
Technische Hochschule Mittelhessen (THM)

Master Thesis

Gaze recognition:

Current research and

development of an AI based prototype

Severin Erasmus Stahl

supervised by co-supervised by

Prof. Dr.-Ing. Hartmut Weber Prof. Dr.-Ing. Martin Gräfe
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Abstract

Gaze tracking systems are being researched for more than a hundred years. Yet, there

is still more to be learned and improved upon. They are at this time mostly used in the

medical and scientific fields. There has been recent research in less confined methods of

usage for these systems. The least confined method of gaze tracking, having a camera

placed independently from the observed, is probably the least researched method. If

this method would achieve high degrees of accuracy even people who would act unusu-

ally while wearing an eye tracker could be have their gaze tracked easily. Therefore,

this method is suitable for analyzing the gaze of the severely psychologically impaired

under natural circumstances.

In this master thesis currently existent methods of gaze tracking are going to be com-

pared against one another. There will be a focus on gaze tracking methods utilizing

cameras placed independently from the observed. Further several machine learning-

based prototypes designed for this situation will be presented.

The development of gaze tracking methods utilizing cameras placed independently from

the observed is a complex issue. None of the in this thesis developed prototypes give

decent results in their analysis of images. There are however other systems presented

in this thesis where the best has a mean angular error of 17,6◦ on the chosen dataset.
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1 Introduction

1.1 Goals

Human communication uses a variety of ways including speech, facial expression, gestures

and the direction of gaze. Eye contact being a particularly important communication

through the direction of gaze.

The way a person communicates can be used to evaluate mental wellbeing. Because of these

psychological tests in which the person to be examined communicates with a test supervisor

in a standardized interview situation are used to classify human behavior when a psychiatric

disorder is suspected. Typical for certain psychiatric disorders in such tests is, for example,

a conspicuously low level of eye contact between the client and the examiner.

The number of eye contacts during a conversation is measurable and is an important di-

agnostic criterion among other factors. At the time of the conversation there is usually no

extra evaluator available, so that the determination of the number of eye contacts has to be

determined either from a subsequently created protocol of the examining person, which can

only be done with limited accuracy due to the time delay between conversation and proto-

col creation and also due to the large number of observations in the conversation situation.

Alternatively, the number of eye contacts can be determined from a video recording of the

conversation situation. An automated evaluation of the video recording is desirable in order

not to tie up personnel capacity for video evaluation.

The automated recognition of the direction of gaze in different personal situations is a cur-

rent research topic [11, 13, 14]. Concerning the recognition of psychiatric disorders, the

direction of gaze has already been examined for some time [15]. In this master’s thesis,

current research sources on the recognition of the direction of gaze have to be investigated

and systematized. Furthermore, an AI-based approach for the recognition of gaze direction

has to be implemented as a prototype. Based on the directions of gaze, the prototype should

ideally also be able to detect eye contacts in two-person-conversation videos.
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1.2 Foundations and Backgrounds

1.2.1 The human eye

The human eyes are being studied since ancient times. The ancient Greek philosopher Aris-

totle for example researched binocular vision and made assumptions on the working of the

eyes [16].

Nowadays the working of the eyes is considerably better understood. In Figure 1 a labeled

human eye can be seen. The pupil of the eye is the opening where the light enters the eye.

It is similar to the aperture of a camera. The size of the pupil is regulated by two muscles

in the iris. The cornea above it provides together with the lens the ability to focus the light

on to the retina. The sclera forms the tough shell of the eye. At the sclera a group of three

pairs of extraocular muscles is connected. These muscles give the eye the ability to rotate

[1].

Figure 1: Gross anatomy of the

human eye [1]

Figure 2: Cross section of the human eye [1]

In Figure 2 the labeled cross section of the human eye can be seen. Behind the pupil is

the lens of the eye. The lens is held suspended by the zonule fibers. With the help of the

ciliary muscle the lens can be focused to different distances allowing crisp images at different

distances. The retina is the sensor element of the eye. The neural signal of the retina is sent

to the brain through the optical nerve [1].

The eye is only capable of fixating on a small area. To facilitate a comprehensive visual

perception the eye makes use of the ocular muscles. The movements between fixation points

are called saccade. A saccade takes 10 to 100 ms. During a saccade the eye move to fast for

visual processing. The target point of a saccade is assumed to be fixed and it is assumed

it cannot be changed during the saccade [2]. In Figure 3 the major known elements of the
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oculomotor system are visualized.

Figure 3: Schematic of the major known elements of the oculomotor system [2].

Adapted from Robinson [17] CBT, corticobulbar tract; CER, cerebellum; ICTT, internal

corticotectal tract; LG, lateral geniculate body; MLF, medial longitudinal fasciculus; MRF,

mesencephalic and pontine reticular formations; PT, pretectal nuclei; SA, stretch afferents from

extraocular muscles; SC, superior colliculi; SCC, semicircular canals; T, tegmental nuclei; VN,

vestibular nuclei; II, optic nerve; III, IV, and VI, the oculomotor, trochlear, and abducens nuclei

and nerves; 17, 18, 19, 22, primary and association visual areas, occipital and parietal

(Brodmann); 8, the frontal eye fields

Once the eyes have reached their rough fixation point the eyes fixate on the target. At

a fixation the eye focuses on a target. After focusing on a target, the eye has a neigh zero

velocity. The eye only moves for tremor, drift, and microsaccades. The changes are rela-

tively small ranging in 12 min of arc in amplitude [2].

