as streaming languages.  The
readback is faster than with DirectX, but there are also disadvantages like that float for-
mats are specialized for ATI and NVIDIA. The specifications of OpenGL and GLUT
can be found at the OpenGL website for OpenGL & utility library specifications16.

The functionality of both DirectX and OpenGL is mainly equivalent. Both provide fea-
tures like Render-To-Texture and multiple render targets. As OpenGL is used in the im-
plementation part of this thesis, the focus lies on OpenGL and GLSL in the following.

Application Structure

A graphics application basically consists of two main parts: initialization and rendering
loop (see figure 33) (Fernando 2004, Fernando et al. 2004, Zeller 2004, Lefohn 2004b). 

The initialization sets up the API, checks hardware capabilities, and creates necessary
resources like a window, buffers,  and textures.  It also determines display properties
which are operating system specific like double buffering, pixel format, and windowed
or fullscreen mode. For this purpose, a library like GLUT17 can be used in addition to
simplify  this  process  and  to  hide  the  operating  system  specific  part.  Furthermore,
geometry needs to be loaded or created and stored in index and vertex buffers.

For each frame, the rendering loop renders geometry to a buffer and displays the image
on screen. Usually, double buffering is used in order to display animations without tear-
ing. This technique uses two buffers: a front buffer which is shown on the screen and an

14 http://www.opengl.org/resources/features/OGLextensions/
15 http://oss.sgi.com/projects/ogl-sample/registry/
16 http://www.opengl.org/documentation/spec.html
17 http://www.opengl.org/resources/libraries/glut.html
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invisible back buffer. The rendering loop first draws to the back buffer and then swaps
both buffers to display the ready rendered frame. There are several methods for drawing
complex geometry: display lists, vertex arrays (vertex array ranges and vertex array ob-
jects), and vertex buffer objects. General-purpose applications in contrast will rather use
the immediate mode. In this case, each vertex of a triangle or quad that are drawn is
defined manually.

In case of a general-purpose application or any graphics application that uses general-
purpose programming techniques, vertex shaders, fragment shaders, and render targets
need to be initialized. Render targets are buffers in the video memory that are used to
store intermediate images in case of a multipass rendering process. These can then be
loaded as textures for a following pass. Multiple passes may be necessary due to struc-
tural reasons, if an algorithms needs severals steps, or because of hardware limitations.
In graphics applications, multiple passes are necessary for 2D-postprocessing like fog,
tone mapping, depth of field, and motion blur (Zeller 2004).

Rendering to an invisible buffer is called off-screen rendering. Several methods for off-
screen rendering with multiple passes exist:

– CTT using window context buffers.
– RTT using pbuffers.
– FBO (Framebuffer Objects).

Figure 34 shows a simplified model of an application that uses off-screen rendering with
multiple passes. The rendering consists of a second loop that handles all passes. If each
pass uses a different shader, than the specific one has to be bound in each pass. The used
textures and render targets have to be set for each pass as well if they change. The exam-
ple of a reduction function shown in the last chapter uses only one shader, but render
target and texture are exchanged with every pass.

Fig.  33 - Simplified model of a graphics application
with double buffering.
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The following sections contain source code examples. Parts that have been left out for
simplicity are marked with three dots “...”. Most examples are taken from the imple-
mentation that was done together with this thesis. This is the reason why only compati-
bility to NVIDIA hardware is regarded. For tests, the NVIDIA Geforce 6800 GT was
used. Furthermore, information was extracted from the OpenGL 2.0 Specification (Segal
& Akeley 2004).

Copy-To-Texture

This example explains, how CTT can be used. The OpenGL framebuffer is a collection
of logical buffers like color, depth, stencil, and accumulation buffers. A color buffer like
the backbuffer can be defined as render target. Textures are loaded to the GPU as data
input for a fragment program which processes the data and writes it to the back buffer.
After rendering, the buffer content is copied into a texture so that it can be used as input
for the next pass (see figure 35).

This method has many limitations. Using the window buffer means that the window size
is automatically the maximum available buffer size and only 8-bit values can be used.
The number of color buffers is limited to the front and back buffer (if double buffering
is activated) plus auxillary and stereo buffers, in case that they are supported. In addi-
tion, CTT is very slow because a readback from the GPU memory (framebuffer) to the

Fig. 34 - Simplified model of an application with multiple passes.

Rendering Loop

(swap buffers) if graphics application
Loop End

Passes Loop
(bind shaders) in case of multiple shaders
(set render targets) if changes
(bind textures) if changes 
draw geometry
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render targets
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CPU memory (texture variable) is very slow. In the following, it is explained how to im-
plement this method.

Initializing the API and Window

Using the GLUT library, initializing the window is as simple as in the following:

#include <GL/glut.h>
...
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_ALPHA | ...);
glutInitWindowSize(512, 512);
window = glutCreateWindow("MyApplication");
glutSetWindow(window);

An orthogonal projection is chosen for rendering with the screen limits {left, right, bot-
tom, top} = {-1, 1, -1, 1} like cross hairs:

glMatrixMode(GL_PROJECTION);    
glLoadIdentity();  

gluOrtho2D(-1, 1, -1, 1);       
glMatrixMode(GL_MODELVIEW);     
glLoadIdentity();

glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);

Checking Hardware Capabilities

The OpenGL Extension Wrangler Library18 (GLEW) is a cross-platform C/C++ library
for determining which OpenGL, WGL, and GLX extensions are supported. The first
method is to check for globally defined variables that are  true if an extension exists.
The variables name is created by the following pattern: GLEW_{extension_name} and
WGLEW_{extension_name}.

if (GLEW_ARB_vertex_program)
{
  /* It is safe to use the ARB_vertex_program extension here. */
  ...
}

The second method is slower and checks for a string with the extension name:

18 http://glew.sourceforge.net/

Fig. 35 - Copy-To-Texture model.
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Frame
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if ( glewGetExtension("GL_ARB_fragment_program") &&
    wglewGetExtension(“ARB_buffer_region”)       )
{
  /* Extensions are supported. */
  ...
}

Shaders

If no vertex or fragment shader19,20,21 is loaded, the fixed function equivalent is used.
Shaders can be loaded as follows:

/* create program object */
GlhandleARB hProgram = glCreateProgramObjectARB();

/* create shader object and load, compile, attach, and link shader
*/
GlhandleARB hShader  = glCreateShaderObjectARB
(GL_FRAGMENT_SHADER_ARB);

const char *programCode = “...“; // shader source code
glShaderSourceARB (hShader, 1, &programCode, NULL);
glCompileShaderARB(hShader);
glAttachObjectARB (hProgram, hShader); // more shaders can be added
glLinkProgramARB  (hProgram);

/* check if linking was successful */
GLint progLinkSuccess;
glGetObjectParameterivARB(hProgram, GL_OBJECT_LINK_STATUS_ARB,
                          &progLinkSuccess);
if (!progLinkSuccess){
  /* Shader could not be linked */
  ...
}

Activating and deactivating is done like this:

glUseProgramObjectARB(hProgram); // activate
... /* draw geometry */
glUseProgramObjectARB(0);         // deactivate

The program is deleted with:

glDeleteObjectARB(hProgram);

Shaders can be loaded as character string or as precompiled binary. The chapter “Pro-
gramming the GPU” discusses the implementation of shaders.

Shader Input

Shader input can be vertex attribute variables that are defined per-vertex like normals or
uniform variables that are used as a global constants like a texture. The different types
of inputs and their meanings are described in the chapter “Programming the GPU”.

19 http://oss.sgi.com/projects/ogl-sample/registry/ARB/vertex_shader.txt
20 http://oss.sgi.com/projects/ogl-sample/registry/ARB/fragment_shader.txt
21 http://oss.sgi.com/projects/ogl-sample/registry/ARB/shader_objects.txt
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User-defined uniform variables are set  for an active shader before drawing geometry
(glBegin... glEnd). It is assumed that a vector with 3 components is used as uniform in-
put for a shader. This variable is declared in the shader as:

uniform vec3 inputVector;

First, it is important to get the location of the variable in the shader program, then values
can be send to this location.

// get variable location
int inputVectorloc = glGetUniformLocationARB(hProgram,
“inputVector”);

// define values
glUniform3fARB(inputVectorloc, 1.0f, 4.0f, 3.0f);

The last function, loading the values, can only be used for float vectors with three com-
ponents. This function is specific for each vector or matrix type. The naming of the
function is defined by the patterns:

void glUniform{1234}{if} ( int location, T value );
void glUniform{1234}{if}v( int location, sizei count, T value );
void glUniformMatrix{234}{f}v( int location, sizei count,
                             boolean transpose, const float
*value );

For loading samplers, only the following pattern can be used:

void glUniform1i{v}( int location, {sizei count,} T value );

It works accordingly for user-defined attribute variables. First, the location of the vari-
able needs to be queried, then the values are loaded. In this case, the values are loaded
when the geometry is drawn (glBegin...glEnd).

int glGetAttribLocation( uint program, const char *name);

The values are then loaded for each vertex with functions of the following patterns:

void glVertexAttrib{1234}{sfd} ( uint index, T values );
void glVertexAttrib{123} {sfd}v( uint index, T values );
void glVertexAttrib4{bsifd ubusui}v( uint index, T values );

The following example draws three vertices with a float vector inputVector consisting
of 3 components as attribute variable.

int inputVectorLoc = glGetAttribLocationARB(my_program, “inputVec-
tor”);

glBegin(GL_TRIANGLES);
glVertexAttrib3f(inputVectorLoc, 1.0f, 2.0f, 3.0f);
glVertex3f(-1.0f, -1.0f, -0.5f);

glVertexAttrib3f(inputVectorLoc, 4.0f, 5.0f, 6.0f);
glVertex3f( 1.0f, -1.0f, -0.5f);

glVertexAttrib3f(inputVectorLoc, 7.0f, 8.0f, 9.0f);
glVertex3f(-1.0f,  1.0f, -0.5f);

glEnd();
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Textures

The following lines create a 32-bit 2D RGBA texture (8 Bit for each channel):

/* create texture ID */
GLuint iTexID;

glActiveTexture(GL_TEXTURE0  );
glEnable       (GL_TEXTURE_2D);
glGenTextures  (1, &iTexID   );

/* bind texture */
glBindTexture(GL_TEXTURE_2D,  iTexID);

/* set sampling parameters */
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S    , GL_CLAMP  );
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T    , GL_CLAMP  );

The texture is created with the same size as the window: 512×512. The texture width
and height must be a power of 2 each. It can be filled with any data or an image in form
of a float array of size 4×512×512 whereby the elements have a value of 0 to 255 devid-
ed by 255. If no data shall be loaded, 0 can be used instead.

/* load data array */
float* data = new float(4*512*512);
... /* fill data */

/* fill texture with data array */
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 512, 512, 
             0, GL_RGBA, GL_FLOAT, data);

To use the texture as input for the fragment program, it needs to be defined as uniform
input. Assuming the shader program has a texture variable declaration  uniform sam-
pler2D inputTex,  iTexID can be loaded with

GLint iTexLoc = glGetUniformLocationARB(hProgram, “inputTex”);
glUniform1iARB(iTexLoc, iTexID);

Setting the Render Target

In this example, the back buffer shall be used as framebuffer:

glDrawBuffer(GL_BACK_LEFT);

Rendering

A full screen quad is drawn in a distance of 0.5f in immediate mode.  According to the
initialization with gluOrtho2(),  the full screen coordinates for the vertices are lower
left (-1, -1), lower right (1, -1), upper right (1, 1), and upper left (-1, 1). The texture co-
ordinates are defined with normalized coordinates in form of floating point values be-
tween 0 and 1 (see figure 31 in the chapter “Mapping Computational Concepts to the
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GPU”). Thus, the according values for 1:1 mapping are  lower left (0, 0), lower right (1,
0), upper right (1, 1), and upper left (0, 1).

glBegin(GL_QUADS);
{
  glTexCoord2f(0, 0); glVertex3f(-1, -1, -0.5f);
  glTexCoord2f(1, 0); glVertex3f( 1, -1, -0.5f);
  glTexCoord2f(1, 1); glVertex3f( 1,  1, -0.5f);
  glTexCoord2f(0, 1); glVertex3f(-1,  1, -0.5f);
}
glEnd();

It is important that the texture coordinates have to cover all required texels. Texels are
the textures pixels. In case of a  2×2 texture, the texture coordinates for a quad covering
the leftern two pixels are (0, 0), (0.5, 0), (0.5, 0.5), and (0, 0.5).

Everything between glBegin() is pushed into a FIFO (first-in/first-out) buffer and ren-
dered after glEnd(). The following command can be added to wait until the rendering
process is completed :

glFinish();

The result will be in the back buffer then.

Copy-To-Texture

In order to use the back buffer content for the next pass, it is copied into the texture.
Therefore, it is defined which buffer shall be read:

glReadBuffer(GL_BACK_LEFT);

Then the buffer content is copied to the active bound texture:

glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, 512, 512);

Reading the Result

In case of general-purpose programming, the complete framebuffer or a part of it needs
to be read back into an array to make the result available for further CPU computation.
This works similar to copying the framebuffer to a texture, but in this case the target is
an array. The whole buffer can be read back like this:

float* result = new float(4*512*512);
glReadPixels(0, 0, 512, 512, GL_RGBA, GL_FLOAT, result);

Swapping the Buffers

In graphic applications the rendered image is shown after all passes have been rendered.
Therefore, front and back buffer need to be swapped:

glutSwapBuffers();
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Render-To-Texture

RTT22 was state-of-the-art until the framebuffer object extension was released on 31st of
January 2005. RTT uses a buffer system called pbuffers23 (pixel buffers) which is avail-
able only under windows yet. A cross-platform solution for RTT24 is under develop-
ment. Pbuffer subbuffers can be used each either as framebuffer or as texture. Therefore,
the rendered result of a pass can be bound as texture in a following pass like shown in
figure 36.

RTT is much faster than CTT, but it  has some disadvantages as well  (Harris 2005):
switching between different pbuffers is slow, depth buffers cannot be shared between
pbuffers, RTT does not work with multi-sample anti-aliasing which is very important
for games. A big advantage is that  buffer size and pixel format25 are independent from
the current display mode. Sizes bigger than the window size are possible. Furthermore,
128-bit floating point colors can be used on NVIDIA hardware like NV40 and 96-bit on
ATI hardware like R420. That means 32-bit and 24-bit floating point precision.

