
A Thesis submitted for the degree of Master of Science

SoC-based Image Classification using
Binarized Neural Networks

Bastian Zeller

August 2018

Technische Hochschule Mittelhessen
University of Applied Sciences

Supervisor: Prof. Dr.-Ing. Hartmut Weber
Second Reader: Prof. Dr.-Ing. Martin Gräfe





Contents

Acknowledgements xi

Abstract xiii

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Work Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of Art Review 7

3 Theoretical Background 13
3.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Artificial Neurons . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Networks of Neurons . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 Learning as a Gradient Descent . . . . . . . . . . . . . . . . . 23
3.1.5 Backpropagation Algorithm . . . . . . . . . . . . . . . . . . . 26
3.1.6 Binarized Neural Networks . . . . . . . . . . . . . . . . . . . . 30

3.2 Parallel Computing Platforms . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Overview of Platforms . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Parallel Computing Frameworks . . . . . . . . . . . . . . . . . 37
3.2.3 Challenges for Parallel Hardware Architectures . . . . . . . . . 39

3.3 Performance Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Execution-Time per Frame . . . . . . . . . . . . . . . . . . . . 42
3.3.3 FPGA Logic Gates used . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 Development Cost . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.5 Training Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.6 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . 43

4 System Architecture 45
4.1 Intel De0-Nano SoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 HPS-FPGA Interconnect . . . . . . . . . . . . . . . . . . . . . 46

i



Contents

4.2 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 OpenCL Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Implementation Details 53
5.1 Network Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Input Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Hidden Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 Activation Function . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.4 Weights Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.5 Forward Propagation . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.6 Gradient Calculation . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.7 Binarizing Weights . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.8 Network Optimizations . . . . . . . . . . . . . . . . . . . . . . 57

5.2 OpenCL Implementations . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.1 Matrix Dot Product . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 XNOR Product . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.3 Compressed XNOR Product . . . . . . . . . . . . . . . . . . . 65

6 Analysis 67
6.1 Performance Measurements . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . 67
6.1.2 Execution-Time Per Frame . . . . . . . . . . . . . . . . . . . . 68
6.1.3 FPGA Logic Gates used . . . . . . . . . . . . . . . . . . . . . 69
6.1.4 Training Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.5 Development Cost . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Evaluation of KPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.1 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Execution-Time per Frame . . . . . . . . . . . . . . . . . . . . 72
6.2.3 FPGA Logic Gates used . . . . . . . . . . . . . . . . . . . . . 74
6.2.4 Training Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.5 Development Cost . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Conclusions 77
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 88

ii



List of Figures

2.1 Advances in the ImageNet competition. . . . . . . . . . . . . . . . . . 8

3.1 A schematic representation of a perceptron. . . . . . . . . . . . . . . 14
3.2 Plot of the step function. . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Parameterization of a perceptron to implement the NAND logic function. 15
3.4 Implementation of a full adder using only NAND logic gates. . . . . . 16
3.5 Implementation of a full adder with perceptrons. . . . . . . . . . . . . 16
3.6 A schematic representation of an artificial neuron . . . . . . . . . . . 17
3.7 Plot of sigmoid function . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 Graph of a feed forward neural network with a single hidden layer. . . 19
3.9 Graph of a recurrent neural network. . . . . . . . . . . . . . . . . . . 20
3.10 Graph of a feed forward network with multiple hidden layers. . . . . . 21
3.11 Under- and overfitting network models. . . . . . . . . . . . . . . . . . 22
3.12 Architecture of the LeNet-5. . . . . . . . . . . . . . . . . . . . . . . . 23
3.13 The surface plane of the Mean Squared Error with 2 inputs . . . . . . 24
3.14 A surface plan of a network showing local and global minima. . . . . 24
3.15 Plot of the hyperbolic tangent. . . . . . . . . . . . . . . . . . . . . . . 25
3.16 Partial derivative of sigmoid and hyperbolic tangent. . . . . . . . . . 26
3.17 Function derivatives in network propagation . . . . . . . . . . . . . . 27
3.18 Function derivatives in network propagation . . . . . . . . . . . . . . 27
3.19 Function composition during network propagation . . . . . . . . . . . 27
3.20 Function addition during network propagation . . . . . . . . . . . . . 28
3.21 Plot of sign function . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.22 Architectural differences between CPU and GPU. . . . . . . . . . . . 35
3.23 FPGA logic resources architecture. . . . . . . . . . . . . . . . . . . . 36
3.24 SIMD versus pipelined architecture. . . . . . . . . . . . . . . . . . . . 39
3.25 SIMD versus pipelined branching. . . . . . . . . . . . . . . . . . . . . 40
3.26 SIMD versus pipelined IO access. . . . . . . . . . . . . . . . . . . . . 41
3.27 SIMD versus pipelined loop execution. . . . . . . . . . . . . . . . . . 41

4.1 Block diagram of a FPGA DSP block. . . . . . . . . . . . . . . . . . 46
4.2 Cyclone V HPS-FPGA interconnect. . . . . . . . . . . . . . . . . . . 47
4.3 Graph of the implemented network. . . . . . . . . . . . . . . . . . . . 48

iii



List of Figures

4.4 Schematic diagram of the OpenCL programming model when pro-
gramming Intel FPGAs. Image reused from [1, p. 7]. . . . . . . . . . 50

4.5 Sequence Diagram for ARM and FPGA cores accessing DDR SDRAM. 51
4.6 Sequence Diagram for OpenCL Kernels accessing DDR SDRAM. . . . 52

5.1 Visualization of the dropout technique. . . . . . . . . . . . . . . . . . 59
5.2 Converging functions that can replace each other. . . . . . . . . . . . 62

6.1 1 hidden layer kernel timings on ARM and SoC . . . . . . . . . . . . 73
6.2 2 hidden layer kernel timings on ARM and SoC . . . . . . . . . . . . 73
6.3 Comparison of logic utilization for different implementations. . . . . . 74

iv



List of Tables

3.1 Lookup-Table for the XNOR function. . . . . . . . . . . . . . . . . . 32

6.1 Classification Accuracy for different network models. . . . . . . . . . 67
6.2 Timings for ANN and XNOR implementations running on ARM core. 68
6.3 Timings for ANN and XNOR implementations accelerated by FPGA. 69
6.4 FPGA Resources allocated compared between different implementations. 69
6.5 Resources allocated in FPGA for different kernels . . . . . . . . . . . 70
6.6 Training Times for different network implementations. . . . . . . . . . 71
6.7 Training Times for different network implementations. . . . . . . . . . 71
6.8 Speed for matrix operations with different kernels . . . . . . . . . . . 72
6.9 Resulting lines-of-code in the intermediate code OpenCL generates. . 76

v





Listings

5.1 Implementation of the activation functions and their derivatives . . . 55
5.2 Exaggerating the error of a neurons activation. . . . . . . . . . . . . . 61
5.3 Implementation of a matrix dot product in OpenCL. . . . . . . . . . 63
5.4 Implementation of the XNOR product in OpenCL. . . . . . . . . . . 64
5.5 Implementation of the compressed XNOR product in OpenCL. . . . . 65

vii



Listings

Abbreviations in Alphabetical Order

AI: Artificial Intelligence
ANN: Artificial Neural Network
ASIC: Application-specific Integrated Circuit
BNN: Binarized Neural Network
BOVW: Bag-of-Visual-Words
CNN: Convolutional Neural Network
CPU: Central Processing Unit
DBN: Deep Belief Network
DSP: Digital Signal Processing
FPGA: Field Programmable Gate Array
GPGPU: General-Purpose computing on Graphics Processing Units
GPU: Graphics Processing Unit
HPS: Hard Processor System
LUT: Lookup Table
LOC: Lines of Code
MNIST: Mixed National Institute of Standards and Technology
OpenCL: Open Computing Language
SGD: Stochastic Gradient Descent
RTE: Run-Time Environment
SIFT: Scale-invariant feature transform
SoC: System on Chip
TANH: Hyperbolic Tangent
TPU: Tensor Processing Unit
ReLU: Rectified Linear Unit

viii



Eidesstattliche Erklärung
Hiermit versichere ich, die vorliegende Arbeit selbstständig und unter
ausschließlicher Verwendung der angegebenen Literatur und Hilfsmittel
erstellt zu haben.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen
Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

Gießen, 26. August 2018

Statutory Declaration
I declare that I have authored this thesis independently, that I have not
used other than the declared sources / resources, and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources

The Master Thesis was not used in the same or in a similar version to
achieve an academic grading or is being published elsewhere.

Gießen, 26. August 2018





Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Dr.-Ing Hartmut Weber
at THM for the useful comments, remarks and engagement through the learning
process of this master thesis. I would also like to acknowledge Prof. Dr.-Ing. Martin
Gräfe at THM as the second reader of this thesis, and I am gratefully indebted to
him for his very valuable comments on this thesis.

Finally, I must express my gratitude to my loved ones, who have supported me
throughout entire process of writing this thesis, both by keeping me harmonious and
helping me putting pieces together.

Bastian Zeller

xi





Abstract

Image classification with artificial neural networks is a field gaining much attention
in the last years. Participants of classification competitions like ImageNet are exclu-
sively relying on this technology, like the latest winners AlexNet or ResNet prove.
While their classification capabilities even win against human capabilities, the im-
plementations were growing to very deep networks, focusing mainly on classification
accuracy and not on processing-speed or the limited availability of computational
resources.

With artificial neural networks being integrated into modern life, like the usage in
smart-assistants, smart-phones or self-driving cars the need to reduce the processing
power to compute these networks is growing.

One technique to reduce the networks computational complexity is binarization of
weights and activations as shown by Courbariaux et al. With weights and activa-
tions restricted to the values −1 and 1, the calculation when applying weights to
neurons activations can be simplified by replacing floating-point multiplications with
the binary XNOR operation.

This work refines the theory of binarized neural networks by providing a distributed
implementation on an ARM CPU and a FPGA with the usage of the OpenCL frame-
work. While the implementation on a FPGA can directly benefit from the binary
logic of the new network type, the ARM core provides easy accessibility to connected
peripherals providing the image sources.

New concepts for training binarized networks are developed within this thesis, leading
to an enormous reduction of training time and therefore, a reduction of real-life
production costs.

This implementation proves to execute faster than conventional methods on the same
hardware, while using less resources and without trading classification accuracy.

Keywords: Neural Network, Deep Learning, Embedded Systems, OpenCL, FPGA, SoC,
Image Classification

xiii





1 Introduction

This thesis deals with the research and implementation of binarized artificial neural
networks used for image classification tasks.

The first chapter introduces the context in which neural networks are applied and
describes recent challenges with their implementation and optimization.

A thesis on overcoming these challenges is proposed and finally, a roadmap of this
thesis will be presented.

1.1 Context

In the last years the usage of neural networks is rising in a lot of fields. Especially
image processing tasks are gaining lots of attention: Cars and other vehicles are
becoming self-controlled with the help of computer vision and artificial intelligence.
They are able to detect traffic signs or pedestrians [2] and take their own decisions on
the roads. Manufacturing plants are becoming highly automated and smart phones
can be unlocked by face recognition. Even smart personal assistants are based on
neural networks that are recognizing and processing voice commands [3, 4].

Most of those tasks are shifting from conventional image recognition, meaning pro-
cessing and analyzing the image through computational filters, to processing the
images with artificial neural networks that can be trained to detect various image
classes. The state-of-the-art approach on image classification using neural networks
is making use of deep neural networks which are computationally expensive due to
the usage of floating point calculations and require a large memory to store high
precision weights.

This work refines the theory of image classification with binarized neural networks,
a concept introduced recently. It allows to transfer computationally expensive neu-
ral networks using floating point calculations to networks almost exclusively using
binary operations during forward propagation. This is achieved by binarizing all
neurons weights as well as their activation functions. Courbariaux introduced the
mathematical principles behind the research and explores a basic implementation
[5].

1



CHAPTER 1. INTRODUCTION

The work shall show the possibility of implementing binarized neural networks on
less expensive embedded devices with limited processing power and how they will
increase the processing speed of image classification in comparison to conventional
neural networks. It shall further investigate on how the usage of OpenCL with
parallel hardware like FPGA fabric establishes additional potential, like reducing
development complexity and time.

While neural networks are usually computed on general purpose CPUs, the trend
is shifting to expensive specialized processors that offer functionalities to calculate
those networks. In low cost platforms like smart phones these can be specialized
ASICs with very low power consumption, while in more general and mostly scientific
scenarios GPUs are used as accelerators for these tasks.

Also, in cloud computing there is a trend towards the usage of neural networks.
The possibility to process huge amounts of data and have nearly unlimited resources
available is shifting even conventional big data processing to self-learning tasks. Big
data farms are hosting huge numbers of powerful GPUs to process those amounts of
data in short time. The downside of those farms is their power consumption, due to
the usage of general purpose CPU and GPU accelerators.

The usage of FPGAs, programmable logic devices that can adapt any computational
architecture is pointing towards lower power consumption and the possibility to fur-
ther specialize these farms to neural computing tasks. These FPGA devices are
usually programmed in a hardware description language that offers specialized oper-
ations to achieve very fast computation times. Compared to conventional methods
this increases the time to market, because the development time is much slower than
writing these algorithms in high level programming languages like Python or Java.
An uprising technology to overcome the high computational costs of neural networks
in binarizing them on different levels, like shifting from high precision weights to
binary values and limiting neurons activation functions to binary output.

With these technologies the amount of memory used for storing weights as well as
the complex computation expenses can be drastically reduced. Due to the fact that
only binary intermediate values are used in the computations, these algorithms can
be synthesized very easily in FPGA logic.

With the latest development in manufacturing technologies, FPGA logic and general
purpose processors can be built into the same chip enclosing and even make use of
the same peripherals, like DDR memory or interfaces like USB or ethernet. This
enables developers to easily outsource complex computing tasks into FPGA fabric
while maintaining business logic still in general purpose processors like ARM cores.

Thus, high speed computational neural network processors can be built with very
low costs to be used in cheap everyday products.

2



1.2. MOTIVATION

This thesis shall show that by binarizing neural networks weights and activations,
processing time and memory bandwidth can be saved compared to traditional artifi-
cial neural networks. FPGA technology used for hardware acceleration is a promis-
ing choice. Thus, implementation of the binarized network in an FPGA system shall
show an acceleration in performance compared to traditional approaches on CPUs
and GPUs. Distributing the algorithm across an ARM core and FPGA by using
the OpenCL framework shall show that by accelerating timing critical parts of the
networks algorithm development time can drastically be decreased.

1.2 Motivation

While research on neural networks used for image classification is growing, the net-
works are growing too. Recent winners on image classification competitions were
only achieved by very deep neural networks, implementing up to hundreds of lay-
ers. These networks got much deeper in the last years and their focus was mostly
shifted into the direction of classification accuracy without respecting constraints like
processing complexity and speed. Big implementations nowadays often are acceler-
ated by multiple GPUs to bring their processing time to an acceptable time-frame.
Devices that are implementing these techniques in future generations are becoming
smaller and the trend points to even more integrated devices and processors, not
capable of processing very deep networks in an acceptable time frame.