Additionally, the eyes are capable of pursuit movements. During these the matches their

angular velocity to keep the fixation point in center and focus. This works up to a certain

angular velocity. Beyond this the eyes make catchup saccades to keep the target in focus.

The nystagmus of the eyes is a conjugated movement of the eyes to filter out the movement

of the head and target position. The movement of the nystagmus is made of sawtooth like

movements followed by a saccade [2].
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1.2.2 Gaze tracking

There are three commonly used methods of tracking the eyes and estimating the gaze. The

first method is the electrooculography (EOG). In the EOG electrodes are placed around the

eye to measure the skins potential to estimate the gaze [18, 19]. In Figure 5 the electrodes

for the EOG placed on a person can be seen. The second method are the eye-attached

tracking methods (EAT). In the EAT methods an easy to track object is placed on the eye.

An EAT method for example utilizes the scleral search coil. The scleral search coil is made

of small wires inside a contact lens [20]. In Figure 4 a scleral search coil is depicted. The

third method are camera-based designs to estimate the gaze.

Figure 4: The scleral search coil [3]
Figure 5: The electrooculography [4]

The EOG method measures a skin potential in the range of 15-200 µV. The number of

electrodes varies. To accurately determine the position of focus it is further necessary to

determine the position of the head [2]. It is a method with little delay, which works without

any light source. However, it requires angular changes of more the 1 degree [21] to work and

the cables of electrodes need to be attached. It is used in medical diagnostics.

The scleral search coil measures the electric generation within a magnetic field. It is the

most accurate method of measuring the angle of gaze of a person having an error of 5 to 10

arc-seconds [2]. Like the EOG method it is a method with little delay, which works without

any light source. However, it is a very uncomfortable method even risking the health of the

cornea of the eye [22]. It is mostly used in research.

The camera-based designs date back to the early 20th century. The first camera-based de-

sign was made by Dodge in 1901 using the cornea reflection to detect the movement of the

eyes [23]. This was also the first contact free gaze tracking device [16].

The camera-based methods can be divided into two different ways of application. The re-

mote and the mobile eye tracking methods. The remote eye tracking methods use statically

placed cameras. This category can be subdivided into two categories. The table-mounted
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designs and the free camera designs. In table-mounted camera setup the camera is placed

on a structure where it is focused at close distance on the user. In Figure 6 a commercial

application of a table-mounted camera can be seen. The free camera on contrast records a

scene at greater distance and the people are not always facing the camera. The mobile eye

tracking methods utilize head-mounted cameras. The mobile eye tracking arose from minia-

turization of cameras and previous research on remote eye tracking methods. In Figure 7 a

commercial grade head-mounted gaze tracker is shown.

Figure 6: ”EyeAsteroids”, an eye-

controlled arcade game by Tobii Technol-

ogy [5]
Figure 7: The Dikablis Eye

Tracking Glasses by Ergoneers [6]

In both the head-mounted and table-mounted eye tracking designs the cornea reflection of

light is commonly used. In many commercial products infrared light is used for the reflection.

SR Research utilizes infrared light cornea reflection for their eye tracking devices [24, 25].

Ergoneers product Dikablis uses infrared light cornea reflection, too [26]. Tobii makes use of

near-infrared light cornea reflection for their Tobii Pro Glasses 2 [27, 25]. Machine learning

approaches using visible light are also considered for head-mounted and table-mounted eye

tracking designs [28, 29].

There are at the time of writing no commercially available eye tracker using a free camera

design. This topic is currently part of ongoing research. In the research machine learning

methods are commonly used [10, 12, 11]. For more information see Chapter 2.

The camera-based methods are less accurate than the EOG or the EAT methods. The head-

mounted and table-mounted eye tracking designs achieving errors as low as 1 to 3 degrees of

angular error [30]. The free camera designs achieve errors of 18 degrees of angular error [12].

They are however more flexible than the EOG or the EAT methods. The table-mounted

and free camera designs allowing for contact free measuring, while the free camera even

allows for free movement in view of the camera. The head-mounted in contrast allows for

free movement in every situation. The head-mounted however require a constant wearing of

the camera.
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1.2.3 Artificial Neural Networks

Artificial Neural Networks or ANN’s are made of artificial neurons. These artificial neurons

are can be mathematically described as Equation 1. In the equation yk is the output of the

neuron k of the current layer y, xj is the output of the neuron j of the previous layer x,

wkj the weight from the neuron xj to the neuron yk and ϕ is the activation function. The

activation function is commonly a threshold function.

yk = ϕ(

m∑
j=0

wkjxj) (1)

The artificial neurons are placed in layers. The layer where the input information is sup-

plied is called input layer and the layer where the result is extracted is called output layer.