A pbuffer is an off-screen pixel buffer that has the available standard properties of the
on-screen buffer like front-, back-, stereo-, aux-, and stencil buffer. Each pbuffer has its
own device context. Before being able to use a pbuffer, it must be switched from the
window device context to a pbuffer device context. Switching between pbuffers means
switching contexts as well, which is quite slow (see figure 37).

22 http://oss.sgi.com/projects/ogl-sample/registry/ARB/wgl_render_texture.txt
23 http://oss.sgi.com/projects/ogl-sample/registry/ARB/wgl_pbuffer.txt
24 http://www.opengl.org/resources/features/GL_EXT_render_target.txt
25 http://oss.sgi.com/projects/ogl-sample/registry/ARB/wgl_pixel_format.txt

Fig. 36 - Render-To-Texture model.
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According to Wynn (2001), the usage of pbuffers has four phases:

1. Pbuffer extension initialization
2. Pbuffer creation
3. Pbuffer binding
4. Pbuffer destruction

All four phases for creating an 1024×1024 RGBA pbuffer with 32-bit floating point pre-
cision, double buffer and auxiliary buffers on NVIDIA hardware are explained in the
following.

Pbuffer Extension Initialization

The support of the required extensions can be checked with GLEW as described above.

– WGL_ARB_pixel_format
– WGL_ARB_pbuffer 
– WGL_NV_render_texture_rectangle26

Pbuffer Creation

First, the current window device context and rendering context are stored.

HDC hWindowDC = wglGetCurrentDC();
if (NULL == hWindowDC) wglGetLastError();

HGLRC hWindowRC = wglGetCurrentContext();
if (NULL == hWindowRC) wglGetLastError();

26 http://oss.sgi.com/projects/ogl-sample/registry/NV/render_texture_rectangle.txt

Fig. 37 - Pbuffer model. A pbuffer contains the standard buffers, but it
needs its own device and render context. Thus, if an application uses
several pbuffers it needs to provide several contexts as well and has to
switch between them.
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The creation of a pbuffer consists of first choosing a pixel format and then creating the
buffer. The pixel format can be initialized like this:

int          format  = 0;
unsigned int nformats;

/* generate pixel format attributes list */
GLint *attribList = new Glint[50];
GLint *ap         = attribList;

*ap++ = WGL_RED_BITS_ARB;        *ap++ = 32;
*ap++ = WGL_GREEN_BITS_ARB;      *ap++ = 32;
*ap++ = WGL_BLUE_BITS_ARB;       *ap++ = 32;
*ap++ = WGL_ALPHA_BITS_ARB;      *ap++ = 32;
*ap++ = WGL_STENCIL_BITS_ARB;    *ap++ = 0;
*ap++ = WGL_DRAW_TO_PBUFFER_ARB; *ap++ = true;
*ap++ = WGL_SUPPORT_OPENGL_ARB;  *ap++ = true;
*ap++ = WGL_DOUBLE_BUFFER_ARB;   *ap++ = true;
*ap++ = WGL_PIXEL_TYPE_ARB;      *ap++ = WGL_TYPE_RGBA_ARB;
*ap++ = WGL_FLOAT_COMPONENTS_NV; *ap++ = true;
*ap++ = WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGBA_NV;
                                 *ap++ = true;
*ap++ = WGL_AUX_BUFFERS_ARB;     *ap++ = 1;
*ap++ = 0;

/* choose pixel format */
if(!wglChoosePixelFormatARB(hWindowDC, attribList, NULL,
                            1, &format, &nformats      ) )
{
   /* wglChoosePixelFormatARB() failed */
   wglGetLastError();
   ...
}

if (nformats == 0)
{
    /* no pixel formats were found\n");
    ...
}

If a pixel format was found, the pbuffer can be created. For 32-bit support the texture
target is not WGL_TEXTURE_2D but WGL_TEXTURE_RECTANGLE_NV. Accord-
ingly, textures need to be created in this format as well. More information is provided be
below in section “Textures”. Note, that the pbuffer width and hight must be a power of
2.

/* clear attribute list */
ap  = attribList;
*ap = 0;

/* generate pbuffer attributes list */
*ap++ = WGL_TEXTURE_FORMAT_ARB;  *ap++ = WGL_TEXTURE_FLOAT_RGBA_NV;
*ap++ = WGL_TEXTURE_TARGET_ARB;  *ap++ = WGL_TEXTURE_RECTANGLE_NV;
*ap++ = 0;

/* create pbuffer */
HPBUFFERARB hPbuffer = wglCreatePbufferARB(hWindowDC, format, 
                                         1024, 1024, attribList);
if (hPbuffer == NULL) 
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{
    /* creating pbuffer failed */
    ...
}

delete attribList;

In the last step the device context must be created.

HDC hDC = wglGetPbufferDCARB(hPbuffer);
if (hDC == NULL) { /* no device context */ ... }

HGLRC hRC = wglCreateContext(hDC);
if (hRC == NULL) { /* rendering context */ ... }    

if (!wglShareLists(hWindowRC, hRC)) 
{ /* cannot share data between rendering contexts */ ... }

If these steps succeeded, a valid pbuffer is available.

Pbuffer Binding

Binding the pbuffer makes its GL rendering context the current context that will inter-
pret all OpenGL commands and state changes.

wglMakeCurrent(hDC, hRC)

Pbuffer Destruction

The pbuffer is destructed by destroying all related resources.

WglDeleteContext      (hRC          );
wglReleasePbufferDCARB(hPbuffer, hDC);
wglDestroyPbufferARB  (hPbuffer     );

To restore the window device context, the stored variables are used.

wglMakeCurrent(hWindowDC, hWindowRC)

Handling a Display Mode-Switch

The memory associated with a pbuffer is not guaranteed to remain valid when a display-
mode switch occurs (Wynn 2001). To ensure the validity of a pbuffer, the following
function can be used:

int flag = 0;
wglQueryPbufferARB(hPbuffer, WGL_PBUFFER_LOST_ARB, &flag);

if(flag > 0) { /* pbuffer is lost and must be recreated */ ... }

If a pbuffer was successfully bound, it  can be used like the standard window frame-
buffer with some additional features. The ability to bind a pbuffer color buffer as texture
makes RTT possible. Therefore, buffers can be used for rendering or bound as texture.
Buffers can only be used either for writing or reading but never for both at the same
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time. Thus, it cannot be used as texture and as render target simultaneously.

Textures

As described above,  GL_TEXTURE_RECTANGLE_NV is used for 32-bit support instead of
GL_TEXTURE_2D.  Textures  have  to  be  initialized  accordingly.  With  using
GL_TEXTURE_RECTANGLE_NV, it is neither necessary to use a texture width and height
with values of power of 2, nor are the texture coordinates defined as normalized floating
point values between 0 and 1 but as texel counts. Additional textures with other formats
can be defined and used, too.

/* create texture ID */
GLuint iTexID;

glActiveTexture(GL_TEXTURE0);       // 0 if first texture
glEnable(GL_TEXTURE_RECTANGLE_NV);

// create render texture object
glGenTextures(1, &iTexID);
glBindTexture(GL_TEXTURE_RECTANGLE_NV, iTexID);

// Use NEAREST as the default texture filtering mode.
glTexParameteri( GL_TEXTURE_RECTANGLE_NV, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);
glTexParameteri( GL_TEXTURE_RECTANGLE_NV, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);

To use the texture as input for the fragment program, it needs to be defined as uniform
input. Assuming the shader program has a texture variable declaration uniform sam-
pler2DRect inputTex,  iTexID can be bound with:

GLint iTexLoc = glGetUniformLocationARB(hProgram, “inputTex”);
glUniform1iARB(iTexLoc, iTexID);

If a  GL_TEXTURE_RECTANGLE_NV is used in the application, a sampler2DRect has to
be used in the shader.

Binding Buffers as Textures

In order to use a buffer as texture, it needs to be bound to an active texture first. In this
case, this is GL_TEXTURE0.

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_RECTANGLE_NV, iTexID);

if(!wglBindTexImageARB(hPbuffer, GL_BACK_LEFT) )
{
  /* binding failed */
  ...
}

After the rendering process, the buffer can be released from the texture binding.

glActiveTexture(GL_TEXTURE0);
if(!(wglReleaseTexImageARB(hPbuffer, GL_BACK_LEFT) ))
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{
  /* release failed */
  ...
}

Setting the Render Target

Setting the render target is done as described above for CTT. Buffers that are not bound
as texture can be used as render target.

Rendering

The rendering with RTT works as with CTT except that texture coordinates are unnor-
malized (texel indexed) if a texture of type GL_TEXTURE_RECTANGLE_NV is used.
In the following example, a rectengular 512×512 region in the center of the 1024×1024
buffer is defined for texture mapping. Any other size and location could be chosen as
well, as long as it fits into the buffer.

glBegin(GL_QUADS);
{
  glTexCoord2f(255, 255); glVertex3f(-1, -1, -0.5f);
  glTexCoord2f(767, 255); glVertex3f( 1, -1, -0.5f);
  glTexCoord2f(767, 767); glVertex3f( 1,  1, -0.5f);
  glTexCoord2f(255, 767); glVertex3f(-1,  1, -0.5f);
}
glEnd();

After rendering, a new render target can be chosen and the previous one can be used as
texture input.

Reading the Result

This is done as described for CTT.

Framebuffer Objects

The framebuffer object  extension27 EXT_framebuffer_object  was  released  on 31st of
January 2005 (Harris  2005).  Actually, only beta  drivers for developers are available
from NVIDIA28.

This buffer model is window system independent and it only requires a single OpenGL
context, which is why no time consuming context switches are necessary. Furthermore,
there is no need for complicated pixel format selection. The format of the framebuffer is
determined by the texture or renderbuffer format. In addition, renderbuffer images and
texture images like depth buffers can be shared among framebuffers to save memory.

27 http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt
28 http://developer.nvidia.com
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Apart from that, this model is similar to the Direct3D render target model. This makes
porting code between both systems easier.

An FBO is a collection of framebuffer-attachable images (FAI) plus a state that defines
where the output of the GL rendering is directed (see figure 38) (Harris 2005). FAIs are
2D arrays of pixels like color, depth, and stencil buffer that can be attached (bound) to a
framebuffer. For each attached image, an attachment point in the FBO exists which is
simply a state that references such an image. There are two types of objects that can con-
tain FAIs: texture objects and renderbuffer objects. A renderbuffer object (RBO) con-
tains a single renderbuffer image (RBI) which is a 2D array of pixels (no mipmaps,
cubemap faces etc.). These are used as renderbuffers for off-screen rendering and cannot
be bound as texture. In contrast, a texture object contains several texture images that can
be used as both texture and render target. Thus, it is these that are the RTT substitution.
When an FBO is bound, its FAIs are the source and destination for fragment operations.
With this system, a principle called framebuffer completeness comes along. For consis-
tency of all attachments the following requirements must be fullfilled:

– Texture format and attachment point consistency. Example: a depth texture should
not be bound as color attachment.

– All attached images must have the same width and height.
– All color attachments must have the same format.

Otherwise drawing geometry (glBegin) will generate an error29.

Harris (2005) presents three ways of switching between FBO rendering destinations or-
dered by increasing performance:

1. Multiple FBOs
– Separate FBO for each texture (render target).
– FBOs are switched using BindFramebuffer().

This can be two times faster than wglMakeCurrent() (in beta NVIDIA drivers).

2. Single FBO, multiple texture attachments
– Textures have the same format and dimensions.
– Only one color attachment is used as render target.
– FramebufferTexture() is used to switch between textures.

3. Single FBO, multiple texture attachments
– Textures are attached to different color attachments.

29 INVALID_FRAMEBUFFER_OPERATION
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– glDrawBuffer() is used to switch rendering to different color attachments.

Example

The source code of the following example was taken from Harris (2005):

#define CHECK_FRAMEBUFFER_STATUS() \
{ \
  Glenum status; \
  status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); \
  switch(status) \
  { \
    case GL_FRAMEBUFFER_COMPLETE_EXT: \
      break; \
    case GL_FRAMEBUFFER_UNSUPPORTED_EXT: \
      // different formats */\
      break; \
    default: \
      /* programming error; will fail on all hardware */\
      assert(0); \
  } \
}

Gluint fb, depth_rb, tex; 

// create objects
glGenFramebuffersEXT (1, &fb      ); // frame buffer

Fig. 38 - Framebuffer Object Architecture. This figure is adopted from Harris (2005).
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glGenRenderbuffersEXT(1, &depth_rb); // render buffer
glGenTextures        (1, &tex     ); // texture
glBindFramebufferEXT (GL_FRAMEBUFFER_EXT, fb);

// initialize texture
glBindTexture(GL_TEXTURE_2D, tex);
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, width, height,
              0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
...   // texture parameters here

// attach texture to framebuffer color buffer
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, 
                          GL_COLOR_ATTACHMENT0_EXT, 
                          GL_TEXTURE_2D, tex, 0);

// initialize depth renderbuffer
glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, depth_rb);
glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, 
                         GL_DEPTH_COMPONENT24, 
                         width, height);

// attach renderbuffer to framebuffer depth buffer
glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT,
                             GL_DEPTH_ATTACHMENT_EXT,
                             GL_RENDERBUFFER_EXT, depth_rb);
CHECK_FRAMEBUFFER_STATUS();
...

// render to the FBO
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);
... // draw geometry

// render to the window, using the texture
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0  );
glBindTexture       (GL_TEXTURE_2D     , tex);

Multiple Textures

If more than one texture is used as input for a shader, the texture coordinates are defined
with glMultiTexCoord2f() instead of glTexCoord2f():

glBegin(GL_QUADS);
{
  glMultiTexCoord2f (GL_TEXTURE0, ... , ... );  // first texture
  ...
  glMultiTexCoord2f (GL_TEXTUREn, ... , ... );  // last texture
  glVertex3f( ... , ... , -0.5f);

  ... // more vertices
}
glEnd();

Multiple Render Targets

How to use multiple render targets is specified in the ARB_draw_buffers extension30. If

30 http://oss.sgi.com/projects/ogl-sample/registry/ARB/draw_buffers.txt
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multiple render targets are used, the fragment program does not use gl_FragColor but
gl_FragColor[i], where i is one of n specified render targets.

int n  = 2;  // number of render targets

/* generate pixel format attributes list */
enum *bufs  = new Glint[n];
enum *pbufs = bufs;

*pbufs ++ = GL_FRONT_LEFT;  // is gl_FragColor[0]
*pbufs ++ = GL_BACK_LEFT;   // is gl_FragColor[1]

glDrawBuffersARB(n, bufs);

delete [] bufs;

The  constants  describing  the  buffers  may  be  NONE,  FRONT_LEFT,  FRONT_RIGHT,
BACK_LEFT, BACK_RIGHT, and AUX0 through AUXn, where n+1 is the number of available
auxiliary buffers. It is also possible to use only  gl_FragColor as color output in the
fragment program. In this case, it has to be defined into which of the specified buffers is
written. This is the command to specify that:

void glDrawBuffer(enum buf);

The parameter buf can be one of the symbolic constants shown in table 5.