Personal assistants implemented in smart phones, production plants and self-driving
cars are becoming the main application for neural networks. They are usually
equipped with embedded processors and are sold in such big quantities that lim-
iting the costs during production is becoming one of the manufacturers highest pri-
orities. With cost savings in mind artificial neural networks are required that are
less computational expensive and can easily be executed on low power embedded
hardware.

A promising solution to lower processing complexity is the binarization of artificial
neural networks proposed by Courbariaux et al [5], which allows the substitution
of computational complex operations by simple bitwise operations. They showed
in their work, that binarized neural networks can achieve state-of-the-art results
like conventional deep neural networks do. Additionally, they prove in theory their
methodology is showing enough potential to accelerate calculations much faster than
conventional neural networks could. They also give first indications that binarized
neural networks can be implemented on embedded hardware and expedite the image
classification process in real-world scenarios by implementing their work experimen-
tally on GPU devices using high level frameworks.

3



CHAPTER 1. INTRODUCTION

The usage of mainly binary operations allows the networks to be executed and used
in real-time image classification tasks on small and less powerful embedded devices
or even programmable hardware like FPGA devices, which could map these bitwise
operations directly without computational overhead.

This thesis explores the ability to execute these binarized neural networks on FPGA
hardware and make effective usage of the binary logic operations introduced by bina-
rized networks without the need of developing highly optimized hardware description
code but instead abstracting these functionalities by using the OpenCL framework.

1.3 Work Assignment

This master thesis is related on machine learning, especially image classification by
neural networks. Typically, deep neural networks (DNNs) are used for for these
tasks. DNNs are computationally expensive and require large amounts of memory
to store high precision weights.

A new approach for working on image classification tasks with neural networks are
Binarized Neural Networks (BNNs) [5, 6, 7]. BNNs only use binary weights and
activation which need much less memory than high precision weights for DNNs. So
BNNs are suited for an implementation on FPGA hardware.

In this thesis, the classification of handwritten digits or characters from the EMNIST
dataset [8] provided by NIST, the National Institute of Standards and Technolgy of
US Department of Commerce, has to be used for the evaluation of BNN usage in
an SoC device equipped with one Cortex A9 ARM core and an Altera Cyclone IV
FPGA. A second task is to compare the utilization of FPGA logic and memory cells
for this implementation with other comparable FPGA implementations for image
classification [9, 10, 11]

1.4 Thesis Structure

In this master thesis a method to run binarized neural networks on SoC platform
consisting ARM processor cores and FPGA logic will be evaluated. The thesis is
mainly divided into three parts: Theoretical background, methodic and implemen-
tation details and the evaluation and analysis of the achieved results.

Collecting theoretical background information will help to understand the fundamen-
tals of state-of-the-art technologies available at this time and will assist to select the
best technology suited for the task at hand.

4



1.4. THESIS STRUCTURE

• Chapter 2 analyzes the state-of-art in image processing and the usage of deep
neural networks.

• Chapter 3 introduces deep learning methods and discusses the advancement of
the usage of artificial neural networks for image classification tasks. Addition-
ally, key performance indicators are defined that will enable further discussion
on the topic.

• In chapter 4 the system architecture is presented

• Chapter 5 discusses the implementation of the binarized neural network as
well as its representation in the SoC

• In chapter 6 performance measurements are presented and analyzed according
to the previously defined Key Performance Indicators

• Chapter 7 summarizes the key aspects of this work and gives an overview on
possible future work building up on this thesis.

5





2 State of Art Review

The last years have been a renaissance to deep learning. With processing capabilities
evolving, the concept developed in the 20th century is gaining more and more interest
in the industry. It is progressing into consumer devices like smart phones or tablets
[4] and became the foundation of home assistance systems [3].

A field nowadays highly dominated by deep learning is image classification, the base-
ment for computer vision. The technique is reaching highest scores in classifying
competitions like MNIST [12] or ImageNet [13].

These competitions were formerly approached with conventional image analysis al-
gorithms like Scale-Invariant Feature Transformation (SIFT) [14] or Bag-of-Visual-
words (BOVW) [15, p.101 ff.]. These conventional image processing algorithms were
providing mitigated results and were showing error rates only down to 26.2 percent.

Advances in the ImageNet Large Scale Visual Recognition Challenge were achieved
starting in 2012. Authors proposed several architectures based on neural networks
that were setting the groundwork on recent image classification research. As visu-
alized in figure 2.1, the error rates have been reduced to outperform even human
capabilities:

AlexNet was the first big achievement in image classification. The paper describing
the algorithm is one of the most influential papers concerning image classification. It
reduced the error rate commonly achieved at this time by 50 percent to an error rate
of 15.4 percent. In 2012 the authors of [16] were the first to use convolutional neu-
ral networks on image classification tasks. This approach was ground-breaking and
brought the concepts of deep learning into public focus. It was a very basic imple-
mentation of 8 layers, using mainly 11x11 filters. Because of the huge computational
complexity, AlexNet was run in parallel on two GPUs.

While AlexNet focused on implementing just a few layers that were equipped with
rather complex filters, VGG Net was implemented by using only 3x3 filters [17].
The authors argue that combining two 3x3 filters simulates the effect of a larger
5x5 filter, by still providing the computational benefits of a small filter size. They
implemented a total of 19 layers which turned out to perform well not only on image
classification, but also on localization tasks [17, p. 10]. The model was trained on

7



CHAPTER 2. STATE OF ART REVIEW

four Nvidia Titan Black GPUs over the period of three weeks and could achieve an
error rate of 7.3 percent.

The next advancement on classification tasks was provided by GoogleNet in 2014, a
project of several Google research groups focusing on self-driving cars, image research
and understanding content provided in YouTube videos [18]. It proposed a 22 layer
convolutional network which achieved an error rate of 6.7 percent in the ImageNet
competition. The approach is different from all other approaches to this date, because
it does not focus on stacking layers on top of each other in a sequential path, but
is introducing parallel structures of 1x1, 3x3 and 5x5 filters. The authors state the
performance as ”trained on a few high-end GPUs within a week”.

ResNet GoogleNet VGG AlexNet SIFT
1

5

10

15

20

25

160 152

22

19

8

0

3.57

6.7 7.3

15.4

25.8Layers Used
Error Rate [%]

Figure 2.1: Advances in the ImageNet competition. While the error rate is is reduced
with each iteration, networks are growing very big.

In 2015 the Microsoft Research Asia group proposed the architecture of ResNet,
a 152-layer network leading to an error rate of 3.6 percent, which even outperforms
human capabilities [19]. The main idea behind ResNet is the “identity shortcut
connection”, a shortcut path within the network which enables the use of a massive
amount of layers, without losing control over it. It was trained on eight GPUs within
three weeks.

8



A side effect on the popularity deep neural networks gained since the proposal of
AlexNet in 2012 is the possibility to use them for different tasks besides image classi-
fication, by using the proposed networks in new ways: Instead of classifying images,
researchers could produce new images by mixing attitudes of different images. An
example is the transfer of one artworks style to another image which enables the
production of new artworks [20].

All the previously discussed approaches are following the trend of implementing
(very) deep convolutional networks. While this leads to higher classification accuracy,
the networks are not the most efficient in terms of size and computational speed.
They usually require high-end hardware and very long time to train and execute the
network.

In real-life applications like the usage in self-driving cars, robotics or in assembly
lines, the tasks executed by those networks are supposed to be processed in a very
limited time frame and run on limited hardware. With the appearance of deep
learning on low power computing devices like smart-phones, home assistants and
other embedded devices, the demand to reduce the computational complexity of
applications implementing deep learning algorithms is even growing faster. This
motivated researchers to investigate on approaches to minimize the computational
cost of those networks and find possibilities to reduce the need for expensive hardware
based on multiple high-end GPUs.

While one approach on devices with access to the internet is to outsource complex
calculations to cloud service providers [21], research is focusing on approaches to
reduce the complexity the calculations of neural networks have by researching on
techniques that lower the needs of processing power and memory consumption and
thus, are speeding up the execution time without sacrificing too much accuracy:

Network pruning is a technique of identifying and removing parts inside neural
networks that have the least important influence on the outcome [22]. Methods on
identifying those parts can be based on the magnitude of weights and activations or
by identifying mutual information within different paths of the network, like feature
maps that filter similar criteria. The theory of pruning is modeled after the human
brains capability to maintain functionality even after suffering damages within big
parts of the brain [23, 24].

MobileNets, as proposed by a Google research group, combine recent techniques
that allow big convolutional networks being computed on small embedded devices
like mobile phones or tablets [25]. Depthwise separable convolutions, previously dis-
covered in the Xception network [26], allow the thinning of convolutional filters. In
a 2D environment with multiple channels, e.g. an image with RGB color, a filter
is as deep as the number of channels used on the input. In depthwise convolution
each channel is presented to a separate filter. This technique is combined with a

9



CHAPTER 2. STATE OF ART REVIEW

1x1 convolution across channels, which allows computation with less parameters as
regular convolutional layers have and thus, is leading to less operations to compute.
This makes the network cheaper and faster. The technique of depthwise separable
convolutions is combined with the two ’hyper parameters’ called width- and resolu-
tion multiplier. The width multiplier is scaling the amount of inputs and outputs for
each layer, while the resolution multiplier is a parameter scaling the size of the input
image and the internal representation of every layer, allowing to reduce the size and
latency of the network.

The ShuffleNet convolutional network ”is designed specially for mobile devices with
very limited computing power” [27]. By introducing two new operations, pointwise
group convolution and channel shuffle, the computational cost of a network can
be reduced drastically while trading off only a reasonable amount of the networks
accuracy. Group convolution is a combination of techniques used in AlexNet and the
previously discussed depthwise separable convolution by generalizing them to work
on groups of input channels. The channel shuffle operation is extracting information
from feature maps and shuffles them among channel groups, leading to increased
accuracy and lowered computational speed.

While these implementations focus on implementing neural networks on mobile pro-
cessor architectures like the ARM architecture, other researchers focus on limiting
and optimizing the complexity of the underlying calculations to allow mapping the
networks algorithms on programmable logic like FPGA and ASIC technology.
Binarized neural networks evolved from neural networks with low precision weights
[28] and reduce the networks complexity by removing the need for high-precision and
computational expensive floating-point calculations when processing the networks
weights and activations [5]. Weights and activations are represented as binary values,
allowing to replace formerly expensive multiplications and trigonometric functions
being replaced by simple bitwise operations like XNOR or adders.

The usage of FPGA hardware is a reasonable tradeoff between the computational
power of GPUs and the flexibility and efficiency of mobile CPU architectures like
ARM and can build the basis for specialized machine learning chips. The hardware
design synthesized for the FPGA can be converted to an ASIC design efficiently
without the need for redesigning the architecture. These custom designs have the
advantage of draastically reducing energy consumption.

The trend of using FPGA or custom ASIC chips for neural network computation has
already been applied to big scale data center operations and operators that were pre-
viously relying exclusively on CPU-GPU architectures [29] are moving towards FPGA
or ASIC architectures: Google is developing custom ASIC accelerators for machine
learning tasks using neural networks, called Tensor Processing Units (TPU), which
they deploy to data centers [30]. Microsoft and Amazon follow different approaches
in their data centers by deploying FPGA based accelerators or SoCs consisting of

10



CPU and FPGA cores to their data centers [31, 32], which are the basis to their
cloud services catapult [33] and AWS F1 [32].

11





3 Theoretical Background

This chapter will introduce the fundamental theory on which later chapters are based.
It introduces the theory of neural networks and discusses parallel computing plat-
forms that are suited for neural network computing and image classification. To be
able to measure the efficiency of the model developed in this work and compare it to
different models, performance measuring units will be defined and discussed.

3.1 Artificial Neural Networks

Artificial neural networks are algorithms loosely modeled after the human brains
neuronal structure. They are usually composed out of multiple layers of artificial
neurons, a concept this section will introduce. The concept of artificial neurons
evolved from the perceptron, a concept introduced in the second half of the twentieth
century.

3.1.1 Perceptron

The concept of perceptron was developed in the early 1960’s [34, Ch.2, p. 12]. It
is a simplified representation of a biological neuron. While modern neural network
use more complex models of neurons, the perceptron is introducing the fundamental
concepts of nowadays neurons. The purpose of a perceptron is making decisions on
problems by weighting evidence.

A perceptron takes several binary inputs x0, x1, x2, ... and produces a single binary
output oj, as illustrated in figure 3.1. The inputs are weighted and a sum over
all weighted inputs is calculated. This sum is fed into a function called activation
function, which produces a binary output [35, pp. 55-75].

The activation function is a step function 3.2 with the zero-point shifted up or down
by a threshold. It produces an output of 1 for all inputs xn ≥ θj and 0 for all inputs
xn < θj. The threshold can also be described as an input parameter of the perceptron

13



CHAPTER 3. THEORETICAL BACKGROUND

step
function ϕ

threshold
θ

output
O

∑

transfer
function

w2x2

......

wnxn

w1x1

w0x0

inputs weights

Figure 3.1: A schematic representation of a perceptron.

and moved to the other side of the equation. This input parameter is called bias.
bj ≡ −θ. Thus, the activation function can be described with equation 3.1.

f(x) =




0 if x+ bj ≥ 0
1 if x+ bj < 0

(3.1)

−2.5 −2.0 −1.5 −1.0 −0.5 0.5 1.0 1.5 2.0 2.5

−1.5

−1.0

−0.5

0.5

1.0

1.5

x

y
f(x) = stepx

Figure 3.2: Plot of the step function.

Varying the weights will result in different models of the perceptron and so in different
paths of the decision making. Inputs and weights are both vectors of equal length.
Thereby the sum of all weighted inputs can be described as the dot product of the
input vector x and the weights vector w. Equation 3.2 is showing the relation between

14



3.1. ARTIFICIAL NEURAL NETWORKS

the weighted sum and dot product.

w · x ≡
∑

j

wj ∗ xj (3.2)

The perceptron can be described by the equation 3.3

O =




0 if w · x+ b ≥ 0
1 if w · x+ b < 0

(3.3)

Logic Functions

With the correct parameters selected for weights and threshold, the concept of the
perceptron can be used to implement logic functions like OR, AND or NAND (Figure
3.3). A NAND function has universal completeness, meaning all boolean function can
be converted to a combination of NAND gates. With enough NAND gates available,
every combinatorial logic function can be realized [35, p. 62].

θ = −3

O
∑

-2x1

-2x0 x0 x1 O

0 0 1
1 1 1
1 0 1
1 1 0

Figure 3.3: Parameterization of a perceptron to implement the NAND logic function.
Following [36].