All other layers are referred to as hidden layers. A simple neural network can be seen in

Figure 8.

...

...
...

I1

I2

I3

In

H1

Hn

O1

On

Input

layer

Hidden

layer

Output

layer

Figure 8: A simple ANN [7]

In visual analysis convolutional neural network or CNN’s are widely spread. A CNN is de-

fined by having convolution layers. A convolution layer is a neuron layer where a neuron is

only connected to a convolution area on a previous layer, thus they mathematically perform

a sliding dot product. This pattern requires less neuron connections than a fully connected

network would require, making it easier to learn for the ANN and thus leading to better

results. Due to keeping the spatial structure of the image, the kernel-based processing does

cause a loss in information when processed compared to a fully connected ANN System.

After the initial convolution layers a pooling layer usually follows. The pooling layer ex-

tracts the dominant feature of a convolution result. This is to improve performance with

the reduction of the dimensionality of the result. In Figure 9 a sketch of a CNN can be seen.
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Figure 9: A sketch of a CNN [8]

The weights between the artificial neurons of the ANN’s are stepwise approximated for a

specific problem. This process is commonly referred as training. Common training algo-

rithms are various kinds of gradient descent, the Newton method or Levenberg-Marquardt

algorithm. All of them work with iteratively adapting the ANN’s weights to solve the given

training data. If too much training is done relative to the amount of training data and

network size, the ANN will be to strongly adapted for the training data. This will prevent

it from solving other problems of similar kind. This effect is called overfitting. In Figure 10

the fitting of training is illustrated.

Figure 10: ANN fitting [9]

For the development of ANN’s specialized frameworks are usually being used. Common

ones are Caffe, Tensorflow and Torch. They provide prebuilt layer structures and learning

algorithms for easy and generalized use. Further they allow deployment and training on

various systems, as well as importing and exporting of ANN models.
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1.2.4 Frameworks

Caffe

Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning framework

first released in 2014 by Berkeley Artificial Intelligence Research (BAIR). The Caffe frame-

work is made for high speed neural network processing and training. The Caffe framework

is written in C++, but provides interfaces for both Matlab and Python. It is completely

open-source and expandable [31].

Caffe is not only able to process an ANN on a CPU, but also capable running the ANN

on a GPU. This can be achieved with a NVIDIA GPU and the NVIDIA CUDA platform.

It is also able to use the CUDA Deep Neural Network library called cuDNN to speed up

processing on a GPU [32].

To run Caffe on a system it needs to be compiled on the target system. On Linux a suit-

able Compiler is the GCC and a Compiler for Windows is the Visual Studio. The Matlab

interface requires a C++ Compiler capable of producing a compatible .mex file for the in-

stalled version of Matlab [33]. The Python interface requires an installation of Python 2.7.X

or Python 3.3+ [32]. The Caffe framework has been cited more than 5000 times since its

publication in November 2014 to time of writing [31].

Keras

Keras is a machine learning framework first released in 2015 by Chollet et al. on Github. It

is written exclusively in Python focusing on being user-friendly, modular and extensible. It

was integrated into Tensorflow [34]. Keras is not only able to process an ANN on a CPU,

but also capable running the ANN on a GPU. This can be achieved with a NVIDIA GPU

and the NVIDIA CUDA platform. It is also able to use the CUDA Deep Neural Network

library called cuDNN to speed up processing on a GPU [35]. On various package managers

the installation of NVIDIA CUDA and the cuDNN library is handled automatically. It is

also capable to run on Tensor Processing Units (TPUs) [35, 36].

PyTorch

PyTorch is an open source machine learning framework first released in 2016 by Facebook’s

AI Research lab (FAIR). It is based on the Torch framework. It is commonly used with a

Python interface however the framework is written in C++ to provide high speed neural

network processing and training [37]. PyTorch is not only able to process an ANN on a CPU,

but also capable running the ANN on a GPU. This can be achieved with a NVIDIA GPU

and the NVIDIA CUDA platform. It is also able to use the CUDA Deep Neural Network

library called cuDNN to speed up processing on a GPU [38]. On various package managers

the installation of NVIDIA CUDA and the cuDNN library is handled automatically.
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2 State of the Art of Gaze Recognition Systems

2.1 Datasets

There are several different datasets for gaze recognition systems as can be seen in Table 1.

However only two of these datasets are for gaze tracking free camera setups. These are the

GazeFollow dataset [10] and the VideoCoAtt dataset [11]. The TVHI dataset [39] does not

have the correct labels for gaze point recognition. The VideoGaze dataset [40] annotates

the neighboring frames for gaze predictions across frames. The EGTEA Gaze+ dataset [41]

and the Gaze-in-wild dataset [42] are annotated for head-mounted cameras.

Dataset Year Format Size Annotation Goal Data Source

TVHI [39] 2012 Video
300 video clips, 30

to 600 frames per clip

Upper body bbx, discrete head

orientations, interaction label

Human interaction

learning in TV show
23 different TV shows

GazeFollow [10] 2015 Image
122.143 images,

130.339 people
Eye loc., head bbx and gaze loc. Gaze following in images

Actions 40, MS COCO,

SUN, PASCAL, etc.