Detailed online descriptions  of the  presented methods can be  found in the OpenGL
specification, in the respective OpenGL extensions, on developer websites of GPU ven-
dors such as NVIDIA and ATI, and on other websites like ShaderTech31 and GPGPU32

that deal with general-purpose computation on GPUs. More links can be found in the
“Links” addendum.

31 http://www.shadertech.com
32 http://www.gpgpu.org/

Table 5 - Arguments to DrawBuffer() and the buffers that they indi-
cate.

Symbolic constant
Aux i

GL_NONE
GL_FRONT_LEFT •
GL_FRONT_RIGHT •
GL_BACK_LEFT •
GL_BACK_RIGHT •
GL_FRONT • •
GL_BACK • •
GL_LEFT • •
GL_RIGHT • •
GL_FRONT_AND_BACK • • • •
GL_AUXi •

Front 
left

Front 
right

Back 
left

Back 
right
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3.7 Programming the GPU

Introduction

The implementaion of the Smith-Waterman algorithm in chapter 4 involves a GPU pro-
gram written in the high-level GPU programming language OpenGL Shading Language
(GLSL) that is used in an OpenGL context. This chapter therefore gives an introduction
into GPU programming languages, especially into GLSL. Only the GPU side of the ap-
plication is regarded.

Before the advent of high-level shading languages, GPUs were programmed using as-
sembly code (van der Linden 2004, Fernando 2004, Fernando et al. 2004). When graph-
ics hardware became capable of executing shader programs with a length of thousands
of instructions, programming became too complicated and high-level languages had to
be developed. Programming with high-level languages like C has definite advantages:
easier programming, easier code reuse, easier debugging. 

The assembly code

...
DP3 R0, c[11].xyzx, c[11].xyzx;
RSQ R0, R0.x;
MUL R0, R0.x, c[11].xyzx;
MOV R1, c[3];
MUL R1, R1.x, c[0].xyzx;
DP3 R2, R1.xyzx, R1.xyzx;
RSQ R2, R2.x;
MUL R1, R2.x, R1.xyzx;
ADD R2, R0.xyzx, R1.xyzx;
DP3 R3, R2.xyzx, R2.xyzx;
RSQ R3, R3.x;
MUL R2, R3.x, R2.xyzx;
DP3 R2, R1.xyzx, R2.xyzx;
MAX R2, c[3].z, R2.x;
MOV R2.z, c[3].y;
MOV R2.w, c[3].y;
LIT R2, R2;
...

can be described by the high level language Cg with

...
float3 cSpecular = pow(max(0, dot(Nf, H)), phongExp).xxx;
float3 cPlastic  = Cd * (cAmbient + cDiffuse) + Cs * cSpecular;
...

Actually, there are three main levels of languages:

– Low level:
Using fragment program extensions based on assembler.
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– High level:
Shader languages based on C/C++.

– General-purpose programming languages:
Languages based on C/C++ that hide graphics elements.

High-Level Languages

The features of high level languages come from three sides (Fernando et al. 2004):

1. Syntax and semantics are based on C/C++.
2. Concepts of offline shading languages like the Renderman Shading Language are in-

corporated.
3. The graphics functionality is based on the APIs OpenGL and DirectX.

Being optimized for graphics programming, they have a native support for vector types
and vector operations like dot products, vector normalization, and matrix multiplies.

The three commonly used shading languages are Cg (Mark et al. 2003), HLSL (Mi-
crosoft 2003), and GLSL (Kessenich et al. 2004). HLSL is maintained by the Microsoft
Corporation, Cg was developed in corporation of Microsoft and NVIDIA, and GLSL is
developed by the OpenGL ARB. HLSL and Cg are roughly the same language whereas
HLSL only compiles to DirectX shaders and Cg is able to handle both DirectX and
OpenGL shaders. An introduction to GLSL being representative in its concepts for all
three languages is given below under topic “GLSL”.

General-Purpose Programming Languages

High-level GPU programming languages are optimized for implementing shaders, but
they do not assist the developer with controlling the GPU from the CPU with a 3D API
(Buck 2004b). Developers need to have deep knowledge of the latest API versions as
well as features and limitations of the used graphics hardware. Furthermore, general-
purpose algorithms need to be implemented by using graphics primitives like colors and
vertices or textures, buffers, and geometry. General-purpose programming languages are
designed to avoid these problems and to make programming easier. They abstract pro-
gramming from any graphics API and hardware specifications and limitations and they
simplify common operations. Due to the API and hardware independence, programs are
portable between different hardware and different APIs.
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Brook for GPUs33 (Buck et al. 2004) is a system for general-purpose computation on
programmable graphics hardware that uses the GPU as a streaming coprocessor as de-
scribed in chapter “Mapping Computational Concepts to the GPU”. It can be regarded
as C with stream extension. Data are handled in streams whereby kernels are functions
applied to streams. It is designed for cross platform programming and it supports ATI
and NVIDIA hardware, OpenGL and DirectX, Windows and Linux. Brook et al. claim
the generated code's efficiency to be within 80 % of a hand-coded GPU version. Figure
39 shows a relative performance comparison of a hand-coded Fast Fourier Transforma-
tion (FFT) GPU implementation with a Brook version. Both run on ATI hardware and
the Brook version has almost the same performance. In contrast, the code generated by
C results in much less performance on a Pentium 4 than the hand-coded assembly ver-
sion of the FFT does.

Sh34 (McCool  et  al.  2002)  is  an  embedded  C++  library language  for  the  dynamic
metaprogramming of GPUs. It is developed by the University of Waterloo. It provides a
high-level  embedded  programming  interface  for  both  shaders  and  general-purpose
streaming programming. Thus, it is a streaming language as well. If an application is im-
plemented in C++ with th Sh library both textures and parameters are handled by Sh.
They simply need to be declare and can then be used immediately. Sh automatically uses
pbuffers and ATI's uberbuffers. Furthermore, arrays are simulated with textures and tex-
tures can encapsulate interpretation code.  Sh is Open Source and has a free, libpng li-
cense. All source is available, including the optimizer and backends. 

33 http://brook.sourceforge.net
34 http://libsh.sourceforge.net

Fig. 39 - Comparison of hand coded FFTs to generated code (iigure cour-
tesy of Ian Buck). 
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GLSL

The OpenGL Shading Language (GLSL) was developed for programming GPU shaders
that are used in an OpenGL context. GLSL was used as shader language for the Smith-
Waterman implementation, which is the last part of this thesis, because it was imple-
mented using the OpenGL API. Therefore, the fundamentals and principles of its speci-
fication (Kessenich et al. 2004) shall be explained in the following. 

Vertex and fragment programs have different specifications. Each has specific input and
output variables. Since vertex processing is executed before fragment processing, it is
possible to pass information from vertex to fragment shader only. Output values of the
vertex shader therefore influence some input variables of the fragment shader. The shad-
er input is classified in three types: uniform, attribute, and varying. The uniform qualifi-
er can be used with both shader types and defines variables that are constant for all pro-
cessed elements (vertices or fragments). Typical examples for uniform input are trans-
formation matrices for vertex processing and textures for fragment processing. Variables
qualified with attribute or varying in contrast are different for each primitive. Per-vertex
input is described with the attribute qualifier whereas per-fragment input is described
with varying. Per-vertex output like colors and texture coordinates that is used as per-
fragment input is qualified with varying as well. The rasterizer generates varying input
for the fragment processor by interpolating values from vertices that are part of the pro-
cessed primitive (e.g. triangle). Thus, varying input that is used by the fragment proces-
sor must be set in the vertex processor. The figures 40 and 41 list the different in- and
output variables that vertex and fragment processors can use. The in- and output consist
of built-in variables that are always present and of user-defined variables that depend on
the needs of each application. With Shader Model 3.0, both processor types can have
texture input. The output of both contains built-in and user-defined variables as well,
but also special variables. Special is no separate qualifier but this output is used for
fixed pipeline computation and is therefore not used as input for further processing that
can be influenced by the developer. Special output from the vertex processor is only
used by the rasterizer whereas special output of the fragment processor is the graphics
pipeline output and is written into its render targets. All output variables can be read, but
they only have a defined value if any value has been assigned before.
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The syntax of GLSL programs is closely oriented to C/C++ whereby a native support for
vector  and matrix  types exists.  Besides  the  basic  types shown in  table  6  structures
(struct) and arrays are support as well, but no point,er types exist. The period or swizzle
operator “.” is used to access vector components and to generate new vectors. It is used
by adding the operator to the variable name followed by components names. Three syn-
onymous component name sets are described in table 6.

Fig. 41 - Fragment shader input and output variables. Image courtesy of Ho (2005).

Fig. 40 - Vertex shader input and output variables. Image courtesy of Ho (2005).
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The swizzle operator is used to access components of vectors. Result of the swizzle ac-
cess is a float if only one component is accessed and it is a vector if multiple compo-
nents are selected:

vec4 v4;

vec4  a = v4.rgba; // is a vec4 and the same as just using v4,
vec3  b = v4.stp;  // is a vec3,
float c = v4.b;    // is a float,
vec2  d = v4.xy;   // is a vec2,
vec4  e = v4.xgba; /* is illegal - the component names do not
                      come from the same name set */

The swizzle operator can be used to assign one or more values to a vector whereby the
order of components can be mixed:

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
pos.xw = vec2(5.0, 6.0);       // pos = (5.0, 2.0, 3.0, 6.0)
pos.wx = vec2(7.0, 8.0);       // pos = (8.0, 2.0, 3.0, 7.0)
pos.xx = vec2(3.0, 4.0);       // illegal - 'x' used twice
pos.xy = vec3(1.0, 2.0, 3.0);  // illegal - mismatch vec2 and vec3

Many optimized  built-in  functions  including  vector  and  matrix  computations  exist.
Some sample functions are shown below.

float   dot (genType x, genType y)      // dot-product
vec3    cross (vec3 x, vec3 y)          // cross-product
genType normalize (genType x)           // normalization
genType reflect (genType I, genType N)  // vector I reflected by
                                        // surface orientation N
mat matrixCompMult (mat x, mat y)       // matrix multiplication

User-defined functions are possible as well and they are declared, defined and used very
similar to C/C++:

// prototype
returnType functionName (type0 arg0, type1 arg1, ..., typen argn);

// definition
returnType functionName (type0 arg0, type1 arg1, ..., typen argn)
{
  ... 
  return returnValue;
}

Arguments can be further specified with the qualifiers  in,  out,  inout, and/or  const.
Due to the out qualifier it is possible to return more than one value. Further details are

Table 6 - Vector component names.

Component Name Description

{x, y, z, w} 

{r, g, b, a} useful when accessing vectors that represent colors
{s, t, p, q} 

useful when accessing vectors that represent points or 
normals

useful when accessing vectors that represent texture 
coordinates
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described in table 7. Recursion is not allowed in shaders and results in undefined be-
haviour. The only function that always needs to be defined is the main-function that is
used as entry point for the shader. Not every shader needs to have a main function but at
least one in a set of shaders that are linked together:

void main()
{
  ...
}

Table 7 - GLSL basic types.

Type Description

void for functions that do not return a value
bool
int a signed integer
float a single floating-point scalar
vec2 a two component floating-point vector
vec3 a three component floating-point vector
vec4 a four component floating-point vector
bvec2 a two component boolean vector
bvec3 a three component boolean vector
bvec4 a four component boolean vector
ivec2 a two component integer vector
ivec3 a three component integer vector
ivec4 a four component integer vector
mat2
mat3
mat4
sampler1d a handle for accessing a 1d texture
sampler2d a handle for accessing a 2d texture
sampler3d a handle for accessing a 3d texture
samplercube a handle for accessing a cube mapped texture
sampler1dshadow a handle for accessing a 1d depth texture with comparison
sampler2dshadow a handle for accessing a 2d depth texture with comparison

a conditional type, taking on values of true or false

a 2×2 floating-point matrix
a 3×3 floating-point matrix
a 4×4 floating-point matrix
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The fundamental building blocks of the OpenGL Shading Language are:

– Statements and declarations
– Function definitions
– Selection (if-else)
– Iteration (for, while, and do-while)
– Jumps (discard, return, break, and continue).

They are roughly used like in C/C++.

Textures are accessed by texture sampling. Regarding how the graphics pipeline is real-
ized by graphics hardware, there are two kinds of texture sampling: with prefetch and
without prefetch. If the sample coordinates are not dynamically evaluated in the frag-
ment  program,  the  sampling  result  is  prefetched  an  can  be  accessed  directly.  With
prefetching  the  texture  lookup  needs  much less  time,  of  course.  An  example  for  a
prefetch situation is using the varying texture coordinates. In case of dynamic sampling,
the sampling coordinates are not foreseeable and can not be prefetched. This is the case,
if the texture coordinates are evaluated at runtime, e.g. when they result from a previous
texture lookup. The following example shows both types combined in a fragment shad-
er.

uniform sampler2D     texA;
uniform sampler2DRect texB;

void main(void)

Table 8 - GLSL Type Qualifiers.

Type Qualifier Description

const 

attribute

uniform 

varying 

in for function parameters passed into a function
out 

inout 

< none: default > 
local read/write memory, or an input parameter to a 
function
a compile-time constant, or a function parameter that is 
read-only
 linkage between a vertex shader and OpenGL for per-
vertex data
value does not change across the primitive being 
processed, uniforms form the linkage between a shader, 
OpenGL, and the application
linkage between a vertex shader and a fragment shader 
for interpolated data

for function parameters passed back out of a function, but 
not initialized for use when passed in
for function parameters passed both into and out of a 
function
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{
  vec2 texCoord0 = gl_TexCoord[0].xy,  // foreseeable
       texCoord1;                      // defined by lookup

  texCoord1 = texture2D(texA, texCoord0).xy;

  // dynamic texture lookup and result return
  gl_FragColor = texture2DRect(texB, texCoord1);
}

The shown example uses the first texture lookup to determine the coordinates for the
second lookup. It is important to mention that the texture2D() function uses normal-
ized texture coordinates whereby texture2dRect() uses texel indices just like glTex-
Coord2f() as explained in chapter “The 3D API”. The result is then returned as color to
the fixed pipeline. 