This fact makes it possible to build any combinatorial logic function out of percep-
trons. Since those combinatorial logic functions are the fundamentals of computer
science, all concepts of computer science can be represented through the usage of
perceptrons, which makes the concept of perceptrons universal for computation. A
network of perceptrons can represent any other computing device like an adder, cal-
culator or a modern CPU.

Figure 3.4 is showing an implementation of a half adder using only NAND logic gates.
By building a network out of perceptrons parameterized to fulfill the NAND logic
function, a half adder can also be composed from perceptrons (see Figure 3.5)

15



CHAPTER 3. THEORETICAL BACKGROUND

carrybit

output

x1

x2

Figure 3.4: Implementation of a full adder using only NAND logic gates. Adapting
[36].

3

3

3

3 carrybit

3 output

x1

x2

-2

-2

-2
-2

-2
-2
-4

-2

-2

Figure 3.5: Implementation of a full adder with perceptrons. For simplification, the
bias is written into the perceptron and the weights are above the connec-
tions. Adapting [36].

The network of perceptrons comes with the advantage of being able to adapt to any
other logic function by simply changing its weights and biases. Thus, a network of
perceptrons can be parameterized to response to any external stimulus given.

Learning Perceptrons

With the perceptron being adaptable to any logic function, the use of linear algebra
enables us to determine the parameters needed to fulfill any given logic function [35,
pp. 78-84]

By converting the function describing the perceptron to have a fixed input and be
variable on the weights and bias, an input vector and desired output can be applied
to the equation and weights and bias can be calculated. The perceptron can learn a
new function by adjusting its weights and bias in situations where a complex network
of conventional logic functions might be suited.

The biggest drawback in learning with a perceptron is the binary output of the step
function. Small changes in the weights and bias will not result in any changes of

16



3.1. ARTIFICIAL NEURAL NETWORKS

the output. Only reaching the threshold will result in changes of the output. Small
changes will either result in no change at all, or they will result in a full change of the
perceptron’s behavior. In a network of perceptrons small changes on weights might
cause the network to work in an unpredictable way.

3.1.2 Artificial Neurons

Modern neural networks use a modified version of a perceptron which shares the
same fundamental concepts, but because of modifications to the algorithm it can
be adapted, so that small changes in weights and bias will result in changes to the
output value.

The threshold of a perceptron is converted into a bias with bj ≡ −θ. The bias can
be implemented as one additional input xn+1 = b and an attached weight with value
wn+1 = 1, so all calculations in form w · x+ b can be simplified to w · x. The neuron
is also modified to accept non-binary input data.

f(x)

activation
function σ

output
O

∑

transfer
function

w2x2

......

wnxn

w1x1

w0x0

inputs weights

b

bias

Figure 3.6: A schematic representation of an artificial neuron

This changes the threshold from being an input variable of the step function to a
normal weighted input of the neuron. With this modification, the activation function
can be replaced by any other function in the form σ = f(x). With any function
working as activation function, small changes in weights ∆w can result in changes in
the output ∆O.

An activation function that is commonly used within artificial neurons is the sig-
moid function which is defined by equation 3.4. With the sigmoid function used as

17



CHAPTER 3. THEORETICAL BACKGROUND

activation function, the equation for the output of an artificial neuron is defined by
equation 3.5

σ(x) = 1
1 + e−x

(3.4)

O = 1
1 + exp (−(∑

j (xj ∗ wj) + b)) (3.5)

The sigmoid function is behaving similar to the step function, so the behavior of
the neuron is equal to a perceptron. The higher the exponent value in the sigmoid
function gets, the more it is approximating a step function, as shown in figure 3.7
the higher x · w + b gets, the more a neuron is converging to a perceptron.

Small changes in ∆wj shall result in small changes in ∆O. Using calculus ∆O can
be determined by equation 3.6. This shows that ∆O is a linear function of ∆w and
∆b. The learning process of an artificial neuron is thus aiming towards determining
∆w by measuring ∆O.

∆O =
∑

j

( ∂O
∂wj

∆wj) + ∂O

∂b
∆b (3.6)

−1.0 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

x

y
f(x) = 1

1+e−5x

g(x) = 1
1+e−10x

Figure 3.7: Plot of sigmoid function

18



3.1. ARTIFICIAL NEURAL NETWORKS

3.1.3 Networks of Neurons

Analogous to the concept of connecting perceptrons illustrated in figure 3.5, neurons
can be connected to build a network. The neurons can be connected in different
combinations. The following paragraphs will introduce the most common network
architectures in recent research.

Feed Forward Network

A common combination is to organize the neurons in layers, where all outputs of one
layer are connected to all inputs of the next layer, as depicted in figure 3.8 . This type
of network is called a feed forward neural network. The first layer is containing the
input values of the problem that will be solved, the last layer represents the output.
They are called input layer and output layer. The layers between input- and output
layer are called hidden layers [35, pp. 125-148].

The organization of input- and output layer is directly mapping to the problems
input and output variables. The design of the hidden layers can be more complex.
A layer A consisting of n neurons connected to a layer B consisting of m neurons is
resulting in a total of n ∗m connections between those layers. Each neuron in layer
B is connected to n neurons from layer A, resulting in n inputs and thus n weights
connecting to this neuron.

Input1

Input2

Input3

Input4

Output1

Output2

Hidden
layer

Input
layer

Output
layer

Figure 3.8: Graph of a feed forward neural network with a single hidden layer.

19



CHAPTER 3. THEORETICAL BACKGROUND

Recurrent Networks

While in feed forward networks the connections from one neuron only connect to
neurons of the next layer, recurrent networks also implement feedback loops, where
the output of one neuron can be fed back as input of another neuron of a previous
layer, or even connect to its own input, as illustrated in figure 3.9.

Their structure of applying feedback loops makes them useful on long-short-term-
memory based models, like acoustic analysis [37] However, in practice recurrent
network researchers face problems in applying learning algorithms like the back-
propagation algorithm to them, because the feedback loops can easily lead to ex-
ploding or vanishing gradients [38]. Thus, their behavior is very complex and can
become unpredictable.

Input1

Input2

Input3

Input4

Output

Hidden
layer

Input
layer

Output
layer

Figure 3.9: Graph of a recurrent neural network.

Hidden Layer Organization

The number of hidden layers and the amount of neurons in those layers is depen-
dent on the available data, meaning the number of input and output neurons, the
amount of training data available, the complexity of the underlying problem and the
algorithm used for training the network [35, pp. 125-148].

Number of Hidden Layers

Linear separable problems can be solved without the need for any hidden layers,
but more complex problems require at least one hidden layer to be solved. As the
universal approximation theorem states, a feed forward network using only a single

20



3.1. ARTIFICIAL NEURAL NETWORKS

hidden layer with enough neurons can approximate to any function given [39]. While
this allows to theoretically solve any given problem with just one hidden layer, the
theorem does not state the possibility of training the network. If it empirically proves
to enhance the performance for the given problem, the usage of 2 or more hidden
layers can be useful. A network with multiple hidden layers is illustrated in figure
3.10.

When multiple hidden layers are present in a neural network, a layer can be under-
stood as pre-filtering the data fed to the next layer, where groups of neurons of one
layer are filtering specific characteristics of the dataset. The next layers will make
decisions based on these characteristics, not the underlying data.

Input1

Input2

Input3

Input4

Output2

Output1

Output3

Hidden
layer1

Hidden
layer2

Output
layer

Input
layer

Figure 3.10: Graph of a feed forward network with multiple hidden layers.

Number of Neurons in the Hidden Layers

Involving too few neurons in the hidden layers will cause the network to not correctly
approximate the problems solution, leading to an underfitting network. In contrast
involving too many neurons will cause the network to overfit by solving problems that
were not required to solve and thus can cause the network to not adapt to data not
present in the training sets. The relation between under- and overfitting networks is
depicted in figure 3.11.

While some rules of thumb exist that set the number of neurons around the range
of √nin ∗ nout, where nin and nout describe the number of input- and output units

21



CHAPTER 3. THEORETICAL BACKGROUND

connected to the layer [40], the exact number cannot be estimated mathematically
and must be solved empirically by observing the networks error during training and
validation [41].

Figure 3.11: 3 models of a neural network solving the problem of mapping points from
a quadratic function. Left: A linear model is leading to underfitting by
not accurately capturing the given data samples. Right: A polynomial
model can suffer from overfitting by passing all points, but not leading
to the optimal structure. Center: A quadratic model is fitting the data
well, even to unseen points. Image and description reused from [42,
Ch. 5, p. 111].

Convolutional Neuronal Networks

Convolutional neural networks were introduced in the 20th century [43, 44] and
were widely adapted for classification tasks [45] They got public attention after the
proposal of AlexNet, a convolutional network used for image classification [16]. Con-
volutional neural networks are a specialized version of conventional neural networks,
based on the assumption that the input data is made of images.

While ordinary neural networks, like feed forward networks work well on small im-
ages, they do not scale well for bigger image size with multiple colors, as their number
of weights from input layer to the first hidden layer will grow very large, which would
increase the overall network size as well, which eventually will lead to become un-
practicable.

Convolutional neural networks arrange their neurons in a 3-dimensional structure,
based on the images width, height and depth, where the layers are not fully connected:
A layer only connects to a small part of its previous layers neurons as illustrated in

22



3.1. ARTIFICIAL NEURAL NETWORKS

figure 3.12. This area is slided over the full surface of the image, a mathematical
operation called convolution.

Figure 3.12: Architecture of the LeNet-5 [45], a convolutional neural network. Image
reused from [46].

The layers in a convolutional network can vary in their function and parameters to
control them: While convolutional layers slide over all neurons of the previous layer,
pooling layers combine the output of multiple neurons into a single output neuron.

3.1.4 Learning as a Gradient Descent

As shown in previous sections, neural networks are capable of approximating a wide
range of functions by implementing hidden layers with an adequate amount of neu-
rons parametrized by their weights and biases. This section will discuss a method
that enables the network to learn those parameters by feeding inputs and the desired
outputs into the network.

To quantify the correctness of the networks approximation, the cost function defined
by equation 3.7 is used. This equation is called the mean squared error or quadratic
cost function C. It is a function dependent on the weights and biases of the network.
The difference between the desired output a and the networks output y is built for
all inputs x. Their number is determined by n.

C(w, b) = 1
2n

∑

x

|y(x)− a|2 (3.7)

The goal of a learning the parameter to approximate any function correctly is to
change the weights and biases in a way that the cost functions output is as small
as possible. The closer C(w, b) gets, the better the function will be approximated.

23



CHAPTER 3. THEORETICAL BACKGROUND

This can be achieved by a technique called stochastic gradient descent or SGD, an
iterative method to solve minimization problems [47].

−1 −0.5 0 0.5 1 −1

0

1
0

1

2

w1

w2

Figure 3.13: The surface plane of the Mean Squared Error with 2 inputs

With stochastic gradient descent small changes ∆w and ∆b are incrementally applied
to the cost functions parameters w and b, until its output is minimized to satisfaction.
Figure 3.13 illustrates the surface pane of the cost function for 2 inputs. The SGD
method can be imagined as rolling a ball on the pane until it reaches the bottom.
The lowest point is called the global minimum of the cost function and is considered
the optimal solution to the minimization problem.

wb
0 100 200 300 0

200

400
−1

0

1

Figure 3.14: A surface plan of a network showing local and global minima.

While 3.13 depicts a function dependent on just 2 input parameters and the global
minimum is easily comprehensible, the cost for complex problems is dependent on
thousands of parameters, resulting in a more complex pane as illustrated in 3.14. This
pane can have multiple local minima, which could lead to incorrect assumptions of

24



3.1. ARTIFICIAL NEURAL NETWORKS

the best solution [35, pp. 101-119]. Avoiding local minima is a common problem
during the training of neural networks.

A common technique to overcome this problem is to change the neurons activation
function. While the sigmoid function will map negative inputs to outputs close to
zero, the hyperbolic tangent, as illustrated in figure 3.15, will map negative inputs
to negative outputs, which leads to a wider range of output values. As figure 3.16
illustrates the hyperbolic tangent produces a stronger gradient, which will lead to
bigger ∆w that are leading the SGD less likely to remain in a local minimum [48].

−2.5 −2.0 −1.5 −1.0 −0.5 0.5 1.0 1.5 2.0 2.5

−1.5

−1.0

−0.5

0.5

1.0

1.5

x

y
f(x) = tanh x
f(x) = tanh 2x
f(x) = tanh 4x

Figure 3.15: Plot of the hyperbolic tangent.

The cost C can be minimized by the iterative process of the gradient descent for
which the gradient of w is calculated as shown in equation 3.8. Each weight is
updated by ∆w, defined in equation 3.9, where η is a constant for the learning rate,
a parameter that scales the learning process [35, pp. 101-119].

∆C = ∂C

∂w1
+ ∂C

∂w2
+ ...

∂C

∂wn

(3.8)

∆w = −η ∂C
∂wi

for i = 1, 2, 3, ..., n (3.9)

As shown in equation 3.9 ∆w is depending on ∆C, while C is depending on the
activation functions output a. To determine ∆w the activation function must be
differentiable. Equation 3.10 is defining derivative of the sigmoid activation, 3.11 the
derivative of the hyperbolic tangent.

s′(x) = ∂

∂x
s(x) = s(x)(1− s(x)) (3.10)

25



CHAPTER 3. THEORETICAL BACKGROUND

tanh′(x) = ∂

∂x
tanh(x) = 1− tanh(x)2 (3.11)

−2.5 −2.0 −1.5 −1.0 −0.5 0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

y
f(x) = ∂

∂x
tanh

f(x) = ∂
∂x

sigmoid

Figure 3.16: Partial derivative of sigmoid and hyperbolic tangent.

3.1.5 Backpropagation Algorithm

The method of stochastic gradient descent, described in 3.1.4, is applying small
changes to the networks weights in order to approximate a desired output. The exact
amount of change to each weight is defined by the partial derivative of the networks
cost function with respect to the weight examined. It is called the gradients of the
weights vector.

The backpropagation algorithm, developed in 1988, is a method to determine these
partial derivatives by calculating the error for each output neuron and propagating
it backwards through the network [49].

The network can be understood as a chain of function compositions, where each node
of the network is given a composite structure: The right side of the node computes
the neurons activation function, while the left side computes the activation function
derivative for the same input, as depicted in figure 3.17. The result computed at the
right side is considered the output of the neuron and sent to the neurons connected to
it, while the result computed at the left side is stored in the neuron itself [35, pp. 152-
182]. During a second step, the backpropagation, where the network is propagated
backwards, the previously stored results are used as the neurons outputs.