VideoGaze [40] 2017 Video
140 movies,

6 frames per movie
Eye loc., head bbx and gaze loc. Gaze following in videos MovieQA

EGTEA Gaze+ [41] 2017 Video
86 unique sessions,

32 subjects.

frame-level action annots.,

pixel-level hand masks

ego-centric

activity recognition

meal-preparations with

SMI eye-tracking glasses

VideoCoAtt [11] 2018 Video
380 videos,

492.100 frames

Shared attention bbx,

involved head bbx

Shared attention detection

in videos
20 different TV shows

Gaze-in-wild [42] 2019 Video
140 minutes,

20.000 fixation events

Eye-In-Head vel., Absolute

Head vel. gaze loc.

eye and head coord.

in activities

Participants wearing eye tracker

and a hardhat with sensors

Table 1: Comparison of several related datasets

2.1.1 GazeFollow

The GazeFollow dataset consists of 122.143 images with 130.339 people resulting in 130.339

rows of data. Of this data 4.782 rows are designated as test data. The rest is designated as

training data. For the image scaled to a size of 1x1, the data row contains the position of

gaze and of the eyes as a floating-point value. It additionally contains the head bounding box

of the person seeing on the same scale as the eyes. In Figure 11 data from the GazeFollow

dataset is visualized. The circles are centered on die eye positions, the points are centered

on the gaze locations. The lines indicate the gaze from an eye position to a gaze position.

Figure 11: Sample data of the GazeFollow dataset [10]
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The data has been built taking the images of several different datasets. These are 1.548

images from SUN [43], 33.790 images from Microsoft COCO [44], 9.135 images from Ac-

tions 40 [45], 7.791 images from PASCAL [46], 508 images from the ImageNet detection

challenge [47] and 198.097 images from the Places dataset [48]. In these hired workers

annotated the ground-truth for gaze tracking. As the result 122.143 images with 130.339

people have been annotated [10]. The GazeFollow dataset is publicly available online at

http://gazefollow.csail.mit.edu/.

2.1.2 VideoCoAtt

The VideoCoAtt dataset consists of 492.100 frames taken from 380 different video clips from

20 different TV shows or movies. For each frame there are for every attention bounding box

the participants bounding boxes stored inside the dataset. All bounding boxes are stored

according to pixel position. In Figure 12 data from the VideoCoAtt dataset is visualized.

The red bounding boxes are centers of attention. The differently colored bounding boxes

are color coded attention groups.

Figure 12: Sample data of the VideoCoAtt dataset [11]

The data was manually annotated with the tool Vatic. The data contains 139.348

frames with one attention bounding box and 3.284 frames with multiple attention bound-

ing boxes. There was a great focus on having a high generality of dataset contain-

ing social interactions from great variety of places and cultures. In the dataset 44%

of the frames are in an American cultural context, 40% is in a Chinese cultural con-

text and the rest in others. The locations are 30% in a living room, 14% in a kitchen,

7% in a restaurant, 7% in a bedroom and the rest in others [11]. The VideoCoAtt

dataset is publicly available online at https://drive.google.com/a/g.ucla.edu/file/d/

1Fp79WQjgOxOXlflZGCh2jlPat8cJenzJ/view?usp=sharing.
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2.2 Gaze Recognition Systems

2.2.1 GazeFollow

In the development of GazeFollow it was reasoned that people first look at a person’s head to

estimate the field of view. Then the salient objects in the field of view are being considered.

Through combination of these information Recasens et al. argue people reason where other

people are looking. This approach was intended to be replicated by a deep learning ANN.

In Figure 13 the general structure of the ANN is visualized. It takes three inputs. The full

image, the image of a head and the general head location in the full image. With the help

of a shifted grid the output information is turned into a gaze heat map at the output. The

data is taken from the GazeFollow dataset published alongside with this system.

Figure 13: A sketch of the GazeFollow system [10]

Since each pathway of the data cannot solve the full problem of gaze prediction alone,

Recasens et al. argue the Saliency Pathway will produce a saliency map while the Gaze

Pathway will produce a gaze mask. Then the information of both pathways is multiplied

since the object of focus so Recasens et al. is likely to be both inside the field of view and

salient. In Figure 14 the result of the Saliency Pathway is visualized imposed on the image.

In the b) category the result of the Saliency Pathway is compared to a saliency network.

The saliency map is generated by a machine learning based system [49].

Figure 14: GazeFollow system output Saliency Pathway [10]
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To make the classification penalize neighboring cells to the classification target less than

cells further away. Recasens et al. proposed the use of a shifted grid. This turns the

classification problem into one of overlapping classifications. The convolutional layers of

the saliency pathway were initialized with the Places-CNN [48] and the gaze pathway with

ImageNet-CNN [50]. This ImageNet-CNN is built according the AlexNet structure [50].