The presented concepts are the basis for understanding the GPU based part of the imple-
mented algorithm. The scenario of the last example also occurs in the fragment program
of the Smith-Waterman GPU implementation in chapter 4.

3.8 Efficient Parallel Computing on GPUs

Introduction

While programming shaders, basic features of GPUs and some basic principles of GPU
programming should be considered to make the computation as efficient as possible.
This  chapter  presents  the  basics  of  efficient  GPU programming  based  on  Woolley
(2005), Harris (2004b), Harris (2005), and Fernando et al. (2004). Some of these tech-
niques are used in the algorithm implementation in chapter 4.

Parallelism

Parallelism  can  be  classified  into  small-scale  and  large-scale  parallelism  (Woolley
2005). 

Small-scale parallelism means the native vector processing support of GPU processors.
A vector operation is done in the same time as a scalar operation whereat a vector con-
sists of up to 4 scalars. Packing scalars into vectors can reduce the amount of instruc-
tions. Furthermore, using the swizzle operator is faster than explicitly declaring vari-
ables. It should therefore be used as efficiently as possible.

vec2 a = vec2(1.0, 2.0);
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// explicitly building a vector results in several assembly
// MOV instrucions
vec2 b = vec2(a.y, a.x);

// using the swizzle operator is native and therefore free
vec2 c = a.yx;

In addition, on both NVIDIA and ATI GPUs a multiply-and-add operation is executed
as one instruction. Thus, looking out for this combination can reduce instructions as
well. The following example uses these techniques to optimize a given instruction set. It
was originally written by Goodnight et al. (2003). The following code can be optimized:

// two substractions, two multiplies and two multiply-and-adds
float2 offset = float2(params.x*center.x - 0.5f*(params.x-1.0f),
                       params.x*center.y - 0.5f*(params.x-1.0f));

// four scalar additions
float4 neighbor = float4(center.x - 1.0f,
                         center.x + 1.0f,
                         center.y - 1.0f,
                         center.y + 1.0f);

This is the optimized code:

// one elementwise substraction
float2 offset = center.xy – 0.5f;

// one multiply-and-add
offset = offset * params.xx + 0.5f; 
 
// one vector addition
float4 neighbor = center.xxyy + float4(-1.0f,1.0f,-1.0f,1.0f);

The amount of instructions in the first line was reduced from six to two. The more the
vector nature of GPUs is utilized, the more efficient programs get.

Large-scale parallelism refers to the datalayout. If grids (textures) consist of less than
four components, they can maybe be packed into one texture. In the ideal case, four
grids are packed into one 4-layered grid as shown in figure 42. If data is processed in
vectors, the required memory bandwidth, the amount of texture lookups, and the amount
of other instructions can be be reduced. The three matrices H, E, and F needed for the
Smith-Waterman algorithm are packed exactly like this.
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Precomputation

There are three stages where values can be computed: on the CPU, in the vertex pro-
gram, and in the fragment program. Everything that can be computed in an earlier stage
should be moved. Everything that is invariant for all computed primitives can be pre-
computed on the CPU and used as uniform input. This can be a scalar, a vector, or even
a matrix as a lookup table. Functions that are computation intensive to evaluate can be
precomputed, stored as matrix and loaded as uniform lookup table (texture). Complex
per-vertex computation can maybe be precomputed and used as attribute input. As most
computation is usually done on the fragment processor, everything that varies linearly
across geometry like texture coordinates should be precomputed in the vertex shader.
The rasterizer does the linear interpolation and makes the reslting values available for
the fragment program. That reduces the amount of instructions. Additionally, the pre-
computation of texture coordinates enables the texture unit to prefetch data that is sam-
pled in the fragment program to save time.

Branching

Using conditions (branching) can hurt performance. Modern GPUs like the NV40 are
able to do SIMD branching in fragment shaders and fully MIMD branching in vertex
shaders. In contrast, older GPU simulate branching by computing all branches and keep-
ing only the desired value. SIMD branching should be used only if coherent regions con-
taining at least 1000 pixels that take the same branch exist. But also in this case, the
branching overhead should be regarded, because it still hurts performance. Branching
should not be used for less than five instructions, but rather for early exits. If it is possi-
ble, it is better to move decisions up the pipeline or to replace a condition by math. A

Fig.  42 - Efficient datalayout:  four float grids can be packed into one 4-component grid
(Figure courtesy Aaron Lefohn).
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simple branch like

x = (t == 0)? a : b;

can be replaced with

x = lerp(t = {0,1}, a, b);

There are several techniques that can be used to move the decision up the pipeline: pre-
computation, static branch resolution, z-cull, and occlusion queries. If definite areas are
computed differently to others, not a branch in the fragment program but different pro-
grams should be used to avoid branching. A typical case is the boundary condition as
shown in figure 43. The border can be evaluated by a different shader than the rest. This
requires multiple passes by drawing multiple primitives.

Z-cull is useful for avoiding branches in multiple pass computations. First, the z-buffer
is cleared to 1. Geometry is then drawn to z=0 and pixels that should be modified in lat-
er passes are discarded. In following passes, the depth test is enabled with e.g. GL_LESS
to disregard pixels with a lower z-value than the drawn one. If geometry is then drawn
to z=0.5, only those pixels with depth=1 are processed.

Optimizing

In a chain like the graphics pipeline, a system is only as fast as its slowest element. The
slowest element is called a bottleneck. Optimizing the pipeline means iteratively finding
and eliminating bottlenecks until the performance is acceptable.

Profiling tools like NVIDIA NVPerfHUD35 for DirectX are a comfortable way to find
out  which  shader  needs  most  attention.  One  example  tool  for  analyzing  shaders  is
NVIDIA NVShaderPerf36. 

35 http://developer.nvidia.com/docs/IO/8343/How-To-Profile.pdf
36 http://www.developer.nvidia.com/page/tools.html

Fig. 43 - Boundary conditions are a typical case for stat-
ic branch resolution.

boundary
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Optimizing always means to find the bottleneck first. Optimizing any other part of the
pipeline does not improve performance, because the speed is still limited by the slowest
part. The bottleneck can be found by systematically varying the workload of each ele-
ment of a stage (see figure 44). This should be done backwards the pipeline, because the
most workload usually lies with fragment processing. Elements to be varied in general-
purpose applications can therefore be:

1. Fragment program instructions
If reducing the amount of instructions speeds up the pipeline, the bottleneck is found.

2. Texture size
If reducing the size of amount of texture speeds up the pipeline, the problem lies in
the texture bandwidth.

3. Vertex program instructions
If reducing the amount of instructions speeds up the pipeline, the bottleneck is found.

In graphics applications, more factors like the screen resolution and the amount of ren-
dered vertices can be varied. It might also be the case that the real bottleneck is caused
by driver overhead like context switching or simply by the CPU workload. It is therefore
important to carefully check each single stage.

Optimization  does  not  necessarily  mean  reducing  workload.  If  the  application  has
reached an acceptable performance, some stages might be unchallenged, meaning that

Fig.  44 -  Iteratively testing for a bottleneck by decreasing the workload of pipeline
stages one after another.
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their workload can be increased without decreasing the applications' performance. This
can be used to make computations more precise or to add features.

3.9 Summary

This chapter gave an overview over general-purpose GPU programming regarding the
aspects hardware, CPU-GPU analogies, APIs, GPU programming languages, and com-
monly used basic methods.

The part about hardware and CPU-GPU analogies showed that GPUs can be seen as
streaming  processors  applying  kernels  to  streams  of  independent  elements.  These
streams flow through several processing stages called the graphics pipeline: application,
vector processing, rasterization, and fragment processing. Each step applies kernels to
an input stream and writes it to an output stream. The different stages are connected by
these streams. The information is thereby transformed from geometry and textures to
pixels. Textures are analogue to arrays on the CPU and drawing geometry is used for in-
voking computation. OpenGL and DirectX were presented and compared as 3D APIs.
Focusing on OpenGL, it was shown how to control the GPU from the CPU and how
GPU programs get  feedback,  supported  by code examples.  The  basic  principles  for
feedback  are:  Copy-To-Texture,  Render-To-Texture  with  pbuffers,  and  framebuffer
objects.  GPU  programming  languages  were  discussed  and  the  OpenGL  Shading
Language was presented in its basics to show the functionality. Finally, fundamental
GPU programming rules were explained to implement shaders as efficiently as possible.
This basically consists of using the GPU's native vector support, of using a packed data
layout to safe bandwidth and of finding and eliminating bottlenecks in the pipeline by
iteratively varying each step's workload.

This chapter provides the knowledge needed for the following presentation of  a GPU-
based implementation of the Smith-Waterman algorithm for local sequence alignment.
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4 Smith-Waterman GPU Implementation

4.1 Motivation

On the one hand, there is an existing need for  cheap and easy to use high performance
systems that are able to handle huge amounts of information in a short time. On the oth-
er hand, commodity graphics hardware becomes more and more capable of doing paral-
lelized  general-purpose  computation  with  a  performance  much  higher  than  that  of
CPUs. In bioinformatics, the scanning of genetic databases for comparison purposes is a
very computation intensive task that is commonly executed by expensive specialized
hardware and/or PC clusters that need a lot of expertise to handle. In addition, algo-
rithms are optimized and simplified to reduce computation time whereby accuracy de-
creases as well. Software tools like BLAST are used, because they show a high perfor-
mance due to their use of heuristics. However, the Smith-Waterman algorithm is the
standard for searches where a high accuracy is needed, although it is more computation
intensive.  Running this  algorithm on parallel  systems is  an opportunity to  speed up
database  searches  by  far.   The  following  chapters  explain  how  the  algorithm  was
mapped to graphics hardware, how it was implemented, and it presents performance
tests and results. Furthermore, possible improvements of the application are discussed.

4.2 Concept

Introduction

The concept of the Smith-Waterman algorithm implementation consists of three parts:
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1. Mapping of the algorithm to a parallel system like graphics hardware.

2. Defining of the functionality of the application.

3. Defining test cases and evaluation.

The following sections describe each part.

Smith-Waterman Algorithm on Parallel Hardware

Primary task of the algorithm concept is to design the algorithm in a way that it provides
maximum parallelism.

As shown in chapter 2.6, the Smith-Waterman algorithm compares two sequences A
and B with lengths m and n, evaluates their similarity and generates their optimal local
alignment. Therefore, a matrix H which incorporates every possible alignment is set up.
Each cell Hi, j depends on the neighbour cells Hi-1, j, Hi-1, j-1, and Hi, j-1 which need to have a
concrete value (see figure 46). Using a CPU, it is possible to iterate over the matrix with
nested loops row by row from top down or column by column from left to right.

Mapping this procedure to a parallel system by parallely computing an entire row or an
entire column is not possible, because the evaluated cells depend on each other. Like
shown in figure 45, computing randomly chosen cells of a row results in using cells that
do not have a value yet. In this example, it is assumed that only four processors work in
parallel. The evaluated cells are marked with a question mark.

In which way the matrix can be partially computed in parallel is given by the cell depen-
dencies. Figure 46 shows that in the first iteration only cell [1, 1] fulfills the dependen-
cy. Every serial or parallel system starts at this point. In the second iteration the two
cells [1, 2] and [2, 1] fulfill the dependency. If it is continued by evaluating all cells that
fulfill the dependency, the resulting pattern is a diagonal that moves from upper left to
the lower right of the matrix (see figure 47). Therefore, a parallel computation is only
possible with diagonals. Since one row and one column with zeros need to be added, a
(m+1)×(n+1) matrix is needed instead of an m×n matrix. The m×n submatrix contains
the cells that need to be evaluated. The amount of necessary iterations is m+n-1 which
corresponds to the amount of diagonals in the submatrix. In the example of figure 47,
the amount of iterations is 13+9-1=22. The length of the rendered diagonal Dx is L(x)
where x is the iteration count.
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The overall basic idea is to compute the matrix in m+n-1 steps on the GPU, diagonal by
diagonal. This is the only part of the algorithm that can be efficiently executed on a par-

Fig. 46 - Only cells within anti-diagonals can be computed in parallel.

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 0

?
??

?
?

?

Fig. 45 - Parallel computation of lines or rows is not possible.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

i ⊘ A T C T C G T A T G A T G

0 ⊘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 G 0 0 0 0 0 0 2 1 0 0 2 1 0 2

2 T 0 ? ? ? ?

... ... ...

Fig.  47 - Anti-diagonals are computed along the diagonal of the
matrix.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

i ⊘ A T C T C G T A T G A T G

0 ⊘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 G 0 0 0 0 0 0 2 1 ?

2 T 0 0 2 1 2 1 1 ?

3 C 0 0 1 4 3 4 ?

4 T 0 0 2 3 6 ?

5 A 0 2 1 2 ?

6 T 0 1 4 ?

7 C 0 0 ?

8 A 0 ?

9 C 0
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allel system. The backtracking part is still performed on the CPU.

Application

The application controls the GPU rendering through a 3D API. It needs to have a render-
ing loop that invokes the computation. Furthermore, it has to load a fragment program
from a file and to bind it. The information that is processed are nucleotide or amino acid
sequences. The application must be able to load the query sequence and the sequence set
to which the query sequence is compared to. Text files with FASTA format shall be
used.  For testing purposes the application shall  also be able  to generate random se-
quences. Since the algorithm needs any type of scoring matrix, a feature for loading text
files containing a scoring matrix should be implemented as well.  No graphical user-
interface is necessary. It is sufficient to use the application as a command line tool. Con-
trolling the application shall be solved by passing command line parameters. Results of
the computation shall be those n sequences ordered by decreasing similarity score order
which are most similar to the query sequence. The demanded functionality and structure
is illustrated in figure 48.

Test Cases and Evaluation

After implementation, the application can be tested for its  performance. This can be
done by running tests with random generated sequences and by scanning real databases.

Fig. 48 - Application structure.
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Full control over the sequence length only exists with artificially generated sequences.
These shall be used to test the performance development by varying sequence lengths
and by varying the size of the sequence set that the query sequence is compared to. The
maximum comparison speed can be determined like this.

Scanning real existent databases shows the application's performance in practical use
cases. For this purpose, the Swiss-Prot database shall be scanned.

For evaluation, the results of performance test shall be visualized using graphs. Further-
more, the performance shall  be compared to a reference CPU implementation of the
same algorithm.

The following chapter describes the implementation that was realized according to these
conceptual ideas.

4.3 Implementation

Application Structure

Besides the realization of the algorithm, the application was designed to fulfill the test-
ing abilities proposed in the concept. Therefore, it has two execution modes: test mode
and compare mode (see figure 49). For the test mode, many parameters such as query
sequence length, length of the sequences in the sequence set, number of sequences in the
set, step width for automatically increased parameters, and the number of repetitions per
alignment can be specified. There are more parameters which are described in the ap-
pendix “SCA Program Arguments”. SCA means Sequence Comparison Algorithm and
refers to the implementation that is presented in the following. 