A simplification to a neuron during backpropagation can be made: A neuron is a
composition of an integrator +, summarizing the weighted inputs and an activation

26



3.1. ARTIFICIAL NEURAL NETWORKS

x out

∆ 1

f ′ f

Figure 3.17: Function derivatives during network propagation. Image following [35,
p. 158].

function s, as shown in figure 3.18. When building the derivative of both nodes,
the activation functions derivative get s′, while the integrators derivative is 1 for all
inputs, allowing us, during backpropagation, to reduce the neurons calculation to
only its activation function.

s′ s1 +

Figure 3.18: Function derivatives during network propagation. Image following [35,
p. 158].

To apply backwards propagation through the composited network, three cases have to
be considered: Function composition, addition and inputs weighting must be proven
to be generalizable in order to be able to formulate the algorithm for backpropagation.
They will be discussed in the following paragraph.

f ′(g(x))g′(x) 1

x f(g(x))

g′ g f ′ f

forward propagation

backward propagation

Figure 3.19: Function composition during forward and backward propagation. Image
following [35, pp. 159-160]

The composition of the functions f and g is visualized in figure 3.19. During forward
propagation the input x is fed to the left side of the network. The nodes output and
its derivative are computed. The derivative is stored in the node, while the output
is fed to the next node. The networks output is the composition f(g(x)).

27



CHAPTER 3. THEORETICAL BACKGROUND

Running the network backwards by feeding 1 to the right side of the network, in each
node the input is multiplied by the value stored in the unit. Thus, the derivative of the
function composition f(g(x)) is f ′(g(x))g′(x). Since the backpropagation implements
the chain rule this result can be generalized to any sequence of function compositions
[35, pp. 159-160].

Figure 3.20 depicts the addition of the functions f and g. As already shown for
the simplification of the neurons integrator, the node implementing the addition has
a partial derivative of 1 for all inputs. When forward propagating the network, the
network computes f(x) + g(x) and the derivatives f ′(x) and g′(x) are stored inside
the nodes. During the backpropagation step a 1 is fed to the right side of the network,
multiplied with the partial derivatives stored in the nodes, the result of the step is
f ′(x) + g′(x). As shown in [35, pp. 159-160], the result can be generalized to any
addition of functions.

f ′(x) + g′(x) 1

x f(x) + g(x)

f ′ f

g′ g

+1
1

forward propagation

backward propagation

Figure 3.20: Function addition during forward and backward propagation. Image
following [35, pp. 159-160]

Weighted inputs can be understood as multiplying each sides input with w: While
during forward propagation the nodes input x is multiplied with the weight w, re-
sulting in wx, during backward propagation the weight is multiplied by 1 fed from
the right side of the node, resulting in w. This is the derivative of wx with respect
to x. Thus, it can be concluded that weights are modulating the nodes information
from both sides, by multiplying each sides input with w [35, p. 161].

Steps of the Backpropagation Algorithm

The backpropagation method is defined by algorithm 1.

28



3.1. ARTIFICIAL NEURAL NETWORKS

Algorithm 1 Backward propagation.
N is the amount of training data, L the amount of layers and t the training vector. a
is the vector of activations, w the vector of weights. C is the cost and η the learning
rate.

for n = 1 to N do
1. propagate forward
for k = 1 to L do

ak ← dotproduct(ak, wk)
end for
2. backpropagate to output layer
∆wL ← −a′L ∗ (a− t)
3. backpropagate to hidden layers
for k = L− 1 to 1 do

∆wk ← − ∂C
∂wk

end for
4. update weights
w ← w − η∆w

end for

1. Feed forward

In a first step, the network is propagated forwards by applying the dot product of
weights and activations for each layer as described in 3.2. Additionally, the evaluated
derivatives of each neurons activation function for are stored in the unit [35, p. 161].

2. Backpropagate output layer

During backpropagation to the output layer, the partial derivatives ∂C
∂w

are calculated
and for each neuron multiplied by its evaluated error as shown in in equation 3.12
[35, pp. 167-168].

∆wi,j = ∂C

∂wi,j

∗ ci (3.12)

3. Backpropagate Hidden Layer

While the error of output neurons can easily be calculated, for the hidden layers, this
error for each neuron is dependent on all neurons connected to it. The neurons error

29



CHAPTER 3. THEORETICAL BACKGROUND

is calculated by equation 3.13 [35, p. 169].

∆wi,j = ∂C

∂wi,j

∗
∑

q

wi+1,q ∗ Cq (3.13)

4. Update Weights

In the last step all neurons weights are updated by applying the previously calculated
∆w to them. A constant, the learning rate, is used to scale the step size of the
correction to the weights [35, p. 170].

If there is more training data available, the process can be repeated and weights
corrections can be applied to each set of training data, resulting in the network
being able to approximate all patterns available in the training data.

3.1.6 Binarized Neural Networks

Binarized neural networks (BNN) are a recently introduced variant of neural net-
works with weights and activations represented as binary values with the intention
to drastically reduce memory size and accesses and as well reduce the computational
cost by replacing arithmetic operations by bit-wise operations [5].

3.1.6.1 Binarizing Weights and Activations

In binarized neural networks weights and activations are constrained to the values
-1 or 1. Binarizing the networks weights can be performed by transforming the
real-valued variables into the binary values [50].

This can be performed in either a deterministic or a stochastic way. While the
stochastic binarization shown in paragraph is resulting in a higher accuracy during
classification, it requires the generation of random values to calculate the probability.
In a computational inexpensive environment, the generation of random values is not
desired, since it is lowering the networks performance. The deterministic approach
avoids the generation of randomness and thus, is the preferred implementation.

30



3.1. ARTIFICIAL NEURAL NETWORKS

Deterministic Binarization

With deterministic binarization the networks weights are transformed by the sign
function shown in equation 3.14. Figure 3.21 is showing the graphical representation
of the sign function.

f(x) =




1 if x ≥ 0
−1 if x < 0

(3.14)

−2.5 −2.0 −1.5 −1.0 −0.5 0.5 1.0 1.5 2.0 2.5

−1.5

−1.0

−0.5

0.5

1.0

1.5

x

y
f(x) = signx

Figure 3.21: Plot of sign function

Stochastic Binarization

In stochastic binarization the variables are transferred with equation 3.15, where
σ(x) is the hard sigmoid function, defined in equation 3.16.

f(x) =




1 with probability p = σ(x)
−1 with probability 1− p (3.15)

σ(x) = clip(x+ 1
2 , 0, 1) = max(0,min(1, x+ 1

2 )) (3.16)

31



CHAPTER 3. THEORETICAL BACKGROUND

3.1.6.2 Binarized Forward Propagation

In a binarized neural network all weights and activations are constrained to −1 or 1.
This leads to possible optimizations in the calculation of a neurons activation. While
in conventional networks the activation vector is multiplied with the weight matrix
by applying the dot product, the operation can be simplified to a bitwise XNOR
operation [6] in binarized neural networks as shown in table 3.1.

x0 x1 ⊗

0 0 1
0 1 0
1 0 0
1 1 1

(a) XNOR LUT with inputs 0 and 1.

x0 x1 ⊗

-1 -1 1
-1 1 -1
1 -1 -1
1 1 1

(b) XNOR LUT with inputs -1 and 1.

Table 3.1: Lookup-Table for the XNOR function.

Equation 3.17 defines the forward propagation procedure on binarized neural net-
works [7], where l is the index of the layer, i is the index of the neuron calculated,
a is the neurons activation and b the neurons bias. K is the amount of neurons
in the layer, w the neurons weights. The ⊗ symbol describes the bitwise XNOR
operation.

al
i = bl

i +
Kl−1∑

j

wl
i,j

⊗
al−1

j (3.17)

The forward propagation step is similar to those of conventional networks, but with
the exception that the dot product operation on activations and weights is replaced
by the XNOR operation. Since the first layer is containing real valued inputs derived
from the dataset under investigation, it must be preprocessed by binarizing the val-
ues. Depending on the range the input parameters are, the exact way of binarization
is not defined and must be adapted to the given range of input parameters.

In the case of the MNIST dataset, the input parameters range from 0 to 255, rep-
resenting grey-scale images. The inputs can be binarized by applying a threshold of
80, following equation 3.18.

ab
i =





1 if ai ≥ 80
−1 else

(3.18)

32



3.1. ARTIFICIAL NEURAL NETWORKS

3.1.6.3 Binarized Backward Propagation

During backpropagation the activation functions derivative is used. For the sign func-
tions the derivative is zero on all points, except the zero point of the function, where
the derivative is undefined, which makes it incompatible with the backpropagation
algorithm.

Algorithm 2 defines the process for backward propagation of a binarized neural net-
work. It is structured analogous to the backward propagation of conventional net-
works, but is applying modifications in order to overcome the disadvantages binarized
weights and activations have to the algorithm.

Algorithm 2 Backward propagation in a binarized neural network.
Model derived from [5].
N is the amount of training data, C is the cost function for the dataset, η is the
learning rate, L the number of layers. w are weight vectors, b are biases vectors, a
the activation output.

for n = 1 to N do
1. binarize input
for i = 1 to n do

ab
i ← thresh(ai)

end for
2. forward propagation
for k = 1 to L do

wb
k ← binarize(wk)

ak ← xnor(ak, w
b
k)

ab
k ← sign(ak)

end for
3. compute gradients
for k = L to 1 do

Compute ∂C
∂wb

k

Compute ∂C
∂bb

k

end for
4. update parameters
for k = 1 to L do

∆wk ← η ∂C
∂wb

k

w ← clip(wk −∆wb
k,−1, 1)

b← bk − η ∂C
∂bb

k

end for
end for

33



CHAPTER 3. THEORETICAL BACKGROUND

The networks input layer is binarized and forwards propagation is applied to the net-
work as defined in 3.1.6.2. The gradients are calculated with respect to the partial
derivatives of cost and weights as described in 3.1.5. In this step both, the binarized
and real-valued gradients are kept for further processing. When updating the pa-
rameters the gradients are applied to the real-valued weights and biases. To avoid
exploding gradients, the updated parameters are clipped at −1 and 1 [50].

3.2 Parallel Computing Platforms

Neural networks can be implemented on different platforms that offer sequential
or parallel computing structures. This section gives an overview of the platforms
commonly used for processing neural networks and other computer vision tasks.

3.2.1 Overview of Platforms

The most generic approach to compute artificial neural networks is the usage of a
CPU (Central Processing Unit). Recent CPU devices implement multi-core design
and can have limited vector operations, like SIMD allowing up to 16 operations per
clock cycle, for small signal processing tasks and usually have a high operational
frequency. CPUs are a very generic and flexible solution, capable of achieving many
different tasks. The number of cores is limited to up to 4 to 16 cores which can run
on a high frequency of up to 4-5 GHz. CPUs suited for embedded solutions usually
implement up to 4-8 cores and have a lower operational frequency of up to 2-3 GHz.
Since CPUs are involved in almost every electronic device, prices are generally cheap
and solutions for every budget exist. However, the small amount of cores available
is limiting parallel computing capabilities and thus CPUs are not competitive with
other parallel computing platforms.

In recent research GPUs (Graphics Processing Unit) are the preferred solution to im-
plement artificial neural networks [16]. Using a GPU for general purpose processing
is an approach called GPGPU (General-Purpose computing on Graphics Processing
Units), where one or a cluster of multiple cards is connected to a generic CPU which
is feeding data to the GPUs and is reading back computation results.

As shown in figure 3.22 the capability of high parallelism results from more internal
hardware dedicated to data processing, compared to a CPU design: GPUs support
a big number of cores ranging from a couple hundred to up to thousands, depending
on the price range. GPUs are capable of native floating-point calculations. Cores are
usually clustered to thread processor clusters that consist of several multi-processors,

34



3.2. PARALLEL COMPUTING PLATFORMS

cached memory and special texture processing units, where each multi-processor im-
plements one instruction unit with local memory and multiple stream-processors con-
nected to those units. Those stream-processors can execute the same instruction on
different data paths or work-items, a mechanism called single-instruction, multiple-
data (SIMD). It can be understood as the foundation of data-parallel programming
model, where the same program is executed multiple times in parallel on different
data elements. To work around memory access delays blocking the cores for exe-
cution, the streaming-processors must access successive addresses in local memory.
Accessing arbitrary addresses is resulting in blocked execution [51, pp. 1-3].

While the multi-processors each implement their own small amount of local memory
with fast access time, they are all sharing the same global memory which has limited
bandwidth. This requires the need to implement modified algorithms matching the
underlying architecture and providing the correct amount of threads and address
accesses for continuous operation.

Figure 3.22: Architectural differences between CPU and GPU. The GPU uses more
hardware for data processing. Image reused from [51, p. 3].

The design with a high number of cores and fast local memory is resulting in a fast
and flexible solution but the enormous performance power is traded for high energy
consumption [52].

A FPGA (Field Programmable Gate Array) is a highly configurable architecture
that can be designed with the usage of hardware description languages like VHDL
or Verilog. A FPGA usually consists of multiple modular building blocks like lookup
table blocks, adaptive logic modules (ALT), DPS- and memory blocks, which can be
arranged in almost any desired configuration, as illustrated in figure.3.23. ALTs can
be configured to represent any logic, register or arithmetic function. DSP blocks can
implement floating point calculating capabilities in variable precisions and memory
blocks can be used for embedded high bandwidth, low latency volatile storage. These
programmable resources allow the implementing of highly specialized algorithms by
still providing very high performance per watt.

35



CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.23: FPGA logic resources architecture. Inner blocks can be used as modular
building blocks. Image reused from [53, p. 34].

In a FPGA, usually all tasks are performed simultaneously by synthesizing the exact
hardware architecture needed for this task. Parallel tasks are usually designed in a
pipeline strategy, where different stages of the instruction are applied to the work-
items concurrently [54, Ch. 6, pp. 515-530].

The high parallelism and low energy consumption FPGAs offer makes them a good
solution for parallel computing [31, 32]. However, compared to GPU and CPU devices
the FPGA is the least accessible solution, since programming them by a hardware

36



3.2. PARALLEL COMPUTING PLATFORMS

description language requires a long time to be implemented and compiled [55].

This problem can be overcome by using one of the frameworks for parallel program-
ming, presented in the next section.

3.2.2 Parallel Computing Frameworks

Implementing algorithms on GPU and FPGA is historically done with their native
programming interfaces. For GPUs this is native machine code and for FPGAs its the
description of hardware synthesized from VHDL or Verilog code. While these inter-
faces provide the most efficient way of using the underlying hardware, lots of knowl-
edge and insights about the hardware are needed to produce and maintain efficient
code. Thus, implementing complex algorithms can result in very time-consuming
tasks.

In the last decade, new programming frameworks were introduced to allow faster
access to the underlying hardware by abstracting machine language and hardware
description to C-Typed languages and wide-spread programming concepts. These
frameworks will be discussed in this section.

3.2.2.1 CUDA

Cuda is a general-purpose parallel computing framework, introduced in 2006, that
allows the usage of GPUs by the manufacturer NVIDIA for general-purpose comput-
ing. It allows the usage of a C-Style interface for developing programs that make use
of the GPU as a coprocessor.