Figure 15: Gazefollow system prediction output and internal states [10]

The GazeFollow system achieved an Area Under Curve (AUC) of 87,8% with a mean angular

error of 24◦ degrees and mean distance to the target location of 19,0% of the image side

length [10]. In comparison the saliency map generated by the system of Judd et al. achieves

according to Recasens et al. 71,1% accuracy, 54◦ mean angular error and a mean distance

to the target location 33,7% of the image side length. A human so Recasens et al. achieves

92,4% AUC with a mean angular error of 11◦ and a mean distance to the target location 4,0%

of the image side length. A random placement achieves according to Recasens et al. 50,4%

AUC with a mean angular error of 69◦ and a mean distance to the target location 48,4% of

the image side length. In Table 3 the results can be seen in tabular form compared to all

the others. In Figure 15 the output of the GazeFollow system is visualized. The red line is

the ground-truth of the image while the yellow line is the most likely prediction. Further

the outputs of the pathways are visualized as well [10]. This system was developed in Caffe

and the system can be publicly accessed online at http://gazefollow.csail.mit.edu/.

12

http://gazefollow.csail.mit.edu/


2.2.2 GazeFollowing

The GazeFollowing system by Lian et al. builds on the GazeFollow system by Recasens et

al. aiming to improve the accuracy of the system. Lian et al. reason a two-stage solution of

Gaze tracking would be more effective since in human gaze tracking an estimation for the

gaze direction is first made and then the gaze point is inferred from both the estimation

and the scene. In Figure 16 the structure of the system is visualized. The upper half of the

structure is the first stage where the gaze direction estimation is made. The lower half of

the structure is the second stage where the gaze prediction is made.

Figure 16: A sketch of the GazeFollowing net [12]

The first stage of the system proposed by Lian et al. generates the gaze direction field.

The system produces a probability mapping dependent on the angle difference to a machine

learning based estimation. This is done at three different intensities resulting in narrower

and wider arcs. In Figure 16 the arcs for three different intensities γ are shown. The inten-

sities γ1 = 5, γ2 = 3 and γ3 = 1. The result is concatenated with the input image for the

second stage.

In the second stage the system produces with a feature pyramid network a heat map for

gaze prediction. The last layer uses a sigmoid function to guarantee a probability output

between 0 and 1 for each target pixel. A heat map prediction was chosen by Lian et al. due

to a higher robustness of the output.

This system was trained using the PyTorch framework. The convolutional layers to de-

code the head are built like the ResNet-50 and initialized with the model pretrained with

ImageNet [51]. The training was performed using the GazeFollow dataset with the same

test/training data split as the GazeFollow system. The resulting network achieved an Area

Under Curve (AUC) of 90,6%, 14,5% mean distance to the target location and 17,6% mean

angular error. In Table 3 the results can be seen in tabular form compared to all the others.
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2.2.3 Inferring Shared Attention

The Inferring Shared Attention detection system proposed by Fan et al. tries to solve a sim-

ilar problem to gaze tracking. The system tries to identify whether a group of people share

attention or not. For this the proposed system uses four modules as shown in Figure 17.

Figure 17: A sketch of the Inferring Shared Attention detection system [11]

The modules are the Gaze Estimation Module, the Region Proposal Module, the Spatial

Detection Module and the Temporal Optimization Module. The Gaze Estimation Module

produces a probability mapping of gaze for each person which is combined through sum

pooling to a single gaze map. The Region Proposal Module utilizes a Structured Edge De-

tector (SED) to find bounding boxes inside the image. All regions enclosed by bounding

boxes are assigned the binary value 1, while all others are assigned the value 0. The Spatial

Detection Module combines the produced gaze map and region map to a frame based spatial

map. The Temporal Optimization Module utilizes a Long Short-Term Memory (convLSTM)

to consider previous frames for the final evaluation of shared attention. In Figure 18 the

combination of the gaze heat maps is visualized.

Figure 18: Inferring Shared Attention gaze heat map combination [11]

In Figure 19 the output of the various modules is visualized. In the last column the ground

truth is shown in green. The prediction is shown in red. The green arrows start at the

person partaking in the shared attention and end at the ground truth.
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Figure 19: Inferring Shared Attention processing [11]

The system uses the VideoCoAtt dataset published alongside the system. The trained mod-

els were however not made publicly available. However, Fan et al. state the head detector

is a fine tuned YOLOv2 Darknet [52]. For gaze direction network the VGG16 with the

last layer replaced output layer was used. The 1000 neuron wide fully connected layer was

replaced with a 2 neuron wide fully connected layer with a tanh output function. The gaze

cone is created by assuming a gaussian standard distribution with a standard deviation of

σ = 0, 5. The SED was done using the Structured Edge Detection Toolbox [53]. The system

was trained in the Keras framework with Tensorflow.

A prediction is considered accurate when the correct attention bounding box was found.

The L2 distance is the Euclidean distance between the predicted bounding box and the

ground truth as measured in pixels. In Table 2 the results of Fan et al. are displayed.

Model Prediction Acc. L2 Dist.