In test mode, a loop is entered (referred to as test loop) which invokes a number of se-
quence alignments in series, depending on the program arguments. The results of each
alignment are gathered for statistics in an array. In this context, the alignment result re-
garding the sequence similarity is not of interest, but the performance is. Therefore, data
such as render time and cell units per second (CUPS) is gathered. CUPS means the
amount of matrix cells that are evaluated per second. It is possible to run several itera-
tions for each alignment to get average values. The statistical data are written to text
files and can be used for evaluation and visualization purposes. 
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The compare mode is simpler. The specified query sequence and the sequence set are
loaded from files first. Subsequently, the alignment is evaluated whereas the number of
iterations for averaging can be specified as well. Afterwards, those sequences with the
highest similarity score are available as result. Render time and CUPS values are avail-
able, too.

Figure 50 shows how the application was realized. The  SCA_Main class manages the
program operations. It is responsible for interpreting user-defined parameters, it initial-
izes  the  window,  it  manages  the  two  different  run  modes,  it  starts  the  sequence
alignment and it prints the results to the standard output and to files. GLUT is used to
initialize the window and GLEW is used for OpenGL extension queries. 

The Tokenizer splits the program argument string into tokens and returns a token vec-
tor that can be used by the main program to interpret the arguments. First, the entire
string is split into elements separated by spaces, then these elements are split at the posi-
tion of distinct separators (see figure 51). Each token consists of a number that indicates
whether a single parameter or a parameter-value pair is stored. Both parameter and value
are stored as strings. Furthermore, the Tokenizer provides a function to load a scoring
matrix file into a float array. 

Fig. 49 - Activity diagram.
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The functionality of the DataMatrix class is similar to the std::vector except that it is
designed like a matrix and that it  has additional functionality. It is used by the main
class to store alignment results of the test loop. Furthermore, it provides a function to
print itself to an output stream like a file.

SCA is the class that incorporates the sequence alignment functionality. After creating
an SCA object, it needs to be initialized. Required parameters like the filenames for the
query sequence,  the sequence set,  the fragment  program, and the scoring matrix  are
passed to the initialize() function (see figure 52). The initialization of the sequences
depends on the mode that was chosen. In compare mode, the sequences are loaded from
files whereas the sequences in test mode are created with random content. Sequences are
kept  in  a  SequenceContainer object.  This  object  contains  a  vector  with  Se-
quence objects. In case of the query sequence, it is only one object. In case of the se-
quence set, it depends on the set's number of sequences. Each sequence object contains
both the FASTA description line and the sequence itself. The pbuffer is prepared for
RTT with 32-bit floating point precision and auxiliary buffers as described in the chap-
ter “The 3D API”. The functionality is encapsulated in a pbuffer class that was taken
from the NVIDIA software development kit37 code example “Simple Float Pbuffer”38.
This class was modified to fit  the requirements. Pbuffer width and height must be a
power of two each. These values are limited by the graphics hardware. 2048×2048 was
the maximum pbuffer size that could be allocated using a NVIDIA GeForce 6800 GT
graphics card. After setting the OpenGL projection mode, the textures are initialized.
One texture for each the query sequence and the sequence set are created and filled with

37 http://developer.nvidia.com/object/sdk_home.html
38 http://download.developer.nvidia.com/developer/SDK/Individual_Samples/DEMOS/OpenGL/simple_

float_pbuffer.zip

Fig. 51 - Token creation.

“ref=256 constN”

Token

1 “constN” “”

Token

2 “ref” “256”

“constN”“ref=256”

Fig. 50 - Class diagram.
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sequence data. Furthermore, the scoring matrix is loaded to a texture. In addition, two
textures  that  are  bound  to  the  pbuffer  are  initialized  later.  They  will  contain  the
information of the diagonals Dx-1 and Dx-2. A  ProgramObject instance is used to load
the  fragment program from a file to initialize the shader program and to bind it. The
initialization  is  complete  at  this  point  and  the  sequence  alignment  is  invoked.  A
description of the algorithm can be found below in section “Algorithm Implementation”.

After the alignment process, the SCA object provides information which can be accessed
by get-methods and which can be used for evaluation and statistics. An example for the
file  results.txt  that  is  generated from this  information can be found in  the appendix
“SCA: results.txt”. Furthermore, the n most similar sequences can be printed by the SCA
object. The object prints n+k sequences if k more sequences have the same similarity
value as sequence n. 

Fig. 52 - Initialization activity diagram.
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Algorithm Implementation

How the Smith-Waterman algorithm in the SCA class is realized is described in the fol-
lowing. The concept defined that only diagonals of the matrix can be evaluated on a par-
allel system. But drawing a diagonal quad that covers the diagonal in the buffer does not
yield the desired result. As shown in figure 53, all pixels touched by the quad are affect-
ed instead of rendering only the aimed pixels.  Hence, the cells of each diagonal are
brought into columns by shifting each row of the matrix to the right by its row number i
(see figure 54).

      Fig. 54 - Matrix with shifted rows.

n
j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

i ⊘ A T C T C G T A T G A T G

0 ⊘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 G 0 0 0 0 0 0 2 1 ?

2 T 0 0 2 1 2 1 1 ?

3 C 0 0 1 4 3 4 ?

4 T 0 0 2 3 6 ?

5 A 0 2 1 2 ?

6 T 0 1 4 ?

7 C 0 0 ?

8 A 0 ?

m 9 C 0

x: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

l(x): increasing constant decreasing

length=x+1 length=m length=m+n-1-x

offset=i

m-2 n-2 m-n-20 m-1 n-1

Fig. 53 - Drawing a quad over the anti-diago-
nal results in rendering too many pixels..

0 0 0 0 0 0 0 0
0 0 ? 0 0 ?
0 ? 0 ?
0 0
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With this method, a 1×L(x) quad can be rendered in each iteration. Due to the offset, a
(m+n+1)×(n+1) buffer is necessary to contain the whole matrix. Since a buffer cannot
be used for reading and writing at the same time, two buffer are necessary. This means
that the rendered result must be copied into the texture buffer to have two consistent ma-
trices. This procedure is very time consuming.

Since Hi, j depends on Hi-1, j, Hi, j-1, and Hi-1, j-1 the actual rendered diagonal Dx depends on
the two previous diagonals Dx-1 and Dx-2. If these three diagonals are used as separate
one-dimensional buffers, Dx-1 and Dx-2 can be in the form of texture input and Dx is the
framebuffer.  In the following iteration,  Dx becomes Dx-1,  Dx-1 becomes Dx-2 and Dx-2

becomes Dx. Figure 55 visualizes the idea of cyclic buffer function change. An arrow
pointing towards the fragment program means that the buffer is  used as texture.  An
arrow pointing from the fragment program to a buffer means that the buffer is used as
framebuffer.

With this method comes the disadvantage that the information about the entire matrix is
not kept. Only three diagonals are know at the same time. That means the information
cannot be used to evaluate the optimal local alignment of both sequences. However, it is
most import that the algorithm runs as fast as possible and returns a similarity value.
This  implementation is  meant to scan an entire database containing several  hundred
thousand sequences in a short time. Afterwards, the sequences with the highest similari-
ty scores can be picked out and the local alignment can be computed on the CPU which
can store the  entire  matrix.  The  additional  computation  time for  aligning a  few se-
quences is relatively short compared to the entire database scanning time. In the GPU
method, the highest score in the matrix which corresponds to the similarity value can
still be evaluated. The maximum score max(Hi, j, Hi-1, j, Hi, j-1) is stored in each cell. Since
one color pixel can contain a maximum of four color components, Hi, j, Ei, j, Fi, j, and max
(Hi, j, Hi-1, j, Hi, j-1) can be stored in the RGBA channels of one cell, thus storing four grids
in one buffer (see figure 56). 

Fig. 55 - The functions of buffers A, B, and C are changed cyclic.
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Dx-1 Dx-2 Dx

Fragment
Program

Dx-2 Dx Dx-1
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iteration 1 iteration 2 iteration 3
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Furthermore, it  is possible to perform N comparisons at the same time by using 2D
buffers instead of one-dimensional buffers.  This is  shown in figure 57 in which the
buffer is filled from bottom up. Each buffer contains N diagonals with a length L(x).
Therefore, computation is invoked by drawing an N×L(x) quad. The maximum number
of sequences is Nmax=PWmax=2lmax where PWmax is the maximum pbuffer width. In case of
the NVIDIA GeForce GT, Nmax is 2048. A width of 4096 could be allocated as well, but
then the application crashed. The same fact limits the buffer height to 2048. Since one
additional matrix row with zeros is necessary for the algorithm, the maximum sequence
length that can be used is L(x)max=PHmax-1 =2kmax-1 where PHmax  is the maximum pbuffer
height.

The 1:1 mapped texture coordinates can be chosen in such a manner that no computa-
tion of texture coordinates is necessary in the shader (see figure 58). Due to this fact, the
sampled values can be prefetched. The adapted texture mapping is solved by a cell count
offset to the drawn quad whereby the quad size is identical. The offsets are different for
both m<n and m>n where m is the length of the query sequence and n the maximum se-
quence length in the sequence set. If m<n, the diagonals with equal lengths are on the
same height after the matrix shifting, otherwise they are one cell apart each (see figure
59). Table 9 shows the offsets depending on the iteration and the relation of m to n. 

After all passes have been rendered, the results can be found in row min{m, n} of the
buffer.

Fig. 56 - Data layout.
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Fig.  58 - Texture mappings at iteration x=8. Dx-1 is mapped with two texture coordinates. The
quad and the texture mappings are marked in red.

0 0 0 0
0 0 0
0

additional cell 0 0 0 0

Hi-1, j-1 Hi, j-1 Hi-1, j Hi, j

Hi, j-1 Hi, j

Lmax(x) Hi-1, j-1 Hi-1, j

Dx-2 Dx-1 Dx-1 Dx

Texture Mappings Quad

9
8
7
6
5
4
3
2
1
0

Fig. 57 - Buffers at iteration x=8 after rendering N diagonals Dx in parallel.

··· ··· ···
  L(x)=6   L(x)=7   L(x)=8

BufferA(x) BufferB(x) BufferC(x)

D1x-2 D2x-2 DNx-2 D1x-1 D2x-1 DNx-1 D1x D2x DNx
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Since the input sequences are textures, the quad is mapped to them as well (see figure
60). For sequence A, which is the vertical sequence in the matrix, the same offset in y is
used as for the framebuffer quad. The quad of sequence B is mapped differently. It is
mapped with the opposite direction as the quad in sequence A. Its offset is increased if
x>m and m<n or if x>n and m>n. The red arrows in figure 60 show how the quad is
mapped. The black dots indicate which texels are sampled in the sequence textures if the
matrix cell marked with a black dot is evaluated. Assumed that the matrix cells are
evaluated in series, the black arrows indicate the movements of the black dots.

Table 9 - Mapping offsets.

x

m<n all -1 0 -1

m>n <n -1 0 -1
n 0 1 0

>n ^ <m 1 1 0
m 0 0 -1

>m -1 0 -1

Dx-2 (Hi-1, j-1) Dx-1 (Hi, j-1) Dx-1 (Hi-1, j)

Fig. 59 - Different relations of m to n result in different matrix shapes af-
ter shifting.
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In order to evaluate the similarity s(a, b) of the elements ai and bj, a scoring matrix is
used as lookup table. The elements of sequence A and sequence B are stored in the form
of numbers or characters which are part of an ordered alphabet. If the used scoring ma-
trix S is ordered likewise, the values of the elements ai and bj can be used as sampling
coordinates. That means that if the elements are taken from an ordered alphabet of 20
elements which are encoded with the number 0 to 19, a 20×20 scoring matrix is used.
The scoring matrix cell [a, b] contains the similarity of the elements a and b whereby [a,
b] equals [b,  a].  No further computation is necessary. The only disadvantage of this
method is that the coordinates of the texture lookup are evaluated dynamically. That
prevents texture prefetching and slows down the algorithm.

Figure 61 gives an overview of the entire alignment function. Before entering the loop
that handles the passes which need to be rendered, the fragment program is activated.
The following loop is executed for each of the m+n-1 diagonals. First, the quad and its
texture coordinates are determined and the two buffers representing the diagonals Dx-1

and Dx-2 are bound as textures.  The render target is set  to the buffer that  represents
diagonal Dx in this pass. Subsequently, all necessary uniform variables are set, the quad
is drawn, and its texture mappings are set. When the rendering has finished, the buffers
are released from their  texture bindings and the loop restarts.  This is  done until  all
diagonals are completed. After exiting the loop, the fragment program is deactivated and
the result is read from the framebuffer. Furthermore, the results are stored and statistical
information is generated. The function returns.

Fig. 60 - Mapping the quad to the sequence textures.
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Fragment Program

The fragment program determines the following variables:

E i , j=max H i−1, j , E i−1, j

F i , j=max H i , j−1 , F i , j−1

H i , j=max H i−1, j−1s ai ,b j , E i , j , F i , j , 0

max i , j=max H i , j , H i−1, j , H i , j−1 .

These are written to the framebuffer in the form of a color: red=Hi, j, green=Ei, j, blue=Fi,

j, alpha=maxi, j then. The GLSL fragment program is shown and commented in the fol-
lowing.

Declaration of uniform variables:

uniform sampler2D     texUnitSeqRef,  // query sequence
                      texUnitSeqComp; // sequence set
uniform sampler2DRect texUnitDiagN1,  // diagonal Dx-1
                      texUnitDiagN2,  // diagonal Dx-2
                      texUnitBlosum;  // scoring matrix
uniform vec4 params;                  // various parameters

void main(void)

Fig. 61 - Simplified model of an application with multiple passes.