With the CUDA parallel programming model the challenge of dealing with paral-
lelism on multiple cores is overcome by providing abstractions to the developer.

There are three key abstractions exposed to the programmer: A hierarchy of thread
groups, shared memories and barrier synchronization, providing data- and thread
parallelism. The developer is guided to partition algorithmic problems into sub-
problems that can be solved independently in parallel blocks of threads. These
sub-problems can even be decomposed into smaller groups that may be solved coop-
eratively by threads contained in a block [51, pp. 3-5].

In a CUDA program, C-functions can be defined that, when called are executed
multiple times in parallel on different threads which are identified by a 3-dimensional
threadIndex. This allows the computation of vectors or matrices in a natural way,
resulting in a native decomposition of algorithms. Multiple threads are grouped
together into equally sized threadBlocks.

37



CHAPTER 3. THEORETICAL BACKGROUND

Data can be accessed from multiple sources: Each thread has local memory assigned
and each block contains a shared memory component that is accessible by all threads
in the block. There are also additional special-purpose memories available, such as
global memory, texture memory and constant memory [51, pp. 8-12].

There are various synchronization mechanisms available that allow synchronization
between host and kernel and between different kernels or even between multiple
devices executing different kernels [56, pp. 233-237].

3.2.2.2 OpenCL

Like CUDA, OpenCL is a framework, introduced in 2009, assisting the creation of
application for parallel processing platforms. While its functionality is similar to the
CUDA language, it is not restricted to GPUs and thus can be used on a variety
of processing platforms like CPUs GPUs DSPs and FPGAs. With the usage of
OpenCL it is even possible to run one program on heterogeneous systems made of
different hardware accelerators [57, pp. 2-4]. The abstraction provided by OpenCL
is easily portable to different platforms, by simply linking the compiled program
against libraries for the underlying hardware platform [58].

The main programming models used with OpenCL are data-parallelism and task-
parallelism. Data-parallelism is similar to the SIMD model described for CUDA,
where the same task is executed on different work-items, like executing the same
operation for multiple cells of a vector in parallel. Task-parallelism describes the
technique of executing different threads on multiple processing elements for efficient
load-balancing [59, pp. 8-10]. The programming model is derived from the underlying
platform model, which consists of the host connected to one or multiple devices. The
devices can be heterogeneous where each device has its dedicated execution model.

While the host is creating the OpenCL platform and its context and manages execu-
tion of the kernels, the devices run the actual implementation of the kernels. Similar
to the kernel execution in CUDA, multiple instances of the same kernel can be allo-
cated usually arranged in two- or three-dimensional arrays of instances, pointed to
by an index, called NDRange-index [60, pp. 45-46].

The kernels can have different memory types assigned. Global memory is accessible
by all kernels, local memory is only accessible by the device, executing the kernel
and private memory is only accessible to the kernel itself [60, pp. 53-54].

Special attention was brought to the implementation of OpenCL running on Intel
FPGAs. It allows to use the C-Style language to implement applications on FPGA
fabric that formerly was only accessible by using hardware description languages like
VHDL or Verilog. Historically OpenCL was mostly used on GPUs, DSPs or other

38



3.2. PARALLEL COMPUTING PLATFORMS

hardware implementing a SIMD architecture, leading to programming styles similar
to those of CUDA.

OpenCL kernels, the C-Style representation of a function executed with OpenCL,
were executed in parallel on different data regions. This type of kernel is called
NDRange kernel within the OpenCL terminology. With the availability of OpenCL
being executed on FPGA fabric, theoretically any hardware architecture can be syn-
thesized [53, pp. 123-133]. This makes single work-item kernels possible, which could
theoretically execute a full algorithm within a single clock cycle [53, pp. 105-121].
In contrast to traditional implementations on CPUs, GPUs and DSPs, on FPGAs
parallelism is not achieved by duplicating the same generic computation hardware,
but rather only the logic the algorithm exercises .

3.2.3 Challenges for Parallel Hardware Architectures

GPU and FPGA based accelerators are working well for processing parallel tasks like
the computation of neural networks. While both perform well in accelerating parallel
processes, they implement parallelism very differently.

The following examples are showing main differences in common use cases met with
parallel processing applications on embedded hardware.

Figure 3.24: SIMD versus pipelined architecture. Image reused from [61].

Figure 3.24 shows the difference between SIMD and pipelined implementations in
hardware. Five instructions (A-E) are executed on six work items (1-6). The SIMD
can handle 3 work items at the same time, while the pipeline structure adapts to

39



CHAPTER 3. THEORETICAL BACKGROUND

the amount of instructions and work-items needed. Processing the example, the
GPU implementing SIMD strategy completes 3 work items every 5 clock cycles. The
pipelined FPGA structure can, after initial 5 clock cycles, finish one work item each
clock cycle by executing multiple instructions in parallel.

Figure 3.25: SIMD versus pipelined branching. Image reused from [61].

Figure 3.25 illustrates the difference in handling branching. While within the FPGA
all possible code paths are already established in hardware before execution, the
execution is not different from the previous example and one work item each clock
cycle can be achieved. The GPU on the other hand only handles a single instruction
at the same time, which leads to conditional execution of the single branches and thus
can lead to conditional enabling or disabling of specific work items during execution.
This behavior can in the worst-case result in an execution time that is equal to one
without parallel strategies implemented.

Figure 3.26 depicts an advantage SoC integrated FPGA can offer compared to GPUs.
While with a GPU usually all accesses to IO peripherals go through the host system,
a FPGA embedded in a SoC device has direct access to the connected peripherals
and thus, the FPGA fabric can access IO peripherals without dealing with the host
system.

Even in executing non-parallel tasks, like single work-item kernels, FPGAs can profit
from their pipelined structure. As Figure 3.27 shows how single instructions can be
pipelined while executing a loop. All instructions can be executed in parallel, where
the data executed in loop iterations work as separate work items.

However with the usage of OpenCL FPGA hardware is also partly used in a SIMD
structure: When a kernel is implemented as a NDRange kernel, the execution of the
instances of this is also performed in a SIMD structure, as it is done with GPUs.

40



3.3. PERFORMANCE INDICATORS

Figure 3.26: SIMD versus pipelined IO access. Image reused from [61].

Figure 3.27: SIMD versus pipelined loop execution. Image reused from [61].

3.3 Performance Indicators

Comparing different neural networks and their implementation can become a difficult
task. They may vary in the number of neurons and hidden layers or measurements
can be taken on different architectures. To be able to compare different implementa-
tions processing the same task, it is needed to define measurable indicators that can
distinguish different features of the network.

3.3.1 Classification Accuracy

The most important factor in the process of classifying images is the percentage
of images classified correctly. The classification accuracy is highly dependent on the

41



CHAPTER 3. THEORETICAL BACKGROUND

training data provided, so it is important to only compare networks that were trained
with the same datasets.

A good accuracy is considered 80%. An accuracy of 84.4% was achieved in the
ImageNet competition by the AlexNet network [16], which is the basis of all modern
convolutional network implementations.

3.3.2 Execution-Time per Frame

Besides how accurate a network is, another important factor is the time the network
needs to process one image. This gives a rough estimation on the implementa-
tions performance. Since different authors may implement their work on different
platforms, it should only work as a measurement for implementations on the same
platform and the same training dataset.

3.3.3 FPGA Logic Gates used

One big factor for any algorithm that is supposed to run in an FPGA device is:
Will it fit into the FPGA? FPGAs have a limited amount of different resources, like
lookup tables, logic gates or DSP blocks. After synthesizing the FPGA logic, the
clock might not be sufficient anymore, or the logic needs more resources as the chip
offers. Since FPGA prices are growing exponentially with the amount of resources
they offer, it becomes important to be able to fit the logic into a chip that is in
the projects budget. In mass production it is useful to keep the hardware costs as
minimal as possible, because those costs will reoccur and will also increase the more
devices are sold.

3.3.4 Development Cost

In most commercial projects their owner wants to push the costs to a minimum.
Cost of a software project can be measured in lines of code (LOC) that are needed
to finish the project. An amount of LOC can be estimated that a developer can
write during one day. This amount is different for different programming languages:
Programmers using C or C++ usually write less code a day as programmers writing
in Python do [62, pp. 55-56].

42



3.3. PERFORMANCE INDICATORS

3.3.5 Training Cost

Since training is usually done prior to the shipment to the end user, the time needed to
train the network does not affect the experience the user will have with the network.
However long training times increase the costs and are getting a big factor when
it comes to learning new datasets after deployment of the network or even during
runtime.

Thus, it is useful to have low training cost. The cost of training can be estimated by
the time the model needs for training.

Since the time can vary enormously between the implementation on different proces-
sor architectures, measurements should only be compared, if they were performed on
the same hardware.

3.3.6 Energy Consumption

Energy consumption of the system is very important to the end user. Usually, imple-
mentations on FPGAs are consuming less energy as the same implementation would
consume on a GPU. Since the author does not have access to all implementations dis-
cussed in this thesis, only comparisons between the used architectures can be chosen
for the comparison.

43





4 System Architecture

This chapter discusses the hardware and software architecture used in the implemen-
tation of this work.

4.1 Intel De0-Nano SoC

The hardware on which the artificial neural network is supposed to be executed de-
termines the operational speed and thus, is the biggest influence for the performance
of the network.

As shown by Nurvitadhi et al., the implementation of networks using FPGA devices
has superficial benefits over GPU and CPU. This is not only true for conventional
neural networks [63], but also for binarized neural networks. While the bitwise
structure binarized neural networks offer is suited to be implemented in custom
hardware like FPGAs, the implementation also shows a better performance to watt
ratio, outperformed only by custom ASIC implementations [64].

Intel’s SoC FPGAs integrate FPGAs with systems based around ARM processors
and peripherals into a single device. This enables the developer to run complex
parallelized tasks on the FPGA while the ARM processor handles normal system IO
operations and even may run an operating system like Linux. Usually, in the SoC
design the FPGA and ARM cores share system bus and memory and thus can access
the same peripherals. This enables the developer to share data between programs
running on the ARM cores and parallel FPGA designs. Thus, complex routines
can be outsourced to the FPGA without the overhead of transferring it to another
processor.

The SoC consists of a dual-core ARM Cortex-A9 and a FPGA part, implementing
the Cyclone V SoC (55CSEMA4U23C6N). The hard-processor-system (HPS) consists
of a microprocessor unit with dual ARM-Cortex-A9 core processors, flash memory
controllers, SDRAM interconnect, on-chip memories, several peripherals like support-
and interface peripherals, debug functionality and phase-locked-loops.

The FPGA part contains the FPGA fabric (lookup tables, multipliers, routing,
RAMs), PLLs, a control-block, high speed interface transceivers, PCIe controller and

45



CHAPTER 4. SYSTEM ARCHITECTURE

memory controllers. The FPGA fabric is a Cyclone V FPGA with 40k programmable
logic elements and 2460 Kbits embedded memory [65, p. 42]. As shown in figure 4.1,
the Cyclone V also consists of several (64) DSP blocks that offer floating-point adder
and multiplier with IEEE 754 single precision, allowing designs to be synthesized
that make use of floating-point calculations. Both, the FPGA and ARM cores have
access to all peripherals the SoC offers and all peripherals that are connected to the
board.

Figure 4.1: Block diagram of a Cyclone V DSP Block. The DSP block contains IEEE
754 floating-point adder and multiplier. Image reused from [65, p. 54].

Both, HPS and FPGA part, are connected through the HPS-FPGA-Interconnect, a
BUS system that will be explained in the following section.

4.1.1 HPS-FPGA Interconnect

To enable data being transferred between the HPS- and FPGA portion, the Cyclone
V SoC implements the HPS-FPGA interconnect, shown in figure 4.2.

The FPGA-to-HPS bridge is a high-performance bus offering configurable data
width of 32, 64 or 128 bits. It enables transactions form FPGA master to HPS slaves.
It also enables full visibility of the HPS address space [65, pp. 602-605].

The HPS-to-FPGA bridge is a high-performance bus with configurable data width
of 32, 64 or 128 bits. It enables transactions from HPS master to FPGA slaves. It
consists of a heavy- and light-weight implementation. The light weight implementa-
tion only offers a 32-bit fixed data width, which leads to faster setup times as the
full implementation [65, pp. 602-605].

The interrupt system from FPGA to HPS enables IP cores inside the FPGA to
signal interruptions up to the HPS operating system [65, p. 45].

46



4.2. NETWORK STRUCTURE

Figure 4.2: Cyclone V HPS-FPGA interconnect. Image reused from [65, p. 40].

The FPGA manager interface is an interface used for boot and configuration of
the FPGA fabric [65, pp. 166-175].

The HPS debug bridge extends the debug capabilities of the HPS to the FPGA
fabric [65, p. 45].

While the HPS portion can boot form external flash memory or JTAG, the FPGA
must be configured through the HPS or an external programmer. In the configuration
that is applied in this work, the ARM core is programming die FPGA by placing
the hardware design on an SPI Flash memory exclusively connected to the FPGA.
During boot, the FPGA is sourcing the design when the ARM core is booting.

4.2 Network Structure

The neural network implemented during the research of this thesis is based on a feed
forward network structure.

While usually convolutional networks are used for image classification tasks and show
best performances, they tend to show best performances when implemented as very
deep networks, like AlexNet [16] or even ResNet [19]. The implementation of such
big networks in low-level programming languages as well as the huge training periods
they require, would consume more time as what is allocated for the practical work
of this thesis. All expected results that can be derived from investigating binarized
feed forward networks can easily be transferred to other network types. Considering
the limited hardware on which the practical work of this thesis is supposed to run
the decision was made towards the implementation of a feed forward network.

47



CHAPTER 4. SYSTEM ARCHITECTURE

...
... ...

Hidden Layer1
4096 Neurons

Hidden Layer2
4096 NeuronsInput Layer

784 Neurons Output Layer
10 Neurons

Figure 4.3: Graph of the implemented network. The network consists of 384 input
neurons, 2 hidden layers with each 4096 neurons and an output layer of
10 neurons.

Network Layout

Figure 4.3 illustrates the network architecture. The input layer consists of 384
neurons. The EMNIST dataset is made of images of 27 ∗ 27 pixels of grey-scale
values ranging from 0 to 255. Each pixel can be translated to one input neuron in
a network, which results in 784 input neurons. The pixels grey-scale value is scaled
into a range from −1 to 1 and is afterwards binarized to the values −1 and 1.

The output layer is made from 10 neurons with binarized output values of −1 or
1. The goal of the network is to be able to classify number from 0 to 9, resulting in
10 classes, each represented by a single neuron in the output layer.