Raw Img. [11] 52,3 % 188

Only Gaze [11] 64,0 % 108

Only RP [11] 58,0 % 110

Gaze+RP [11] 68,5 % 74

Gaze+RP+Img. [11] 54,0 % 72

Fixed Bias [11] 52,4 % 122

Random [11] 50,8 % 286

Gaze Follow [10] 58,7 % 102

Gaze+Saliency [54] 59,4 % 83

Gaze+Saliency [54] + LSTM 66,2 % 71

Fan et al. (Gaze+RP+LSTM) [11] 71,4 % 62

Table 2: Results of Fan et al.
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3 The Proposed System

3.1 Training and test data

For the creation of the proposed system the GazeFollow dataset was used. It was chosen

since many other systems were built with and compared to the dataset. Furthermore, the

dataset is available in an easy to use format. The dataset has a decent size of 130.339 rows

of data making overfitting less likely. The 130.339 rows contain 4.782 rows for testing.

A machine learning system can only be as good as training data it was provided with. The

better the training data reflects the possible situations the better. Therefore, more data

tends to improve convergence towards the application of the system. However, the amount

of recorded training data is always limited and hence does not contain every possible situ-

ation. Because of this data augmentation is commonly employed to increase the amount of

available data. The amount of augmented data can help only to a certain amount since it

is still based on the original data. For image augmentation several methods are commonly

used. Popular methods are shifting and cropping, rotations and flipping as well as color

space modifications.

Figure 20: All data augmentations on one image

For the GazeFollow dataset only some augmentations are sensible. Two augmentations to

increase the training data were chosen. The transformation of the dataset into grey scale

data and the flipping of the data by the y-axis. The flipping by the y-axis is possible since

the direction of gaze would just flip accordingly without any further difficulty for a human

trying to assess the target of the gaze. The conversion into grey scale is possible since the

gaze prediction of a human is mostly based on shapes and contours. Therefore, it is mostly

independent by the presence of color. Both of these transformations can be used simulta-

neously. The augmentations therefore turn the 125.557 rows of training data into 502.228

rows of data. The test data was not augmented. In Figure 20 one training data element in

all its forms after augmentation is shown. The blue circle marks the position of the eyes,

while the red cross marks the target of the gaze. They are connected with a blue line.
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3.2 Prototypes

3.2.1 Two-path network without head position

The prototype is built in Caffe with a two-path system in mind. Similar to Recasens et

al. the first path is intended to be the saliency pathway and the second path is the gaze

pathway. Different than Recasens et al. was however, the concatenation of the pathways

rather than the multiplication for the result. This was done to allow the system to assign

importance to the output of the two pathways. Lian et al. showed the concatenation of the

gaze maps with the image had better results than the multiplication thereof. Further the

head position is not given to the system. It was presumed the system would be able to find

out where the head image is placed. Further the output map as proposed by Lian et al. is

chosen to be the output datatype. This is done since it seems to be a convenient and robust

solution. In Figure 22 the network is visualized.

The training of the system was performed with several different values for the hyperparam-

eter. The system did however not converge. The system is running towards a fixed input

independent assertion of the position of gaze. In Figure 21 two training outputs are visual-

ized. Each of the output contains a matrix of three rows with four columns. Each row in the

figure is one data row. The first column is the full image. The second column is the head

image. The third column is the ground truth. The fourth column is the system output.

Figure 21: Training heat maps of prototype 1

It was concluded the system is incapable of getting a decent result of the gaze path way,

since the difference mostly existed there. Therefore, the gaze pathway had to be reimag-

ined. It was concluded that for the gaze prediction environmental aspects are relevant. They

cause occlusions rendering lines of view spatially impossible, since light can freely through

all materials. This line of reasoning lead to prototype nr. 2, see Chapter 3.2.2.
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Figure 22: The network architecture of prototype 1
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3.2.2 Three-path network without head position

The second prototype is built in Caffe considering the failing of the first prototype. Like

the first prototype there are two major pathways. However, to allow the gaze path way to

deal with spatial conditions the gaze pathway is now made of two minor pathways. The

first minor gaze pathway utilizes the head position of the person. The second minor gaze

pathway uses the full image. The gaze pathway is supposed to conclude the gaze considering

the spatial properties of the scene. The saliency pathway is intended to provide the saliency

map. The second minor gaze pathway and the saliency pathway use different convolution

systems, since the required information to estimate occlusions and to estimate saliency are

different. Like the first prototype the system is planned with an output map like the first

prototype. In Figure 24 the network is visualized.

The training of the system was performed with several different values for the hyperparam-

eter. The system did however not converge. The system is running towards a fixed input

independent assertion of the position of gaze. In Figure 23 two training outputs are visual-

ized. Each of the output contains a matrix of three rows with four columns. Each row in the

figure is one data row. The first column is the full image. The second column is the head

image. The third column is the ground truth. The fourth column is the system output.