Alignment Function
   activate fragment program

 
deactivate fragment program
read result from framebuffer
evaluate statistical information

Function End

Passes Loop (for each diagonal)
determine quad coordinates

     determine texture mappings
bind buffers Dx-1 and Dx-2 as textures
set render target to buffer Dx

set uniform variables
draw vertices and texture coordinates
release texture buffers

Loop End
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{

The texture coordinates and the various parameters are renamed for a better readability.
This will be optimized by the compiler and does not affect performance.

   vec2 tC0Ref    = gl_TexCoord[0].xy, // query sequence
        tC1Comp   = gl_TexCoord[1].xy, // sequence set
        tC2DiagN1 = gl_TexCoord[2].xy, // diagonal Dx-1
        tC3DiagN2 = gl_TexCoord[3].xy; // diagonal Dx-2

     const float step  = params.x,  // buffer step width
                 alpha = params.z,  // gap penalty
                 beta  = params.w;  // gap penalty

Hi-1, j, Hi, j-1, Hi-1, j-1, ai, and bj are sampled from textures. Against the concept, the coordi-
nates for Hi, j-1 are evaluated dynamically in this program.

     vec4 hi_1j   = texture2DRect(texUnitDiagN1, tC2DiagN1   ),
          hij_1   = texture2DRect(texUnitDiagN1, 
                                  tC2DiagN1 - vec2(0.0, step)),
          hi_1j_1 = texture2DRect(texUnitDiagN2, tC3DiagN2   );

     const float s1i = (texture2D(texUnitSeqRef , tC0Ref )).x,
                 s2j = (texture2D(texUnitSeqComp, tC1Comp)).x;

Dynamic sampling of s(ai, bj):

     /* determine floating point coordinates */
     vec2 tCBlosum   = vec2(s1i, s2j);
          tCBlosum  *= 255.;
          tCBlosum  += 0.5;

/* lookup in scoring matrix */
     const float sbt = (texture2DRect(texUnitBlosum, tCBlosum)).x;

Ei, j, Fi, j, Hi, j, and maxi, j are evalutated:

     const float E = max(hij_1.x - alpha, hij_1.y - beta),
                 F = max(hi_1j.x - alpha, hi_1j.z - beta);

     hi_1j_1.x += sbt;
     const float H = max(0.f, max(E,       max(F, hi_1j_1.x))),
           maximum = max(H,   max(hi_1j.w, hij_1.w          ));

Return result:

     gl_FragColor  = vec4(H, E, F, maximum);
}

NVShaderPerf translated this program to 26 assembly instructions. The number of in-
structions for determining Ei, j, Fi, j, Hi, j, and maxi, j  can be reduced to 23 like this:

     vec4 maxVec = max(vec4(hij_1.x - alpha, hij_1.y – beta,
                            hi_1j_1.x      , hi_1j.w        ),
                       vec4(hi_1j.x - alpha, hi_1j.z - beta, 
                            0.f            , hij_1.w       ));

     const float H       = max(maxVec.x, max(maxVec.y, maxVec.z)),
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                 maximum = max(H, maxVec.w);
     gl_FragColor  = vec4(H, maxVec.x, maxVec.y, maximum);

However, a test proved that the latter is slower than the previous version.

The presented implementation computes correct results. The next chapter shows its per-
formance.

The presented implementation produces correct alignment scores. An example output of
the application can be found in the appendix “SCA Example Output”. The performance
test of the algorithm and their results are discussed in the following chapter.

4.4 Performance Test and Evaluation

This chapter discusses under which conditions the GPU implementation of the Smith-
Waterman algorithm shows a better performance than a CPU implementation. For all
GPU performance tests presented in this chapter, an NVIDIA GeForce 6800 GT (NV40
chip based) graphics card was used. It runs with 350 MHz core clock, 500 MHz memory
clock (1 GHz effective due to double data rate random access memory). It is equipped
with 6 vertex pipelines, 16 pixel pipelines, and 256 MB GDDR3 memory. The used op-
erating system was Microsoft Windows XP. When the Swiss-Prot database is mentioned
in this chapter, it refers to those sequences of the Swiss-Prot database (release 46.2, 1st

of March 2005) which have a length below 2048 amino acids. That is 99.5 % of the en-
tire amount of proteins.

There are two main factors that influence the performance of the GPU implementation:

1. The number of computed cells. 
2. The relation between the average sequence length of the sequence set and its longest

sequence.

As the graphics hardware is  optimized for high-throughput  computation,  the perfor-
mance is the faster, the more cells are processed. The amount of cells depends on the
length of the query sequence, the average sequence length of the sequence set, and the
number of sequences in the set. The larger each value, the less overhead occurs and the
better  is the performance. With the used hardware, the query sequence can be 2047
amino acids long, the sequences in the sequence set can be 2048 sequences long each,
and the sequence set can contain up to 2048 sequences. The figures 62 and 63 show a
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3D and a 2D visualization of a performance test. A sequence set of 2048 sequences was
used. During a series of 16×16=256 tests, both the length of the query sequence as well
as the lengths of the sequences in the sequence set were increased from 127 to 2047. A
minimum of 127 MCUPS and a maximum of 155 MCUPS were reached. The red dot in
the diagram approximately marks a 362×362 combination of sequences lengths. This
corresponds to the Swiss-Prot average protein length of 362 amino acids. A value of
about 148 MCUPS was reached which is 95 % of the peak value. The sequence length
distribution of the Swiss-Prot database is shown in figure 64. Around 41 % of  proteins
of the Swiss-Prot database have a length between 256 and 512 amino acids. Queries
with  sequences  of  these  lengths  can  be  evaluated  with  an  average  of  about  148.5
MCUPS which corresponds to 96 % of the peak value. 

A CPU implementation does not have a dependency on the sequence lengths and no
varying test scenarios need to be run. An optimized CPU implementation reached 75
MCUPS under Microsoft Windows XP on an Intel Pentium4 3,4 GHz CPU. Regarding
only its peak value, the GPU implementation is about two times faster.

Fig. 62 - 3D performance diagram of alignment with 2048 sequences.
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The presented values are only related to test  cases in which all sequences in the se-
quence set have  equal lengths. In practice, the lengths of sequences in a database vary.
This is the second factor that influences the performance. The application always draws
a quad of which each pixel is rendered. In case of varying sequence lengths, cells that
are beyond the length of short sequences are rendered as well. Figure 65 shows 16×16
buffer filled with 16 sequences of linear increasing length. It is filled by 53 % which
corresponds to the mentioned relation of the average sequence length in the set to the
longest sequence. Short sequences are treated like the longest one. That means that 47 %
of the computation is superfluous. As only 53 % of the computed cells in this examples
are relevant, the reached CUPS value can only be assessed by the filling ratio. A peak
value of 155 MCUPS therefore corresponds to only 82 relevant MCUPS in this case.
However, if the Swiss-Prot database is ordered by length and cut into groups of 2048
proteins, the average sequence length within these groups is 97.5 % of the longest se-
quence of the respective group (see figure 66). CPU implementations of this algorithm
only evaluate relevant cells and are more efficient in case of varying sequence lengths. If
a GPU reaches 155 MCUPS and the buffer is filled with less than 53 % by a sequence
set, the reference CPU is faster.

Fig. 63 - 2D performance diagram of alignment with 2048 sequences.
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Most disadvantageous scenarios for the GPU implementation are combinations of short
and strongly varying sequence lengths. The 2048 shortest sequences of the Swiss-Prot
database have an average length of 15 amino acids which corresponds to 64 % of the
longest sequence. If the query sequence consists of only 31 amino acids, 19.8 CUPS can
be  reached  with  the  GPU  version.  This  corresponds  to  only 23.7  % of  the  CPU's
performance.  Using  if-branches  in  the  fragment  program to  speed  up  the  rendering
process in order to disregard superfluous cells only works if about 60 to 70 % or less are
relevant. Otherwise, it slows down the computation. Since this border is far below the
Swiss-Prot average of 97.5 %, an if-condition does not improve performance.

Fig. 64 - Swiss-Prot database protein sequence length distribution (release 46.6, 26.04.05, 180652 se-
quence entries).
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To test and compare the efficiency in practice, the Swiss-Prot database was compared
multiple times with different query sequence lengths. Figure 67 visualizes the results of
five different runs over the entire database. For each a different query sequence length
was used: 31, 127, 511, 2047, and the average length of 362 amino acids. In the figure,
the query sequence length is referred to as “ref”. All 169260 proteins were ordered by
increasing length before they were loaded in sets of 2048 amino acids. To scan the entire
database, 83 seperate renderings were necessary. Using a query sequence of 2047 amino

Fig. 66 - Buffer almost complete-
ly filled.

Fig. 65 - Buffer half filled.

Fig. 67 - Swiss-Prot scan performance.
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acids, the GPU was 100 % faster than the CPU. It reached an average of 150 MCUPS.
Using the shortest query length of 31 amino acids, the GPU was still 31 % faster than
the CPU. The most import result is that of the average sequence length of 362 amino
acids. The GPU was 91 % faster than the CPU.

The performance tests using the mentioned hardware prove that the GPU implementa-
tion is up to twice as fast as the CPU implementation. Both implementations were run
on current high-end commodity systems.

4.5 Conclusions and Future Work

A GPU implementation of the Smith-Waterman algorithm for sequence comparison was
presented. Regardless of that the GPUs' performance advantage applies accordingly to
certain conditions only, the tests show an attractive performance improvement in practi-
cal use cases. The performance of the GPU version is the better the more sequences are
used in parallel, the longer the sequences are, and the closer the sequence length ratio is
to 1. If a database is scanned, large sequence sets can be used and sequences can be or-
dered by length so that the sequence length variation is within a few percent only. In
case of the tested Swiss-Prot database release, the average sequence length in each se-
quence group was 97 % of the longest sequence which is very advantageous for the ap-
plication. Using a query sequence with the Swiss-Prot average sequence length of 362
amino acids, the GPU's CUPS average value for scanning the entire database is 91 %
higher than the CPU reference value. Using the Smith-Waterman GPU implementation
for scanning databases fits the requirements for efficient computation. The used GPU is
up to twice as fast as the used CPU. In addition, GPUs are much cheaper than special-
ized hardware and thus they are an attractive alternative. This implementation provides a
way to inexpensively speed up the Smith-Waterman local alignment method on PCs by
using a GPU.

However, the implementation can be further enhanced to increase performance. In this
implementation, the texture coordinates used to sample Hi, j-1 are calculated in the shader
instead  of  pre-calculating  them  by  texture  mapping.  Changing  this  enables  texture
prefetching and could cause an increase in performance. Since if-branches do not help
this application to increase performance by not evaluating values for pixels that do not
need to be evaluated, z-cull could be used to disregard these pixels. The z-buffer needs
to be filled with the pattern of the sequences in the sequence set first. Relevant parts get
a different depth than superfluous parts and the depth-test can be used to render only
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relevant pixels. Assuming that a depth of 1 is assigned to relevant pixels and superflu-
ous pixels get a depth of 0, the quad can be drawn to z=0.5, disregarding pixels with
lower depth. In the shader, the depth for the pixel must be set to 1 again in order to re-
main at that depth. Another approach to speed up computation itself is to increase the
level of parallelism. In the implemented shader, four different types of values are written
to the buffer: H, E, F, and the maximum value. Each of them is evaluated in a different
way. It could be faster to compute only one type of values in pairs of four. It is a try to
efficiently use the native vector support in the shader. A buffer for each H, E, F, and the
maximum value is necessary for this method. But as still three diagonals are used, three
buffers of each type must be provided. This method requires more buffers than are avail-
able with pbuffers. However, it could be realized with FBOs. Furthermore, a large num-
ber of textures must be available in the fragment shader. A different method is to use
one-component buffers instead of RGBA buffers. Rendering to single-float buffers is
much  faster  than  rendering  to  float  buffers  with  more  than  one  component.  A
GPUBench39 report of the GeForce 6800 GT shows that a simple fragment program that
fetches once from a single-float texture, performs a few ADD operations, and outputs
the result to a single-float buffer is about seven times as fast as if multiple float compo-
nents are used. Using single-float buffers for each H, E, F, and the maximum value as
well as using four single-float rendertargets in a shader might increase performance. An
approach to increase performance in case of sequence sets with a strong variation in
length is to pack sequences intelligently into the sequence set buffer. More than one
sequence can be stored in one buffer column if the sequences are short enough. There
must be at least one zero cell between the sequences in a column to reset the scoring
values while rendering. This can be solved by an if-branch which is slow in performance
or by z-culling. The entire buffer must be cleared to zero first and all cells that have to
be avoided need to be marked with a different z-depth than the normal cells.

Another  necessary  enhancement  for  the  application  is  the  ability  to  load  an  entire
database at a time to avoid seeking in the source file. This enables a faster preparation of
sequence data for rendering. Furthermore, the SCA object is created and destroyed for
each alignment whereat the switching of device contexts needs a lot of time. This can be
avoided by keeping one SCA object until all alignments are finished.

Using graphics hardware for computation still needs a lot of experience and knowledge
regarding hardware and API. All data that is used must be mapped to fit graphical primi-
tives like textures and vertices. GPGPU languages might change this in future if they
prove  themselves  and  win  recognition.  They  abstract  GPU  programming  from  the

39http://graphics.stanford.edu/projects/gpubench/
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graphics level and support an easier programming. 

Much more than software development, hardware development influences the perfor-
mance and features of such applications. The annual performance growth of GPUs has
been higher than that of CPUs in the past years. If this development continues in the fol-
lowing years, the speed advantage of GPUs towards CPUs will grow further, making
them even more attractive.  The functionality and programmability of  GPUs was in-
creased by their vendors since they were introduced. More programmability will give
developers more independence in implementing GPU programs in the near future. Algo-
rithms that cannot be implemented yet will be possible then. 
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5 Summary

This diploma thesis gives an introduction into general-purpose programming on graph-
ics hardware. Furthermore, an efficient GPU-based implementation of the Smith-Water-
man algorithm is presented. Since the algorithm origins from bioinformatics, this sub-
ject, genetics and sequence comparison algorithms are discussed as well.

Research in genetics has produced huge amounts of data within the past decade. The
main producers of this data are genome projects which investigate genomes of different
species. A genome is the entire hereditary information of a biological lifeform. The in-
formation is stored in DNA which is a long chain of base pairs. Parts of the DNA are re-
sponsible for producing proteins which build up the structure of cells and which execute
basic functions of life. Proteins themselves consist of amino acid chains. It is researched
both on the functions of DNA and proteins as well as on their connection. Information
about these sequences is kept in databases which grew fast in the past years. In the con-
text of research, sequences are analyzed to find similarities for example. This mainly
means to compare one sequence, may it be DNA or a protein, to other sequences of a
database in order to find the most similar ones. Different algorithms are used to evaluate
the similarity. One of these is the Smith-Waterman algorithm which is a very accurate
one, but it is very computation intensive. This is why it is tried to find ways to speed it
up.