Input- and output layer are connected through one or more hidden layers. While
with a conventional network one hidden layer with less than 1000 hidden neurons is
needed show acceptable accuracy when classifying digits, binarized networks require
a minimum of 2 layers with 2048 neurons to reach an accuracy of more than 50%.
Results with an accuracy over 85% could only be reached by using 2 layers of 4096
neurons.

48



4.3. OPENCL INTEGRATION

4.3 OpenCL Integration

The usual work-flow to synthesize algorithms for FPGAs is the usage of the tool-
chain provided by the FPGA manufacturer, which involves designing the algorithm
with a hardware description language like VHDL or Verilog with respect to hardware
resources offered by the specific FPGA that is used.

An interface between host processor and FPGA has to be designed as described in
4.1.1 to transfer data between the two entities. A behavioral simulation of the design
has to be executed and potential changes to the design must be made until the
simulation behaves as described. If the simulation passes, the design is synthesized
to a netlist format, describing the final circuit with logic elements and available
FPGA resources.

After synthesis of the hardware description the design is implemented by translating
the netlist to an intermediate format with respect to timing constraints and physically
available pins of the actual chip.

The translation is followed by mapping this format to available building blocks of the
underlying FPGA fabric and a final place and route step, where the mapped blocks
are placed and connected on the real FPGA fabric in a way that respect previously
created timing constraints. With a functional simulation the designs functionality
can be verified end eventually a static timing analysis is performed to provide a
comprehensive timing report [66, Ch.4, pp. 79-104].

Since these steps require a deep knowledge of the exact FPGA fabric being used,
formulating complex algorithms with help of a hardware description language by
connecting logic blocks is a time-consuming task. With the possibility to use In-
tel’s SoC platforms with OpenCL through the SDK provided by Intel, the OpenCL
design process is drastically decreasing the time needed for implementing complex
algorithms.

The ARM core on the Cyclone V SoC is booting an embedded Linux operating system
provided by Intel, that is started from SD-card. The operating system provides an
OpenCL driver and Run-Time environment (RTE) that allows the usage of the FPGA
fabric from any application.

The application executing the binarized neural network is composed of two parts:
The host application and the OpenCL kernel running in the FPGA fabric. Figure
4.4 is illustrating the OpenCL programming model for FPGAs: The OpenCL kernel
is compiled from the kernel source file developed by the author with the help of
the OpenCL SDK compiler. It is developed in the language C and translated to
optimized VHDL or Verilog Code by the compiler, which then gets synthesized and
mapped to an FPGA image with the FPGA tool-chain and under respect of the

49



CHAPTER 4. SYSTEM ARCHITECTURE

board specific design files provided by the board manufacturer and FPGA supplier
[1, p. 7-12].

Figure 4.4: Schematic diagram of the OpenCL programming model when program-
ming Intel FPGAs. Image reused from [1, p. 7].

The host application, developed by the author, is making use of the Intel FPGA for
OpenCL SDK to provide all the functionality needed to make use of the OpenCL
kernel within the FPGA image and configuring the OpenCL RTE. It is reading the
data needed to compute the binarized neural network from SD card, allocating buffers
that can be used form the FPGA and is providing them to the OpenCL kernel.

Figure 4.5 illustrates the program flow of classifying one image. The ARM core starts
by reading the image from DDR SDRAM memory, and filling the input layer of the
neural network. For each layer it writes the data needed for processing that layer to
SDRAM and initiates the FPGA acceleration of the calculation of the dot product.

For simplification, this illustration depicts the processes executed inside the FPGA
as one single process, while in fact multiple processes are executed in parallel inside
the FPGA. A more detailed view of those processes is illustrated in 4.6.

50



4.3. OPENCL INTEGRATION

Figure 4.5: Sequence Diagram for ARM and FPGA cores accessing DDR SDRAM.

The FPGA is reading the required data and is writing back the answer to DDR
SDRAM memory. Afterwards it informs the ARM core about finishing the process-
ing. The ARM core reads back the answer and is finishing applying the activation
function to the dot product calculated by the FPGA core. After all layers of the
network are processed, the result in the output layer is verified to be the correct
representation of the data.

While in figure 4.5 the processing done in the FPGA is represented as a single thread,
figure 4.6 is providing a deeper view into the scheduling inside the FPGA. The FPGA
is calculating the dot product of a matrix of weights and a vector of activations. To
achieve this, each row of the matrix is multiplied with the activation vector and the
results are added.

51



CHAPTER 4. SYSTEM ARCHITECTURE

Figure 4.6: Sequence Diagram for OpenCL Kernels accessing DDR SDRAM.

Internally, for each row of the matrix an OpenCL kernel is executed, executing the
multiplication and addition and writing the result back to the corresponding cell in
the output vector. Those threads are executed in parallel and are scheduled by the
OpenCL scheduler subsystem. Each thread is accessing only the row in the matrix
that it needs access to, by executing its own SDRAM memory accesses.

52



5 Implementation Details

In this chapter the implementation of the neural network developed in this thesis will
be discussed. Furthermore, the transition from a conventional to a binarized network
and details about the implementation in the SoC using OpenCL are presented.

5.1 Network Implementation

The Neural network is implemented as a multilayer network where all neurons of
each layer are connected to all neurons of the next layer. Several implementations
were tested that differantiate in the number of hidden layers.

5.1.1 Input Preprocessing

While data fed into the network can be any scale, a better accuracy can be achieved
by scaling input data according to the activation functions point of operation. In the
case of the EMNIST dataset there are 28x28 pixel of grayscale images. The values
range from 0 to 255. This is resulting in 784 fields of input data. If the hyperbolic
tangent function is chosen it is useful to scale the input values between -1 and 1.
Also lots of different types of pre-filtering can be done in this step. The dynamics of
the image could easily be changed by introducing a threshold from which pixels are
stared being recognized.

5.1.2 Hidden Layers

The number of hidden layers in a neural network is usually growing with its com-
plexity. An additional layer of input neurons can be understood as an additional
step of filtering attitudes out of the image. The network is implemented in a way
that unlimited hidden layers can be implemented during initialization. Each hidden
layer can have a distinct number of neurons.

While conventional neural networks usually work with a smaller amount of neurons
inside the hidden layer, after initial testing it turned out useful to have at least 2048

53



CHAPTER 5. IMPLEMENTATION DETAILS

neurons in each layer when using binarized neural networks. State-of-the-art results
can be achieved starting with 2 layers, each consisting of 4096 neurons.

5.1.3 Activation Function

The activation function of the network reads the sum of all activations and is applying
a mathematical function f(x) to it. This function can theoretically be any function
imaginable. This network was tested with hyperbolic tangent, sigmoid, hardsigmoid
and the step function.

In binarized networks, best results were achieved with the hyperbolic tangent func-
tion. Since hyperbolic tangent has a faster changing gradient around -1 and 1 as for
example the sigmoid function does, during backpropagation the biggest changes of
the weights can be achieved. This is needed in binarized networks, since they only
support output values of -1 or 1 and need big changes in weights to make a switch
from one output value to the other happen.

Since the derivative of the hyperbolic tangent shows bigger gradients on the points
(1,1) and (-1,-1) as for example the sigmoid functions derivative, it also has bigger
potential to learn binarized networks. This justifies by the fact that during training
the back-propagation algorithm is used, where the error-signal is used as an input for
the derivation of the activation function to determine the weights deltas. Binarized
networks need big deltas in weights to change their output values from 1 to –1 or
vice versa,

With conventional networks it is rather useful to stay inside the area around the zero-
point of the activation function, since it allows intermediate instead of discrete values,
small changes in the weights are needed to work best with the SGD algorithm.

54



5.1. NETWORK IMPLEMENTATION

1

2 float act_sigmoid (float x) {
3 return 1.0 / (1.0 + (exp(double)-x));
4 }
5

6 float der_sigmoid (float x) {
7 float s = act_sigmoid (x);
8 return s*(1.0 -s);
9 }

10

11 float act_tanh (float x) {
12 return tanh(x);
13 }
14 float der_tanh (float x) {
15 return 1-pow(tanh(x) ,2);
16 }
17

18 float act_hard_sigmoid (float x) {
19 return max (0.0 , min (1.0 , (double)((x+1) /2)));
20 }
21 float act_hard_tanh (float x) {
22 return (2* act_hard_sigmoid (x)) -1;
23 }
24 float act_step (float x) {
25 return x >=0?1: -1;
26 }

Listing 5.1: Implementation of the activation functions and their derivatives

5.1.4 Weights Scaling

As described in the previous paragraph, binarized neural networks show the best
performance around the points (1,1) and (-1,-1). To guarantee this, it is required to
directly hand the weighted inputs to the activation function after integrating them.

In an artificial neuron a sum over all weights is built. While with conventional neural
networks it is useful to scale this sum by dividing it by the number of weights, in
binarized networks it turned out to decrease the performance drastically. In con-
ventional networks, linearity of an activation function is wanted, because it allows

55



CHAPTER 5. IMPLEMENTATION DETAILS

for small in the output while only providing small changed to the input value. As
introduced in chapter 3.1.4, during backpropagation a high gradient is needed

5.1.5 Forward Propagation

During forward propagation, a loop over all layers is performed, where in each itera-
tion an OpenCL kernel is executed to calculate the dot product of the weights-matrix
and the activation-vector. The implementations of all OpenCL Kernels implemented
are described in detail in section 5.2. After calculating the dot product, the neurons
activation function described in 5.1.3 is called.

5.1.6 Gradient Calculation

Courbariaux is implementing his work with help of the Theano framework, which
enables gradient calculation using complex algorithms and thus resulting in a long
training time. Since this works implementation is intended to run on embedded sys-
tems with limited resources, the choice was made to implement a simplified gradient
calculation.

The cost ∆Cost of an output neuron is calculated by Outputdesired − Outputn. The
output layers neuron output is used as an input for the activation functions derivative
and is then scaled by the factor ∆Cost ∗ LearningRate, resulting in ∆Weight

5.1.7 Binarizing Weights

Courbariaux is implementing weights binarization in the Thenao implementation in a
way that each node in the networks processing graph will binarize the weights prior
to processing. This results in redundant binarization steps, calculating the same
values for each node.

This work implements weight binarization in a way that prior to processing a new
matrix of weights is allocated, where the binary values are stored. As chapter 3.1.6.3
introduces, during training the original weights of floating point type, as well as
the binarized weights are needed, so allocating the new binarized weight matrix is
no redundant step. During each step in the training process, binarized and non-
binarized weights are updated, if needed. This reduces the amount of binarization
steps drastically and is resulting in a much faster training process.

The binarization itself is implemented by looping over all weights, while testing if
the weight is greater or equal to zero.

56



5.1. NETWORK IMPLEMENTATION

5.1.8 Network Optimizations

During implementation several optimizations were applied to the binarized network
to gain better results or lower the processing time. The following paragraphs will
present and discuss those optimizations.

5.1.8.1 Parameter Initialization

The networks weights are initialized with random numbers between -1 and 1. While
this is showing a good learning performance on networks implementing 1 hidden
layer, the performance decreases with the number of hidden layers. If the weights
of a network are too small, passing multiple layers could make the signal too small
until it reaches the output neurons. If they are too big, while passing through the
network, they may grow too big and lose their usefulness.

In [67] Glorot is presenting a method of initializing the networks parameters in a
reasonable range by making them dependent on the amount of inputs and output
connected to the layer. V ar(w) = 2

nin+nout

Glorot initialization, originally proposed by Xavier Glorot and Yoshua Bengio in [67],
is an initialization technique for weights where the variance of a layers output neuron
is tried to be made equal to the variance of its inputs.

While small networks, consisting only of a few layers, can be initialized by normal
distribution with a mean of 0.0, for deep neural network with many layers other
initialization methods allow a more efficient training.

Initializing deep networks with normal distribution and σ = 0.01 leads to the neurons
activations very close to zero. By traversing through the network and applying for
example the tanh activation for all neurons, the activations will get smaller the closer
they come to the output layer, which leads to the ”vanishing gradients” problem.
During back propagation this leads to gradients close to zero in all layers which will
result in inability to learn properly.

This could be avoided by using σ = 1.0 for initialization with normal distribution.
This can easily lead to saturation inside the activation function, so the neurons output
will be either +1 or -1, which, again, makes gradient calculation tough, because
without change in output values, the gradients will get close to zero, like they do
with small variance.

57



CHAPTER 5. IMPLEMENTATION DETAILS

Also, the exploding gradients problem can occur then weights and thus activations
get too big.

weightscale = 1/
√

2
ni + ni+1

(5.1)

Equation 5.1 describes how the weights are initialized.

5.1.8.2 Learning Rate Decay

The learning rate is one of the most important parameters to configure for neural
networks.

It is responsible for scaling ∆w and ∆b in the direction of the gradient. Low training
rates are in general more reliable because the steps taken for weight changes are
very small and the neuron’s error is recalculated with every step. The smaller these
changes, the more steps are needed to reach towards the minimum of the loss function,
so, the overall training time increases. If the learning rate is small and is reaching
a local minimum of the error function, it might not be able to leave this minimum
anymore, because the step size is too small [68]. While big changes can speed up
the training process by bringing the parameters very fast close to the desired target,
they may overshoot it and lead to a diverging behavior [69].

After each training cycle, the learning rate is multiplied by a static factor. Equation
5.2 is showing the calculation of the step size for one cycle, where n is the number of
training cycles and ηstart and ηend are the start- and end-point of the learning rate.

∆η = (ηend/ηstart)1.0/n (5.2)

Glorot Learning Rate Scaling

Analogous to the initialization of the networks weights presented in chapter 5.1.8.1,
it is useful to scale weights initialization according to Glorots parameters [67]. To
maintain those scaled values through the entire training process, also the learning
rate can be scaled by the parameters Glorot defined. This process guarantees that
the input to the activation function will stay in the range that Glorot proposes. The
final scaling parameter is calculated by equation 5.3

lrscale = 100/
√

1.5
ni + ni−1

(5.3)

58



5.1. NETWORK IMPLEMENTATION

In this implementation the factors slightly differ from Glorots proposal and the weight
initialization chosen. During implementation other network optimizations were im-
plemented and those parameters have statistically proven the best results.

5.1.8.3 Dropout

Dropout is a technique proposed in 2014 [70] that can overcome overfitting of large
networks. It evolved from the technique of adding random noise to the networks
parameters during the training process. Instead of adding noise, the network is
thinned out by randomly dropping neurons together with their connections from the
network, as figure 5.1 visualizes.

Figure 5.1: Visualization of the dropout technique. A is depicting a default neural
network. B depicts the same network thinned out by applying dropout.
Crossed units are dropped. Image reused from [70].

5.1.8.4 Shuffle Dataset

For all methods implementing the SGD algorithms it is important for all training
samples to be trained independently. While visiting the training samples in fixed or-
der, as they are represented on the storage media, reduces random access to the disk,
faster convergence of the networks approximation can be observed when accessing
the training samples in random order. For a better convergence, the samples can be
pre-shuffled on disk to increase convergence [48] [71, pp. 123].