Figure 23: Training heat maps of prototype 2

It was therefore concluded the position of the head in the image is a necessary information

for the system, since both Recasens et al. and Lian et al. have it as an input in one form

or another. Recasens et al. give the head position as a 13x13 grid into the network, see

Chapter 2.2.1. Lian et al. on the other hand gives the network the information as an axis

wise normalized 2D vector, see Chapter 2.2.2.
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Figure 24: The network architecture of prototype 2
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3.3 Final System

The final system is built in Caffe improving on the second design. There is the same pathway

structure as in the second design. However, the gaze direction pathway now gets the location

of the head as an additional input. This is done as proposed by Lian et al. as an axis wise

normalized 2D vector. The saliency pathway uses the image of the head to build a saliency

map for the image. The gaze pathway now has two pathways and a vectorized input. The

first minor gaze pathway utilizes the head position of the person. The second minor gaze

pathway uses the full image. In Figure 25 two training outputs are visualized. Each of the

output contains a matrix of three rows with four columns. Each row in the figure is one

data row. The first column is the full image. The second column is the head image. The

third column is the ground truth. The fourth column is the system output.

Figure 25: Training heat maps of the final system

The system structure showed more promising results than the previous prototypes. Having

an input dependent peak on the target heat map. However, it still had problems to converge.

For this purpose, a second loss function was introduced. As can be seen in Figure 26 the

system has an additional secondary output, which is trained with a normalized direction

vector. A direction vector was chosen since an angle would inherently add the nonlinear

jump from an angle close to a full circle of almost 2π to an angle 0. A vector on the unit

circle on the other hand is completely continuous without any sudden jumps making it easier

to train. Unfortunately, this did not resolve the convergence problem either.
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Figure 26: The network architecture of the final system
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4 Discussion

4.1 System comparison

4.1.1 Evaluation metrics

AUC

The area under Receiver Operating Characteristic (ROC) curve, which is generated accord-

ing to Judd et al. The output heat map is treated as a binary classifier were the threshold

is varied. The percentage of correctly classified pixel therefore produces a curve. The AUC

always lies between 0,5 and 1,0 since an AUC of less than 0,5 could be viewed with inverted

interpretation [49].

Dist

The mean Euclidean distance between predicted gaze points and the main corresponding

ground truth annotation. The image size is normalized to 1x1.

MDist

The mean minimum Euclidean distance between predicted gaze points and all corresponding

ground truth annotations. The image size is normalized to 1x1.

Ang

The mean angular error between predicted gaze directions and the corresponding direction

according to the main corresponding ground truth annotation.

MAng

The mean minimum angular error between predicted gaze directions and all corresponding

directions according to the main corresponding ground truth annotations.
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4.1.2 Evaluation

The analysis of gaze from images is a complex problem. Hence the creation of a system

which can effectively predict it is not an easy feat. In this thesis no functional system could

be created. There are however a number of different proposed systems. In Table 3 the

qualitative performance of these various systems is listed. Recasens et al.* is the system by

Recasens et al. with the head detector used by Lian et al. This was done to make their

systems more comparable.

Methods Year AUC Dist MDist Ang MAng

Random [10] 2015 0,504 0,484 0,391 69,0◦ -

Center [10] 2015 0,633 0,313 0,230 49,0◦ -

Fixed bias [10] 2015 0,674 0,306 0,219 48,0◦ -

SVM + one grid [10] 2015 0,758 0,276 0,193 43,0◦ -

SVM + shift grid [10] 2015 0,788 0,268 0,186 40,0◦ -

Judd et al. [49] 2009 0,711 0,337 0,250 54,0◦ -

SalGAN [55] 2017 0,848 0,238 0,192 36,7◦ 22,4◦

SalGAN for heatmap [12] 2019 0,890 0,181 0,107 19,6◦ 9,9◦

Recasens et al. [10] 2015 0,878 0,190 0,113 24,0◦ -

Recasens et al.* [10, 12] 2019 0,881 0,175 0,101 22,5◦ 11,6◦

Lian et al. (one-scale) [12] 2019 0,903 0,156 0,088 18,2◦ 9,2◦

Lian et al. (multi-scale) [12] 2019 0,906 0,145 0,081 17,6◦ 8,8◦

One human [10] 2015 0,924 0,096 0,040 11,0◦ -

Table 3: Gaze tracking accuracy comparison

As can be seen in the table the qualitative performance of the systems is improving over

time. In 2015 the best system as proposed by Recasens et al. achieved an AUC of 87,8%

with a mean angular error of 24,0◦. In 2019 the AUC was improved by the new system by

Lian et al. to an AUC of 90,6% with a mean angular error of 17,6◦. These systems are

yet not as good as the human capability of gaze recognition. The testee in the setup by

Recasens et al. achieved an AUC of 92,4% with a mean angular error of 11,0◦.

There are however not only qualitative performance characteristics, but also resource per-

formance characteristics. In Table 4 the resource requirements of the systems by Lian et

al. and Recasens et al. are compared. The chosen resources for the comparison are time

in milliseconds and GPU Memory in megabytes. This test was done on a computer in a

windows 10 environment. The GPU is a GTX 1080Ti and the CPU is a i7-3770. The system
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by Lian et al. was run as published in the PyTorch framework. The system by Recasens et

al. was run as published in the Caffe framework. The measured time is the average runtime

of a frame on the GazeFollow test data. The measured time contains the preprocessing and

postprocessing of the raw data but not the load time.