One approach is to use parallely working architectures to compute the alignments be-
cause they provide high performance. Besides expensive and hard to use specialized
hardware, commodity graphics hardware of desktop computers and other devices can be
used for this purpose. They provide a high-throughput and since some years they are
partially programmable. The processing of geometry is divided into several stages, the
so-called graphics pipeline. In the vertex stage, geometry is transformed from world-
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space  to  image  space.  The  rasterizer  produced  preliminary  pixels,  the  so-called
fragments,  from  primitives  like  triangles.  The  fragment  processor  receives  these
fragments, computes a pixel color for each fragment and writes it to the framebuffer.
The vertex and fragment processors are those parts which are programmable. They can
execute  general-purpose  programs  as  well.  This  system  is  described  as  streaming
architecture.  Each  information  that  flows  through  the  pipeline  is  part  of  a  stream.
Therefore, the programmable processors are streaming processors that apply kernels to
the stream. Kernels are programs that are applied to each stream element. Since several
streaming  processors  work  in  parallel  and  only one  element  of  the  stream  can  be
accessed at a time, the elements must be independent of each other. The programs are
written in  GPU programming languages that  depend on specific  APIs which are an
abstraction layer between the application an the hardware driver. The execution of a
program is controlled by API commands. A general-purpose application has to map its
algorithm onto the available graphical elements like textures, vertices, and polygons.
Information  is  stored  in  buffers  and  passed  to  the  GPU processors  in  the  form of
textures. Texture are input streams for these streaming processors. To reuse a computed
result it has to be passed to the processor as texture again. The state-of-the-art technique
is called Render-To-Texture. It uses pixel buffers to store the information. The pbuffers
can be used as texture and as framebuffers but never both at a time. If information is
rendered to a framebuffer, this information can be reused by using the buffer as texture
input. At the same time, a different buffer must be used as framebuffer. Computation is
invoked by drawing geometry into the framebuffer which is usually a  quad with an
orthogonal projection. All pixels covered by the quad are evaluated.

The Smith-Waterman algorithm compares two sequences with length m and n by com-
puting an m×n matrix. After transforming the matrix, the cells of its diagonals can be
evaluated in parallel on the GPU. Only three diagonals are known at a time, but the
query sequence can be compared to many sequence in parallel. This method was imple-
mented. The application is able to load sequences and to scoring matrices from files.
Any further information is passed as command line parameter. 2048 proteins can be
compared at a time whereas the sequences can have a maximum length of 2047 amino
acids. In tests, 155 MCUPS were reached which is twice as much as the value of a refer-
ence CPU implementation. Since the performance depends on the lengths of the se-
quences  in  the database,  the Swiss-Prot  database was scanned as practical  use case
analysis. An average performance improvement of 91 % compared to the CPU reference
value of 75 MCUPS was reached. A query sequence of 362 amino acids was used which
corresponds to the average sequence length in the Swiss-Prot database.
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It was proven that a GPU implementation that is run on commodity graphics hardware is
up to twice as fast as a CPU implementation that was run on adequate PC hardware.
Due to their high performance, GPUs are an attractive coprocessor to the CPU and with
that an inexpensive alternative to specific hardware. In future, their performance and
programmability will increase so that they will become more attractive for general-pur-
pose programming. The GPU might evolve to a general-purpose coprocessor that is tak-
en for granted, executing all high-throughput tasks redirected from the CPU.
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A Appendix

The Genetic Code

Table 10 - The genetic code table shows which amino acid a nucleic
triplet is related to.

1st
 P

os
iti

on

3rd
 P

os
iti

on

2nd Position
U C A G

U

C

A

G

UUU  Phe 
UUC  Phe 
UUA  Leu 
UUG  Leu

UCU  Ser 
UCC  Ser 
UCA  Ser 
UCG  Ser

UAU  Tyr 
UAC  Ty 
UAA  St 
UAG  S

UGU  Cys 
UGC  Cys 
UGA  Stop 
UGG  Trp

U 
C 
A 
G

CUU  Leu 
CUC  Leu 
CUA  Leu 
CUG  Leu

CCU  Pro 
CCC  Pro 
CCA  Pro 
CCG  Pro

CAU  His 
CAC  His 
CAA  Gln 
CAG  Gln

CGU  Arg 
CGC  Arg 
CGA  Arg 
CGG  Arg

U 
C 
A 
G

AUU  Ile 
AUC  Ile 
AUA  Ile 
AUG  Met

ACU  Thr 
ACC  Thr 
ACA  Thr 
ACG  Thr

AAU  Asn 
AAC  Asn 
AAA   Lys 
AAG  Lys

AGU  Ser 
AGC  Ser 
AGA  Arg 
AGG  Ar

U 
C 
A 
G

GUU  Val 
GUC  Val 
GUA  Val 
GUG  Val

GCU  Ala 
GCC  Ala 
GCA  Ala 
GCG  Ala

GAU  Asp 
GAC  Asp 
GAA  Glu 
GAG  Glu

GGU  Gly 
GGC  Gly 
GGA  Gly 
GGG  Gly

U 
C 
A 
G
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The Amino Acids

Table 11 - Amino Acid Code Table taken from Cooper (2000).

Amino Acid

Alanine ALA A
Arginine ARG R
Aspartic acid ASP D
Asparagine ASN N
Cysteine CYS C
Glutamic acid GLU E
Glutamine GLN Q
Glycine GLY G
Histidine HIS H
Isoleucine ILE I
Leucine LEU L
Lysine LYS K
Methionine MET M
Phenylalanine PHE F
Proline PRO P
Serine SER S
Threonine THR T
Tryptophan TRP W
Tyrosine TYR Y
Valine VAL V

Three-letter 
abbreviation

One-letter 
abbreviation
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The Structure of Amino Acids

An amino acid consists of a carbon atom (α carbon), a carboxyl group (COO-), an amino
group (NH3

+), a hydrogen atom and a specific side chain commonly referenced to as
residue (R) (Cooper2000, pp. 50-52).

To form a chain they are joined between the α amino group and the α carboxyl group.

Images courtesy of Rupp (2000).
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The Protein Structure

Fig. 68 - The four levels of protein structure. 
(Image courtesy of The National Human Genome Research Institute, Rockville Pike.
 http://www.genome.gov/Pages/Hyperion//DIR/VIP/Glossary/Illustration/Images/protein.gif)
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Swiss-Prot Entry Example

ID   UNG_EHV2       STANDARD;      PRT;   255 AA.
AC   P53765;
DT   01-OCT-1996 (Rel. 34, Created)
DT   01-OCT-1996 (Rel. 34, Last sequence update)
DT   01-MAY-2005 (Rel. 47, Last annotation update)
DE   Uracil-DNA glycosylase (EC 3.2.2.-) (UDG).
GN   Name=46;
OS   Equine herpesvirus 2 (strain 86/87) (EHV-2).
OC   Viruses; dsDNA viruses, no RNA stage; Herpesviridae;
OC   Gammaherpesvirinae; Rhadinovirus.
OX   NCBI_TaxID=82831;
RN   [1]
RP   NUCLEOTIDE SEQUENCE.
RX   MEDLINE=95302501; PubMed=7783207;
RA   Telford E.A., Watson M.S., Aird H.C., Perry J., Davison A.J.;
RT   "The DNA sequence of equine herpesvirus 2.";
RL   J. Mol. Biol. 249:520-528(1995).
CC   -!- FUNCTION: Excises uracil residues from the DNA which can
arise as
CC       a result of misincorporation of dUMP residues by DNA poly-
merase or
CC       due to deamination of cytosine.
CC   -!- SIMILARITY: Belongs to the uracil-DNA glycosylase family.
CC
--------------------------------------------------------------------
------
CC   This Swiss-Prot entry is copyright. It is produced through a
collaboration
CC   between  the Swiss Institute of Bioinformatics  and the  EMBL
outstation -
CC   the European Bioinformatics Institute.  There are no  restric-
tions on  its
CC   use as long as its content is in no way modified and this
statement is not
CC   removed.
CC
--------------------------------------------------------------------
------
DR   EMBL; U20824; AAC13834.1; -.
DR   PIR; S55641; S55641.
DR   HSSP; P12295; 3EUG.
DR   InterPro; IPR003249; U_glycsylse_notp.
DR   InterPro; IPR002043; UDNA_glycsylse.
DR   InterPro; IPR005122; UDNA_glycsylseSF.
DR   Pfam; PF03167; UDG; 1.
DR   ProDom; PD001589; U_glycsylse_notp; 1.
DR   TIGRFAMs; TIGR00628; ung; 1.
DR   PROSITE; PS00130; U_DNA_GLYCOSYLASE; 1.
KW   DNA damage; DNA repair; Glycosidase; Hydrolase.
FT   ACT_SITE     90     90       Proton acceptor (By similarity).
SQ   SEQUENCE   255 AA;  29100 MW;  20104402C5297336 CRC64;
     MERWLQLHVW SKDQQDQDQE HLLDEKIPIN RAWMDFLQMS PFLKRKLVTL LETVAKL-
RTS
     TVVYPGEERV FSWSWLCEPT QVKVIILGQD PYHGGQATGL AFSVSKTDPV PPSLRNI-
FLE
     VSACDSQFAV PLHGCLNNWA RQGVLLLNTI LTVEKGKPGS HSDLGWIWFT NYIIS-
CLSNE
     LDHCVFMLWG SKAIEKASLI NTNKHLVLKS QHPSPLAARS NRPSLWPKFL GCGH-
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FKQANE
     YLELHGKCPV DWNLD
//

This is entry number P53765 (Uracil-DNA glycosylase) 40 from the Swiss-Prot database,
as of 25th of march 2005.

40 http://au.expasy.org/cgi-bin/niceprot.pl?P53765
Link: “View entry in raw text format (no links)”
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Comparison of Smith-Waterman, FASTA and BLAST

Each rectangle represents a matrix. The query sequence can be found horizontally on the
top margin whereas the comparison sequence is placed vertically on the left side. The
black lines are aligned subsequences.

Obviously, the results' quality is reciprocally related to the time for computation. The
Smith-Waterman implementation gives the best result, but it needs 30 times as much
time as BLAST and 5 times as much time as FASTA. Although FASTA is much slower
than BLAST its result is not much better. This is why BLAST is the more common tool.

Fig.  69 -  Performance  and  quality  comparison  of  the Smith-
Waterman algorithm, FASTA and BLAST.
(Image courtesy of W.R. Pearson  (Pearson 2001))
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Unitary Matrix

Table 12 - Example for a unitary matrix for amino acid substitution

A 2

B -1 2

C -1 -1 2

D -1 -1 -1 2

E -1 -1 -1 -1 2

F -1 -1 -1 -1 -1 2

G -1 -1 -1 -1 -1 -1 2

H -1 -1 -1 -1 -1 -1 -1 2

I -1 -1 -1 -1 -1 -1 -1 -1 2

K -1 -1 -1 -1 -1 -1 -1 -1 -1 2

L -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

M -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

N -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

P -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

Q -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

R -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

S -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

T -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

V -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

W -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

X -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

Y -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

Z -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

A B C D E F G H I K L M N P Q R S T V W X Y Z
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BLOSUM62 for Amino Acid Substitution

Table  13 - BLOSUM62 published by Steven and Jorga Henikoff (1992). It is used by
NCBI's BLAST service at http://www.ncbi.nlm.nih.gov/BLAST/.

A 4

R -1 5

N -2 0 6

D -2 -2 1 6

C 0 -3 -3 -3 9

Q -1 1 0 0 -3 5

E -1 0 0 2 -4 2 5

G 0 -2 0 -1 -3 -2 -2 6

H -2 0 1 -1 -3 0 0 -2 8

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4

Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4

X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1

* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1
A R N D C Q E G H I L K M F P S T W Y V B Z X *
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Vertex Shader Example

//
// Vertex shader for procedural bricks
//
// Authors: Dave Baldwin, Steve Koren, Randi Rost
//          based on a shader by Darwyn Peachey
//
// Copyright (c) 2002-2004 3Dlabs Inc. Ltd. 
//
// See 3Dlabs-License.txt for license information
//

uniform vec3 LightPosition;

const float SpecularContribution = 0.3;
const float DiffuseContribution  = 1.0 - SpecularContribution;

varying float LightIntensity;
varying vec2  MCposition;

void main(void)
{
    vec3 ecPosition = vec3 (gl_ModelViewMatrix * gl_Vertex);
    vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal);
    vec3 lightVec   = normalize(LightPosition - ecPosition);
    vec3 reflectVec = reflect(-lightVec, tnorm);
    vec3 viewVec    = normalize(-ecPosition);
    float diffuse   = max(dot(lightVec, tnorm), 0.0);
    float spec      = 0.0;

    if (diffuse > 0.0)
    {
        spec = max(dot(reflectVec, viewVec), 0.0);
        spec = pow(spec, 16.0);
    }

    LightIntensity  = DiffuseContribution * diffuse +
                      SpecularContribution * spec;

    MCposition      = gl_Vertex.xy;
    gl_Position     = ftransform();
}

This vertex shader is part of the GLSL example for proce-
dural bricks (ogl2brick)41 offered by 3Dlabs42. The 3Dlabs
license information can be found in appendix “3Dlabs-Li-
cense.txt”. The rendered result is shown in figure 70.

41 http://developer.3dlabs.com/downloads/glslexamples/ogl2brick-2.0.zip
42 http://developer.3dlabs.com/downloads/glslexamples/

Fig. 70 - Procedural bricks.
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Fragment Shader Example

//
// Fragment shader for procedural bricks
//
// Authors: Dave Baldwin, Steve Koren, Randi Rost
//          based on a shader by Darwyn Peachey
//
// Copyright (c) 2002-2004 3Dlabs Inc. Ltd.
//
// See 3Dlabs-License.txt for license information
//  

uniform vec3  BrickColor, MortarColor;
uniform vec2  BrickSize;
uniform vec2  BrickPct;

varying vec2  MCposition;
varying float LightIntensity;

void main(void)
{
    vec3  color;
    vec2  position, useBrick;
    
    position = MCposition / BrickSize;

    if (fract(position.y * 0.5) > 0.5)
        position.x += 0.5;

    position = fract(position);

    useBrick = step(position, BrickPct);

    color  = mix(MortarColor, BrickColor, useBrick.x * useBrick.y);
    color *= LightIntensity;
    gl_FragColor = vec4 (color, 1.0);
}

This fragment shader is part of the GLSL example for procedural bricks (ogl2brick) of-
fered by 3Dlabs2. The 3Dlabs license information can be found in appendix “3Dlabs-Li-
cense.txt”. The rendered result is shown in figure 70.
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3Dlabs-Licence.txt

Copyright (C) 2002-2005  3Dlabs Inc. Ltd.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
– Redistributions of source code must retain the above copyright no-

tice, this list of conditions and the following disclaimer.
– Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distri-
bution.