59



CHAPTER 5. IMPLEMENTATION DETAILS

5.1.8.5 Exaggerated Targets

In the training process of neural networks, the cost for each output neurons error is
calculated and backpropagated through the network to adjust the weights. While
with conventional networks an error of 0 is almost never reached, because the out-
put neurons activations are slowly converging towards the desired output, binarized
networks do not show this behavior. Their output neurons activation function only
has binary output values of [-1, 1] or [FALSE, TRUE], which leads to the fact that
the error for some output neurons activation is 0, but the result still is wrong. The
network paths leading to this result will not be touched during the learning process.
Since in the training of binarized networks with the stochastic gradient descent algo-
rithm, weights are, like in the training of conventional networks, adjusted by small
changes to reach the global minimum of their error function.

For classification problems this can lead to problems: Most output activations are
supposed to be FALSE, while only one output is supposed to be TRUE. In a situation
where, during classification of numbers from 0 to 9, the wrong class is detected, only
the path of 2 output neurons would be adjusted, while 8 are considered to have
reached their global minimum. This can lead to long training times, because after
the network made some initial learning progress, only few weights are adjusted at
each training cycle.

In neuroscience, the Hebbian theory [72] describes a basic mechanism for the adap-
tation of neurons in the brain during a learning process. Hebb describes:

Let us assume that the persistence or repetition of a reverberatory activ-
ity (or ”trace”) tends to induce lasting cellular changes that add to its
stability.[. . . ] When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased.

This theory can be summarized as ”What fires together wires together” and is a
mechanism that can be observed often in nature: People tend to adapt behavioral
pattern that work well in certain situations. A view on the same theory on a meta-
scale. The theory can be interpreted and transferred to the problem in a way that
connections between neurons should get stronger if they lead to the desired output.

Applying this theory to the problem described can be done by exaggerating the
training data in the case of not detecting any error as shown in listing 5.2. By scaling
the exaggeration with the learning rate, it can be adjusted through the learning
process. During the end of the training, exaggeration will have less impact on the
network, to avoid vanishing gradients.

60



5.1. NETWORK IMPLEMENTATION

1 float CostFunction (float input , float target)
2 {
3 if(input == target) {
4 float scale = scaleParameter * target;
5 target += scale * learningRate ;
6 }
7 return input - target;
8 }

Listing 5.2: Exaggerating the error of a neurons activation.

5.1.8.6 Converging Activation Function Replacement

To the user, the time needed for executing forward propagation is directly influencing
the experience the user has with the network. The faster a network can classify an
image, the more responsive it is.

One factor that can influence the forward propagation time is the type of activation
function used in all neurons. On most hardware computational expensive functions
like trigonometric functions are implemented with a combination of lockup tables
and interpolation, which can lead to high computation times. Since this function is
executed once for every neuron in the network, optimizations show a great influence
on execution time.

As shown in chapter 3.1.5, the backpropagation algorithm requires differentiable
functions to show best performance. Since easy to compute functions, like the step
function or a saturated linear function are not differentiable or have a derivative of 1
for certain input ranges, they should be avoided to be used with the backpropagation
algorithm.

An optimization to overcome the problematic, while still being able to make proper
use of the backpropagation algorithms advantages is to use functions that converge
around the desired input range. Examples of converging functions are presented in
5.2. While during backward propagation the computationally expensive function
f(x) is used, during forward propagation, it can be replaced by a simpler function
g(x) that converges to f(x) in the desired input range.

This modification only shows good performance with binarized networks, because of
the binarized output of the activation function, which allows a big input range to
produce no change the functions resulting output value.

61



CHAPTER 5. IMPLEMENTATION DETAILS

−4.0−3.5−3.0−2.5−2.0−1.5−1.0−0.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−1.0

−0.5

0.5

1.0

x

y
f(x) = 2

1+e−5x − 1
f(x) = tanh(x)
f(x) = tanh(2x)

g(x) = sat(2x)[−1, 1]

Figure 5.2: Converging functions that can replace each other.

5.2 OpenCL Implementations

To be able to record and compare measurements of different version of he neural net-
work, several OpenCL kernels were created. All the implementations use a mixture
of a NDRange kernel and a single-work-item kernel. The weights matrix consists of
n rows and n−1 columns, where n is the amount of neurons of the layer that will be
calculated and n−1 is the previous layers number of neurons.

Each row of a matrix calculation is implemented as a single-work-item kernel, mean-
ing all the operations executed for processing this row are executed within one execu-
tion cycle of the kernel. Processing of multiple rows is done by executing them inside
a NDRange kernel. In NDRange kernels multiple threads of the same kernel-code
are pipelined and executed by a thread scheduler.

Inside the single work item kernel all loop-carried dependencies were removed, by
simply pre-caclulating them before the loop executes [53, p. 106]. All loops and
nested loops have integer bound exit conditions to speed up execution and pointer
aliasing is avoided by making proper use of the restrict keyword [53, p. 121].

5.2.1 Matrix Dot Product

Listing 5.3 is presenting an OpenCL kernel implementing a matrix dot product, which
is used for processing inside conventional neural networks.

62



5.2. OPENCL IMPLEMENTATIONS

1 __kernel void vectorMult
2 ( __global const float * restrict weight ,
3 __global const float * restrict input_neuron ,
4 __global float * restrict output , int input_length )
5 {
6 // get index of the work item
7 // this equals the row we are processing
8 int index = get_global_id (0);
9 // row iterator

10 int it_r = index * input_length ;
11 int sum = 0;
12 // iterate through cols (it_r + i)
13 // apply weight to input and sum up
14 for(int i=0;i< input_length ;i++)
15 {
16 sum += weight[it_r + i] * input_neuron [i]);
17 }
18 // write sum into output buffer
19 output[index] = sum;
20 }

Listing 5.3: Implementation of a matrix dot product in OpenCL.

The kernel receives 2 input buffers for the neurons weights and the previous layers
activation output, as well as an output buffer for this layers activation output. To
allow optimization, the pointers to those buffers have the restrict type qualifier set.
This indicates to the compiler that the memory the pointer points to is only ac-
cessed through this pointer. This is avoiding pointer aliasing and allows the OpenCL
compiler to implement caching optimizations.

Multiple threads of this kernel are instanced and scheduled by the OpenCL framework
to process all the matrix’s rows. An index is assigned to each thread, representing the
rows index. This index can be read inside the kernel by receiving the global id from
the OpenCL framework. This is done by calling the function get_global_id(0).

The offset of the row to be processed in this kernel instance is calculated by the
number of matrix columns multiplied by the amount of neurons inside the previous
layer: it_r = index * input_length;

The sum of all weighted input is built by looping over all elements of the row that
is processed and multiplying them with the last layers output of the corresponding
neuron: sum += weight[it_r + i] * input_neuron[i]; After the sum is build,
it is written back to the output buffer at the index of the thread.

63



CHAPTER 5. IMPLEMENTATION DETAILS

5.2.2 XNOR Product

Listing 5.4 is showing the processing of the XNOR product within an OpenCL kernel.
It is implemented analogous to the previously discussed dot product.

1 __kernel void vectorMult
2 ( __global const unsigned char * restrict weight ,
3 __global const unsigned char * restrict input_neuron ,
4 __global float * restrict output , int input_length )
5 {
6 // get index of the work item
7 // this equals the row we are processing
8 int index = get_global_id (0);
9 // row iterator

10 int it_r = index * input_length ;
11 int sum = 0;
12 // iterate through cols (it_r + i)
13 // apply weight to input (xnor) and sum up
14 for(int i=0;i< input_length ;i++)
15 {
16 sum += (weight[it_r + i] == input_neuron [i]) ?1: -1;
17 }
18 // write sum into output buffer
19 output[index] = sum;
20 }

Listing 5.4: Implementation of the XNOR product in OpenCL.

Since the XNOR product is used in binarized neural networks, the floating point
input buffers can be replaced by buffers of the data type char. For optimization
purposes, the output buffer still has the data type float. This is done, because the
output values of the kernel still have to be used as the activation functions input
parameters which are supposed to be floating point values.

The main difference to the kernel computing the dot product is how the weighted
inputs are calculated: The multiplication from the dot product is replaced by the
XNOR logic function: weights[it_r + i] == input_neuron[i];. In C-Style pro-
gramming languages, the XNOR function can be represented by the equality opera-
tor ==. As shown in table 3.1 the output of the XNOR function is only 1 if the input
values are equal.

64



5.2. OPENCL IMPLEMENTATIONS

5.2.3 Compressed XNOR Product

1 __kernel void vectorMult
2 ( __global const unsigned int * restrict weight ·,
3 __global const unsigned int * restrict input_neuron ·,
4 __global int * restrict output , int input_length ,
5 int process_max )
6 {
7 // get index of the work item
8 // this equals the row we are processing
9 int index = get_global_id (0);

10 // row iterator
11 int it_r = index * input_length ;
12 int sum = 0;
13 int to_process = process_max ;
14 // iterate through cols (it_r + i)
15 // apply weight to input and sum up
16 for(int i=0;i<= input_length ;i++)
17 {
18 for(int bit =0;bit <32; bit ++)
19 {
20 if( to_process )
21 {
22 char a = (weight[it_r + i] >> bit) & 0x1;
23 char b = ( input_neuron [i] >> bit) & 0x1;
24 sum += (a == b)?1: -1;
25 to_process --;
26 }
27 }
28 }
29 // write sum into output buffer
30 output[index] = sum;
31 }

Listing 5.5: Implementation of the compressed XNOR product in OpenCL.

For calculating the compressed XNOR product, as shown in listing 5.5, input values
for weights and the output of last layers neurons are compressed by only using 1 bit
for each values representation. 32 bits are stored inside an unsigned integer.

To process the XNOR operation from the compressed buffers, the bits must be un-

65



CHAPTER 5. IMPLEMENTATION DETAILS

compressed by using the shift operation (x >> bit) & 0x01. Since it can not be
guaranteed that the amount of weights or inputs are multiples of 32, the exact amount
must be set as the input parameter process_max.

Usually the XNOR operation could be implemented as a bitwise operation over the
whole 32 bit integer by negating a XOR operation: xnor = ˜(AˆB). It was chosen
not to use this implementation, because still the sum of the results of the XNOR
operation has to be built by looping over all bits. Doing the bitwise operation while
still implementing the loop would use more resources.

66



6 Analysis

In this chapter performance measurements of practical outcome of this thesis will be
presented. They will be discussed according to the performance indicators defined in
this thesis and compared to measurements of conventional neural networks as well
as to other authors results.

6.1 Performance Measurements

The following section will present measurements of implementations of a neural net-
work predicting the EMNIST classification benchmark

The implemented network consists of one input layer, one output layer and one or
two hidden layers with 4096 neurons each. Measurements on processing times of the
single layers are taken and presented.

6.1.1 Classification Accuracy

The classification accuracy is the percentage of images classified correctly. Figure
6.1 lists the accuracy for different implementations of MNIST handwritten number
classification. Compared are four implementations derived from this thesis and two
implementations implemented by other authors.

Implementation Classification Accuracy
1 Hidden Layer ANN 97%
1 Hidden Layer XNOR 87%
2 Hidden Layer ANN 98%
2 Hidden Layer XNOR 92%
Huynh 97%
Courbariaux 96%

Table 6.1: Classification Accuracy for different network models.

67



CHAPTER 6. ANALYSIS

The networks implemented in this paper are 1 and 2 hidden layer implementations
of the XNOR network and a conventional network with its operating point close to
(0,0). While the conventional implementation gives an accuracy 0f 97-98%, the BNN
implementation gives accuracy of 87-92%. Huynh states and accuracy of 97% [9],
Courbariaux 96% [8].

6.1.2 Execution-Time Per Frame

Besides the accuracy of the network, the execution time is a good measurement for
the networks performance. The following tables show processing times for ARM-
only implementations compared to FPGA-accelerated implementations of the same
network. The measurements only contain the kernels processing time, excluding the
time needed to transfer the images from ARM to FPGA core. This is done, because
in a real-life scenario images are usually coming from an outside source, like a camera.
Since the FPGA core has direct access to all the SoCs peripherals, the measurements
of interest are the raw kernel processing times.

ARM Implementation

Table 6.2 is showing the processing time for the layers involved in performing the
classification. The column ANN lists timings for the conventional artificial neural
network implementation, using floating-point multiplication for weights and activa-
tions. Column XNOR shows timings for the XNOR implementation of the network
using 8-bit integers to store weights and activations. The column Compressed lists
timings for the compressed XNOR network, where weights and activations are stored
as 1-bit values.

Resource ANN XNOR Compressed
Hidden Layer 1 (784x4096) 308.066 ms 103.102 ms 144.344 ms
Hidden Layer 2 (4096x4096) 1654.475 ms 687.858 ms 963.014 ms
Output Layer (10x4096) 4.047 ms 1.683 ms 2.641 ms
1 Hidden Layer Network 312.145 ms 131.783 ms 147.028 ms
2 Hidden Layer Network 1966.782 ms 819.191 ms 1110.042 ms

Table 6.2: Timings for ARM-based implementation of a conventional artificial neural
network.

68



6.1. PERFORMANCE MEASUREMENTS

SoC ANN Implementation

Table 6.3 lists processing times using the ARM core and accelerating matrix opera-
tions with the FPGA. The column ANN lists timings for the conventional artificial
neural network implementation, using floating-point multiplication for weights and
activations. Column XNOR shows timings for the XNOR implementation of the
network using 8-bit integers to store weights and activations. The column Com-
pressed lists timings for the compressed XNOR network, where weights and activa-
tions are stored as 1-bit values.

Resource ANN XNOR Compressed
Hidden Layer 1 (784x4096) 45.812 ms 45.315 ms 32.966 ms
Hidden Layer 2 (4096x4096) 458.964 ms 439.686 ms 205.096 ms
Output Layer (10x4096) 2.529 ms 1.802 ms 1.612 ms
1 Hidden Layer Network 48.341 ms 46.952 ms 34.578 ms
2 Hidden Layer Network 507.305 ms 486.803 ms 239.674 ms

Table 6.3: Timings for SoC-based implementation of a conventional artificial neural
network.

6.1.3 FPGA Logic Gates used

Table 6.4 lists the amount of FPGA resources used in different implementations of
image classification networks running on FPGA hardware. Listed are other authors
implementations compared to 3 different implementations derived from this work:
An artificial neural network using floating point weights and activations and imple-
menting floating point calculation, the XNOR implementation using 8-bit weights
and activations with the values -1 or 1 and the compressed version, using 1-bit rep-
resentation of weights and activations. A detailed usage of resources from these
implementations is listed in table 6.5.