Methods GPU Memory Usage (MB) Time (ms)

Recasens et al. [10] 520 15,6

Lian et al. [12] 1.450 24,2

Table 4: Gaze tracking resource usage comparison

Lian et al. compared the time needed to run their system compared to SalGAN and the

system proposed by Recasens et al. Both systems took roughly longer for a frame compared

to the test of Lian et al. Lian et al. tested with a NVIDIA Titan X GPU which has less

computational power than a GTX 1080Ti [56]. This might be through the inclusion of the

preprocessing and postprocessing necessary for the execution of the systems. The system of

Recasens et al. takes roughly 4,3 ms without preprocessing and postprocessing. Roughly

half of the value of 10,4 ms as measured by Lian et al. and in line with the increased com-

putational capacity. The two-stage solution of Lian et al. makes it difficult to distinguish

between preprocessing and execution since the first stage could be argued to be preprocess-

ing. It could however be argued the preprocessing and postprocessing should be part of the

total execution time, since they are necessary for deployment.

Both, Lian et al. and Recasens et al. initialized their input convolution layers with the

parameters of dedicated image analyses systems. In the approach tried here, training was

tried from scratch. The finding of fitting hyperparameter for learning from scratch is a

difficult to undertaking. Here no fitting hyperparameter could be found.
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4.2 Future scope

The structure of the analyzed systems is similar to the already existent systems by Recasens

et al. and Lian et al. Since no fitting hyperparameter for a full training from scratch could

found a different approach has to be taken. One approach would be initializing the input

layers with those of a dedicated image analysis system like ResNet-50 with the pretrained

model of ImageNet. Another possibility would be training in multiple phases. When training

in multiple phases the saliency pathway and gaze pathway would first have to be trained

separately to create intermediate results. After they converge the system as a whole would

be trained till it converges. Both of these approaches might yield a working system.

Despite colors having significance for gaze tracking, the gaze tracking is mostly dependent

on alignment of head and eyes. Therefore, it could be worth investigating how a system,

which is not merely assisted by training with grey scale data, but processes grey scale images

would perform. It is likely going to have reduced qualitative performance, but is likely going

to have less resource consumption when deployed. This topic is completely unexplored.

When building systems for gaze tracking depth information would be useful. A pixel wise

large difference close to the point of view of the camera is less significant in metric distance

to a point far away from the camera would be in metric distance. Further a 3-dimensional

understanding of the environment in the image would allow a system to be able to judge

occlusions better. This would likely improve the qualitative performance.

When a running system is developed it is likely to be still lacking considerably in accuracy

when compared to methods like EOG and scleral search coil. It is possible the accuracy of

these systems cannot be reached with this method. In accuracy it is probably not going to

catch up to current table-mounted and head-mounted cameras for quite some time. It is

however clear this method can still be improved since humans can achieve better results [10]

than any system thus far developed. The problem will be to find out how a system like this

will look like. It should further be noted, given the current datasets an improving beyond

human capability is impossible since all available datasets are annotated by humans looking

at the images. A dataset created by more reliable means like the person seen in the image

annotating where they did look. Another way of creating a dataset would be building it

based on a more reliable gate tracking method like EOG or the scleral search coil.

Once the accuracy of these systems will be sufficiently reliable, it will be easier for machines

to analyze human focus. This knowledge would allow a machine to judge a human’s intent

with a higher degree of certainty. This can be used in medical application for diagnosis of

ocular and psychological health. Further it can be used in criminology to analyze motive of

human action.
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5 Summary and Conclusions

In this thesis the development of a new machine learning based approach for the recognition

of gaze direction was tried. It was however found out a machine learning based approach

with learning from scratch is a futile path. Three different prototypes, where the subsequent

prototype increased in complexity to the one prior, all failed to converge. It is therefore a

better approach to build a system relying on prior developed image analyses systems. Due

to this method no working machine learning based system was realized.

At the time of writing the best system for gaze tracking is the system by Lian et al. It

utilizes a two-stage process for tracking human gaze. The first makes an estimate building

cones of gaze of varying intensity. From this the system generates a prediction with a mean

angular error of 17,6◦. In Chapter 4.1 the proposed systems are compared in greater detail.

The method of remote gaze tracking utilizing a free camera setup is less reliable than other

methods in accuracy. It is however far less limited in application once a decent accuracy

can be achieved. At this point the difference between these methods is a difference of more

than 10,0◦ in mean angular error.

Given the current accuracy of gaze tracking there seems to be potential for further improve-

ment. A human analyzing an image achieves a mean angular error of 11,0◦. An AI achieves

at this point a mean angular error of 17,6◦. This is a difference of 6,6◦ given the same

input data. It is likely at least this difference can be overcome by better systems. It is

however to be considered all current datasets are assigned by humans. Therefore, achieving

a higher given the current datasets is meaningless since the error in the dataset should be

comparable.
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