– Neither the name of 3Dlabs Inc. Ltd. nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER-
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POS-
SIBILITY OF SUCH DAMAGE.
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SCA Program Arguments

The command line information output of the application shows the available arguments:

Smith-Waterman Sequence Comparison Algorithm
Usage: sca mode [options] [arguments]
options 
  rtt     : Use Render-To-Texture (default). 
  nortt   : Don't use Render-To-Texture. 
  defaults: Use common default values for arguments.
modes 
  -c / --compare
     Compare sequences with a reference sequence.
     Usage: sca -c options
     Arguments 
       f1 / file2: path and file name of reference sequence 
                   default is testRefSeq.txt 
       f2 / file2: path and file name of comparison sequences 
                   default is testCompSeq.txt 
       fp        : path and file name of fragment program 
                   default is sca_adv2.fp
     Examples: sca -c f1=refseq.txt f1=compseq.txt 
               sca -c defaults fp=simple.fp
  -t / --test\n 
     Performance test
     Usage: sca -t [options]
     Options 
       ref / refLen    : maximum length of reference sequence * 
       comp / compLen  : maximum length of comparison sequences * 
       n / numSeq      : maximum number of sequences to be compared 
       s / step        : the algorithm will start with sequences of
                         length step and will increase those by step
                         in each iteration until the maximum value
                         is reached. The number of sequences will 
                         start with 1. 
       i / iterations  : number of iterations per pass to get an 
                         average 
       stripe          : compute only a defined stripe in the 
                         matrix of results in order to safe time. 
                         This options needs the position of the 
                         stripe stripePos and the stripe width 
                         stripeWidth to be defined. Only 
                         scenarios where 
                           abs(stripePos - (i + j)) > stripeWidth/2)
                           with 0 < i < reflen, 0 < j < compLen 
                         will be regarded. 
       sp / stripePos  : position of stripe 
       sw / stripeWidth: width of stripe 
       r / result      : file to write results into 
                         default is results.txt 
       square          : render only where  
                           i=j,  
                           with 0 < i < reflen, 0 < j < compLen  
       constN          : number of sequences to be compared remains 
                         constant 
       constSL         : the sequence lengths remain constant 
       fp              : path and file name of fragment program 
                         default is sca_adv2.fp 
       filter          : sets all values in the result matrix 0 
                         where i=j 
       random/norandom : use random (default) or ordered sequences
                         for testing
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     * optimal lengths are -1+2^n. The internal buffer size is then
       2^n.
     Examples: sca -t defaults 
               sca -t ref=255 comp=255 s=32 square defaults 
                   fp=simple.fp 
               sca -t ref=255 comp=255 s=32 n=768 nortt constN 
               sca -t defaults stripe sp=700 sw=120 i=5 
                   r=resultXY.txt

This output is shown at the command line if no, insufficient, or wrong arguments are
passed to the application. In such a case, the application quits first.
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SCA: results.txt

-t ref=2047 comp=2047 n=2048 step=128 defaults constN blosum=blo-
sum62mt2.txt 

BEST SCENARIO:
reference  seq length: 1919
comparison seq length: 1151
number of sequences  : 2048
CUPS (total)         : 154,709,768
CUPS (relevant)      : 154,709,768

256 RESULTS (best layer only)
128       256       384       512       640       ...

128 0127046892 0137888732 0141501091 0141996855 0140254299 ...
256 0138176000 0144437310 0147072000 0148505643 0148845388 ...
384 0143747140 0147723722 0149165378 0149671480 0149261875 ...
512 0144152989 0148423048 0150740964 0151237502 0150853010 ...
640 0146950790 0149646350 0151517949 0151674165 0152293099 ...
768 0148432762 0150812530 0152040063 0151650666 0152360568 ...
896 0148365787 0150436048 0151986075 0152200611 0152986082 ...
1024 0147330126 0150197222 0152378434 0152138432 0153159988 ...
1152 0149163177 0150991771 0152633302 0152301647 0153389152 ...
1280 0150390047 0151771179 0152605284 0152415089 0153446231 ...
1408 0149613684 0151253948 0152963034 0152523814 0153556960 ...
1536 0150887135 0152055842 0152873215 0152325098 0153332686 ...
1664 0149875138 0151541637 0153012386 0152771775 0153629926 ...
1792 0148733057 0151030492 0153115176 0152471459 0153804813 ...
1920 0150383918 0151684359 0153251160 0152837689 0153928383 ...
2048 0149011058 0151098980 0153253226 0152494506 0153912760 ...

BEST SCENARIO of each outer loop iteration (different number of se-
quences):
1919 1151 2048 000154709768 000154709768

This is a part of the file results.txt that
is generated after sequence alignments.
The content was shortened in its width
to keep a clear arrangement.

The  first  line  shows  the  parameters
that  were  passed  to  the  application.
Under topic “BEST SCENARIO” fea-
tures of the fastest alignment scenario
in this set of tests is shown. The matrix
with  values  below  shows  the  CUPS
reached  whereby  the  used  query  se-
quence length and comparison sequence lengths are listed in the first row and the first
column. Figure 70 shows how the matrix can be visualized.

Fig. 71 - Visualisation in form of a 3D diagram.
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SCA Output Example

sca -c file1=testRefSeq0031.txt file2=swissprot.seq skip=1 defaults

ITERATION 1/1

Loading file: testRefSeq0031.txt
Loading file: swissprot.seq
Skipping 167936 sequences

Successfully loaded sequence files!

refSeqLen       : 31
compSeqLen (max): 2047

sequences to compare: 1324

Creating pbuffer 2048x2048
PBuffer with size 2048x2048 created.
Loading file: blosum_simple.txt
Loaded BLOSUM (30x30)
Loaded fragment program file: sca_adv2.fp
rendering...
testTime: 658

finished!

render time  : 657ms
time for gpu : 430ms
cells     (total): 84017068
cells/sec (total): 127879860
cells     (relevant): 68477357 (81.5%)
cells/sec (relevant): 104227332

 2 RESULTS

(19) >PCX1_MOUSE (Q9QYC1) Pecanex-like protein 1 (Pecanex homolog)
(Fragment)

(18) >MRP3_HUMAN (O15438) Canalicular multispecific organic anion
transporter 2 (Multidrug resistance-associated protein 3) (Multi-
specific organic anion tranporter-D) (MOAT-D)

In this example, a query sequence that is loaded from file testRefSeq0031.txt is com-
pared to the Swiss-Prot database in file swissprot.seq. Skip is set to true which means
that skip.txt is read. The number stored in skip.txt defines, how many sequences have
to be skipped before loading 2048 sequences. In this case,   167936 sequences were
skipped. Because the default parameter was used, all parameters that are not defined in
this program call are used with their default values. That means, 2048 sequences are
loaded  from the  database,  blosum_simple.txt is  used  as  scoring  matrix  file,  and
sca_adv2.fp is used as fragment program file.

The query sequence has a length (refSeqLen) of 31 amino acids. The maximum length
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of sequences in the loaded sequence set is 2047 amino acids which corresponds the
maximum length that can be used. Because the remaining sequences were longer than
2047 amino acids, they could not be loaded.

A buffer width and height of 2048 pixels each were chosen, because this number corre-
sponds to the next power of 2 of both 2047 and 1324. The rendering of 1324×2047×31
matrix cells  took 657 ms. That makes 127879860 CUPS out of which only 104227332
were  relevant.   Thus,  18.5  %  redundancy  occurred.  The  cause  for  redundancy  is
discussed in the chapter “Performance Test and Evaluation”.

Those two sequences that are most similar to the query sequence are printed at the end
of the output. The number 18 and 19 in brackets are the computed similarity value.
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B Links

Bioinformatics

Various
NHGRI National Human Genome Research Institute

http://www.genome.gov/

Genetic Databases
EMBL European Molecular Biology Laboratory

http://www.ebi.ac.uk/embl/index.html

NCBI U.S. National Center for Biotechnology Information
http://ncbi.nih.gov/

DDBJ DNA Data Bank of Japan
http://www.ddbj.nig.ac.jp/

Swiss-Prot
http://au.expasy.org/sprot/

PIR Protein Information Resource
http://pir.georgetown.edu/home.shtml

PDB Protein Databank
http://www.rcsb.org/pdb/

PROSITE
http://au.expasy.org/prosite/
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GPGPU

Various

ATI ATI Developer Website
http://www.ati.com/developer/
http://www.ati.com/developer/tools.html
http://www.ati.com/developer/radeonSDK.html

Babelshader Shader converter
http://graphics.stanford.edu/~danielrh/babelshader.html

Brook GPGPU-Language (Stanford University)
http://brook.sourceforge.net

Cg C for Graphics
http://developer.nvidia.com/page/cg_main.html

DirectX Windows Multimedia API Suite
http://www.microsoft.com/windows/directx/

GLEW The OpenGL Extension Wrangler Library
http://glew.sourceforge.net/

GLUT The OpenGL Utility Toolkit
http://www.opengl.org/resources/libraries/glut.html

GLSL The OpenGL Shading Language
http://www.3dlabs.com/support/developer/ogl2/whitepapers/

GPGPU General-Purpose Computation Using Graphics Hardware
http://www.gpgpu.org/
http://www.gpgpu.org/developer/

GPUBench GPU benchmarking with focus on GPGPU
http://graphics.stanford.edu/projects/gpubench/

GPU Gems Programming Techniques, Tips, and Tricks for Real-Time Graphics
http://developer.nvidia.com/object/gpu_gems_home.html

HLSL The D3D Shading Language
http://msdn.microsoft.com/library/default.asp?url=/library/enus/
         directx9_c/directx/graphics/reference/highlevellanguageshaders.asp

IEEE Visualization 2004: GPGPU Tutorial
http://www.gpgpu.org/vis2004/

imdebug The Image Debugger
http://www.cs.unc.edu/~baxter/projects/imdebug/

Nvidia Nvidia Developer Website
http://developer.nvidia.com/page/home
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http://www.developer.nvidia.com/page/tools.html
http://www.developer.nvidia.com/object/sdk_home.html

OpenGL The Industry's Foundation for High Performance Graphics
http://www.opengl.org/

OpenGL & Utility Library Specifications
http://www.opengl.org/documentation/spec.html

All About OpenGL Extensions
http://www.opengl.org/resources/features/OGLextensions/

OpenGL Extension Registry
http://oss.sgi.com/projects/ogl-sample/registry/

Sh GPGPU-Language (University of Waterloo)
http://libsh.sourceforge.net

ShaderTech Site with focus on GPU programming
http://www.shadertech.com

Shadesmith Shader Debugger
http://graphics.stanford.edu/projects/shadesmith

Siggraph 2004: GPGPU Course
http://www.gpgpu.org/s2004

Sample codes and utilities

http://gpgpu.sourceforge.net
http://www.gpgpu.org/developer
http://www.ati.com/developer/sdk/RadeonSDK/Html/Samples/OpenGL/

HW_Image_Processing.html
http://download.nvidia.com/developer/SDK/Individual_Samples/samples.html

OpenGL Tools

NVShaderPerf (Nvidia)
HLSL, OpenGL fragment shader performance analysis
http://www.developer.nvidia.com/page/tools.html

RenderMonkey (ATI)
HLSL, GLSL shader IDE and performance analysis
http://www.ati.com/developer/tools.html

Babelshader (D. Horn)
Translator: DirectX pixelshader to OpenGL fragment shader
http://www.graphics.stanford.edu/~danielrh/babelshader.html
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OpenGL Panther Tools (Apple)
OpenGL vertex and fragment shader IDE, profiling tools
developer.apple.com/opengl/panther.html

OpenGL Shader Designer (Typhoon Labs)
GLSL shader IDE
http://www.typhoonlabs.com

DirectX Tools
FX Composer, NVPerfHUD (NVIDIA)

HLSL shader IDE and performance analysis, real-time statistics
http://www.developer.nvidia.com/page/tools.html

RenderMonkey (ATI)
HLSL, GLSL shader IDE and performance analysis
http://www.ati.com/developer/tools.html

EffectEdit (Microsoft)
Interactive HLSL renderer
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/
directx/graphics/TutorialsAndSamples/Samples/EffectEdit.asp

ShaderWorks (Mad Software)
HLSL shader IDE
http://www.shaderworks.com

Shader Debugger

Visual debugging with the shader IDEs (Windows,MacOS)
FX Composer (DX), RenderMonkey (DX&GL), EffectEdit (DX), 
ShaderWorks (DX), Panther Tools (GL), Shader Designer (GL)

Shader Debugger Tool (Microsoft)
HLSL debugger extension for Visual Studio IDE
msdn.microsoft.com/library/default.asp?url=/library/enus/
directx9_c/directx/graphics/tools/shaderdebugger.asp

Imdebug – The Image Debugger (B. Baxter)
Analysis of images output by shaders, easy integration
www.cs.unc.edu/~baxter/projects/imdebug/

Shadesmith (T. Purcell, P. Sen)
Interactive OpenGL fragment shader debugger
graphics.stanford.edu/projects/shadesmith/

Microsoft Shading and Debugging Tool
http://www.msdn.microsoft.com/library/default.asp?url=/library/en-
us/directx9_c/directx/graphics/Tools/Tools.asp
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Dicussion

http://www.gpgpu.org/forums
http://www.shadertech.com

Conferences

CGI2005 Computer Graphics International 2005
http://www.cs.stonybrook.edu/~cgi05/

EGPGV04 Eurographics Symposium on Parallel Graphics and 
Visualization 2004

http://www-id.imag.fr/EGPGV04/

Eurographics European Association for Computer Graphics
http://www.eg.org/

EUROVIS 2005 Eurographics / IEEE VGTC Symposium on Visualization
http://www.comp.leeds.ac.uk/eurovis/

GDC Game Developers Conference
http://www.gdconf.com/

GraphiCon International Conference on Computer Graphics & Vision
http://www.graphicon.ru/

Graphics Hardware
http://www.graphicshardware.org/

Graphite 2005
http://www.cs.otago.ac.nz/graphite/

IEEE Visualization
http://vis.computer.org/

IEEE VR2005 IEEE Virtual Reality Conference
http://www.vr2005.org/

Joint Eurographics IEEE TCVG Symposium on Visualization
http://www.inf.uni-konstanz.de/cgip/vissym04/index.shtml

Pacific Graphics 2004
http://graphics.snu.ac.kr/pg2004/index.html

SEAGRAPH Conference for Computer Graphics South East Asia 
http://www.seagraph.org/

SIGGRAPH
http://www.siggraph.org/

TP.CG.04 Theory and Practice of Computer Graphics 2004 Conference
http://www.eguk.org.uk/TPCG04/