Resource ALUTs Registers Logic DSP Blocks Memory Blocks
Multiplication 8,992 10,679 38% 3 62
XNOR 8,316 10,236 37% 2 60
Compressed 8,570 10,470 38% 2 63
Huynh 63,454 44,080 92% 64 N/A
Park-Sung 121,173 130,802 N/A 900 232
wang-et-al N/A 16,356 84% 93 65

Table 6.4: FPGA Resources allocated compared between different implementations.

69



CHAPTER 6. ANALYSIS

Park and Sun [10] implement a network using only 3 bits for storing the networks
weights. The network consists of 784-1022-1022-1022-10 neurons, so 3 hidden layers
are implemented. 100 images are preloaded in the FPGAs internal memory and are
iterated during runtime.

Wang et al. [11] implement a discrete model in FPA hardware only. The images are
preprocessed by de-noising, edge amplifying, binarization and removing redundant
information. Afterwards the images are fed into a network consisting of 784-500-
500-2000-10 neurons, so 3 hidden layers are implemented. The image classified is
preloaded into the FPGA’s internal memory and there is no mechanism for changing
the picture during runtime.

Huynh [9] implements different version of a network, ranging from 784-40-10 to 784-
126-126-126-10. For this measurement an implementation of 784-40-40-40-10 is con-
sidered. The network uses 16-bit floating point weights and activations.

Resource Multiplication XNOR Compressed max
ALUTs 8,992 8,316 8,570 N/A
Registers 10,679 10,236 10,470 N/A
Logic 38% 37% 38% 15,880
I/O Pins 103 103 103 314
DSP BLOCKS 3 2 2 84
Memory Bits 347,360 346,240 362,880 2,764,800
M10K blocks 62 60 63 270
max fanout 615 606 609 N/A

Table 6.5: Resources allocated in FPGA for different kernels

6.1.4 Training Cost

Table 6.6 is presenting the average training times for different network implementa-
tions. Compared are the implementation described in [5], implemented in the Theano
framework using the Python programming language and the implementations devel-
oped in this thesis, all implemented in C++.

The training was performed on an Intel(R) Core(TM) i5-2520M CPU clocked at
2.50GHz. The measurements were taken after performing 60000 training cycles on
28x28 pixel grey-scale images.

70



6.2. EVALUATION OF KPI

Resource 1h layer training 2h layer training
Courbariaux 9682 min 21547 min
Multiply 1263 min 8154 min
XNOR 242 min 843 min
Compressed 256 min 867 min

Table 6.6: Training Times for different network implementations.

6.1.5 Development Cost

The development cost of a software project can be measured in lines-of-code (LOC)
the finished product implements [62, pp. 55-56]. Table 6.7 is listing the average
amount of lines-of-code derived from several GitHub projects implementing the MNIST
dataset benchmark and from the project described in this thesis.

Resource Lines-Of-Code
VHDL 25470
Verilog 12684
OpenCL(ARM+FPGA 2026
OpenCL(FPGA-only) 47

Table 6.7: Training Times for different network implementations.

6.2 Evaluation of KPI

In this section measurements of key performance indicators listed in the previous
section are evaluated.

6.2.1 Classification Accuracy

As seen in table 6.1, all models under investigation show state-of-the-art results
> 85% classification accuracy. While conventional neural networks already show
results > 90% with just one hidden layer with only, binarized neural networks dras-
tically improve by involving a second hidden layer, both containing at least 2048
neurons. This can be explained by the fact that conventional networks implement
the activation function being able to output all possible values between -1 and 1.
Like this it is quite easy to identify a trend the output will follow: The output value
will shift more and more towards the correct value and already by seeing a result
of 0.2 instead of 1.0, a trend of the outcoming value can already been foreseen and

71



CHAPTER 6. ANALYSIS

a lower threshold can be applied. With a lowered threshold, the training time can
drastically be shortened compared to training models of the XNOR network.

Compared with other authors implementations, the XNOR implementation presented
in this thesis is showing slightly less classification accuracy. While other authors
implementations require a training time ranging from several days up to weeks, this
model is trained in less than 1 day. Additionally, optimizations implemented in other
authors implementations are not implemented in this thesis’s work. Those include
batch normalization and complex gradient calculation.

6.2.2 Execution-Time per Frame

The execution-time per frame is drastically lowered by accelerating the network with
the FPGA core compared to an ARM-only implementation. Due to the FPGAs
capability of parallelizing tasks, all weights of a neuron can be processed at once,
while on ARM all calculations are executed serialized.

While the XNOR implementation is showing a high accelerating potential over the
floating-point multiplication on an ARM core implementation, it has almost no im-
pact using OpenCL running on FPGA fabric. Modern FPGA systems contain DSP
blocks that implement native floating-point accelerators [73]. Using floating-point
accelerators, a floating-point calculation can be processed within one clock cycle
which is the same timing a XNOR operation stored in a flipflop has. By compressing
the network to only use 1-bit per weight and activation, even more operations can
be parallelized. Since OpenCL uses C-style datatypes, 32 weights are stored into a
32-bit integer, instead of one weight per integer.

Thus, the biggest difference can be achieved when accelerating conventional artificial
networks with OpenCL running on FPGA fabric.

Resource 784x4096 4096x4096 10x4096 1h - 4096 2h - 4096
ARM-mult 308.066 ms 1654.475 ms 4.047 ms 312.145 ms 1966.782 ms
ARM-xnor 103.102 ms 687.858 ms 1.683 ms 131.783 ms 819.191 ms
ARM-comp 144.244 ms 963.014 ms 2.641 ms 147.028 ms 1110.042 ms
SoC-mult 45.812 ms 458.964 ms 2.529 ms 48.952 ms 507.305 ms
SoC-xnor 45.315 ms 439.686 ms 1.802 ms 46.952 ms 486.803 ms
SoC-comp 32.966 ms 205.096 ms 1.612 ms 34.578 ms 239.674 ms

Table 6.8: Speed for matrix operations with different kernels

As table 6.8 shows, the processing time on ARM architecture is growing linear with
the networks size. It takes 7.8 times longer to process a kernel with 784 neurons, as it

72



6.2. EVALUATION OF KPI

takes processing one with 10 neurons. Using the FPGA architecture, it is possible to
parallelize processing, leading to non-linear growth of processing time over network
sizes.

50 100 150 200 250 300 350

XNOR-Compressed

XNOR

Multiplication

34.58

46.95

48.34

147.03

131.78

312.15

execution time (ms)

ARM
SoC

Figure 6.1: SoC kernel timings in comparison to ARM kernel timings for 1 hidden
layer network.

500 1,000 1,500 2,000 2,500

XNOR-Compressed

XNOR

Multiplication

239.67

486.8

507.31

1,110.04

819.19

1,966.78

execution time (ms)

ARM
SoC

Figure 6.2: SoC kernel timings in comparision to ARM kernel timings for 2 hidden
layers network.

73



CHAPTER 6. ANALYSIS

6.2.3 FPGA Logic Gates used

As shown in figure 6.3, using OpenCL to implement the compressed XNOR im-
plementation is drastically saving FPGA resources compared to all other authors
implementations. This is mainly due to the fact that the algorithm is only partly
executed inside the FPGA. The FPGA does not take care of loading images or iter-
ating through single layers. Only the matrix multiplication is accelerated inside the
FPGA which is implemented in a way that the same implementation can be reused
for all sizes. A downside of this implementation is that for small kernel sizes, which
usually cold be parallelized to execute in just 1 clock cycle, the execution time is
slightly higher as expected and thus saving almost no time compared to the ARM
implementation.

ALUTs Registers Logic DSPs Memory
0

50

100

150

200

250

300

R
es

ou
rc

e
U

til
iz

at
io

n
in

%
of

re
fe

re
nc

e

XNOR
Huang

Park-Sun
wang-et-al

Figure 6.3: Comparison of logic utilization for different implementations.

74



6.2. EVALUATION OF KPI

6.2.4 Training Cost

As shown in Table 6.6, a native implementation in C++ is drastically decreasing
the training time needed for learning a dataset of 60000 images, compared to an
implementation using the Python programming language and the Theano framework.
While Courbariaux’s implementation needs up to 2 weeks for learning the dataset, the
same operation can be achieved in 14 hours using a native C++ implementation.

This can mostly be explained by the way the Theano framework is performing net-
work operations. Theano is internally building a network graph where all operations
are an entity fully able to work on its own. The graphs nodes are executed serialized,
where for each operation the network is binarized before and de-binarized after the
operation. Also, the implementation includes additional steps to optimize the learn-
ing, like building a mean over a matrix of weights. This can be visualized by having
each node in the graph performing a full loop over the networks neurons, executing
just one operation. Together with the (de-)binarization, for each node in the graph
there are 3 loops over all networks neurons.

The native C++ implementation is not implemented as a graph, and thus can make
use of optimizations like loop unrolling, where multiple operations can be performed
in just one loop over the networks neurons.

Also, the usage of the programming language itself is an explanation for the low
training-time: Python is an interpreted dynamic language, meaning in its basic form,
each line of code is interpreted and executed during runtime, while in C++ the com-
piler can produce highly optimized code during compile time. The implementation
of basic features in the language differ a lot. A loop in Python for example is, when
using the range implementation, very different from the for loop in C++: First, all
elements described in the range function are pre-calculated to build an input vector.
This vector is then used in a for-each-style loop to execute the operations on it’s
elements. In C++ at the end of each loop the next elements in calculated, which
eliminates the pre-calculation of the input vector. When using a big range of inputs,
like it is usually done in neural networks, this pre-caclulation can have a big impact
on execution time. Iterating through a simple hidden layer of 4096 neurons is ba-
sically resulting in 4096 ∗ 4096 = 16777216 operations of multiplying weights with
inputs.

Another big factor for the savings in training cost the the usage of the training
optimization method of exaggerated targets that is drastically reducing the number
of training cycles need until a neuron shifts towards its optimum value.

75



CHAPTER 6. ANALYSIS

6.2.5 Development Cost

The difference in lines-of-code, listed in Table 6.7, can be explained by the choice
of programming language and the level of hardware abstraction OpenCL offers. As
Table 6.9 shows, the intermediate VHDL and Verilog code, the OpenCL compiler
generates for this project has 581494 lines of code. Compared to the 47 lines of code
needed for writing the FPGA kernel itself, this is scaled by a factor of approximately
10000. The resulting VHDL or Verilog code contains functionalities for transferring
memory from the ARM cores to the FPGA fabric and back and brings state machines
for executing the main software’s threads, as well as helper threads, executing the
data transfer or pre-calculating resources.

Language Lines-Of-Code
VHDL 430634
Verilog 150860
Sum 581494

Table 6.9: Resulting lines-of-code in the intermediate code OpenCL generates.

Besides just comparing the lines of code needed for solving the problem, the devel-
opment cost also includes the complexity of the act of writing the code. Writing
VHDL and verilog code forces the developer to bring hardware architectural knowl-
edge, since all operations have to be implemented on a register level. In comparison
writing OpenCL code let the developer focus on solving the problem or algorithm on
a higher abstraction level, without taking care of FPGA resources. So not only the
time needed to write 1 lines of code is considered longer for writing VHDL code, also
the salary of a VHDL developer is usually higher, so overall the usage of OpenCL is
drastically lowering the development costs.

76



7 Conclusions

This chapter concludes the thesis with a discussion of its findings and contributions.
Limitations, as well as outlines will be pointed out and directions for future research
will be discussed.

7.1 Summary

The achievements of this work show that the implementation of binarized neural
networks on FPGA devices is possible in real-life scenarios. It is measurably faster
and more resource-friendly as the usage of conventional neural networks without
trading the networks precision. In terms of classification accuracy state-of-the-art
results could be achieved by using a binarized network without significantly increasing
the networks size. Thus, this work confirms the theoretical assumptions and first
proofs of concept of Courbariaux et al.

The matured implementation unfolds additional advantages: Binarized neural net-
works are not simply calculating faster, they also can be implemented with less
complexity by using OpenCL and SoCs with integrated FPGA fabric. With the us-
age of OpenCL the development process could be speed up, resulting in less lines of
code, that are easily maintainable, because of C-Style language. Compared to a na-
tive FPGA implementation less knowledge of the underlying hardware architecture
is needed to write and maintain the algorithm. This leads to decreased development
costs compared to an implementation using only hardware description languages.
Not only the amount of code is reduced, also the resulting number of logic gates
within the FPGA is drastically smaller as with other implementations.

The OpenCL framework allows development of the algorithm and source code on
normal hardware like a generic laptop’s CPU and after testing verification, the algo-
rithm can be easily ported to any supported hardware architecture by linking against
the OpenCL FPGA SDK. Using a SoC as a target platform, that is combining ARM
cores with an FPGA core is a good alternative to using ARM-only or FPGA-only
implementations. All parallelizable tasks can be outsourced to the FPGA, while still
having the convenience of a general-purpose processor and the easy access it offers
to lots of peripherals.

77



CHAPTER 7. CONCLUSIONS

The binarized network maps very well on FPGA logic and only needs up to 30
percent of the FPGAs resources. Since modern FPGA fabrics offer DSP blocks
implementing IEEE 754 floating point calculation, the biggest improvement over
conventional networks is not the reduction to XNOR calculation, but the possibility
to compress the networks weights to only a single bit, reducing data transfers and
the amount of logic needed to process the network. This is showing big potential
for storing and transferring pre-trained networks on small-footprint devices or when
sharing network models with cloud providers.

Not only the execution time of the network is drastically lowered by accelerating it
with a FPGA. Compared to other authors, this implementation uses less FPGA logic
elements and due to OpenCL technology, the development time is drastically lowered,
compared to an FPGA-only implementation. The time to train a network is reduced
by accelerating the feed forward step inside the FPGA. A big reduction of training
times could be achieved by the method of exaggerated targets during training, where
a disadvantage of the binarization is compensated: While the outputs of binarized
networks can only be true or false without any intermediate values, no cost can
be evaluated if the neuron is showing the correct result, which leads to very long
training times. The method of exaggerated targets if overcoming this disadvantage
by overdrawing the aimed target values, leading to a big reduction of training times
and thus, a reduction of overall cost.

While binarized networks tend to grow bigger as conventional networks, the overall
computational complexity is reduced, because of easier accessible calculations and
compressed weights, resulting in an overall reduced power consumption due to less
operations needed to process the network, which also leads to less need of cooling
the systems and thus, they are a perfect fit for usage in big data-centers.

During implementation it was noticed that without any tweaks to the learning al-
gorithm, binarized networks do not perform very well: Learning rate scaling is very
important. Binarized networks need to start with a big learning rate. Otherwise it
takes too much training cycles to reach an acceptable result. Also, Glorot scaling of
the initialization parameters is very important. Like this, certain neurons have bigger
impact on the output value and good results can be achieved faster. By exaggerating
the networks error, correct results can still lead to proper learning and thus decrease
training time.

78



7.2. FUTURE WORK

7.2 Future Work

This work could prove the feasibility of implementing binarized neural networks using
OpenCL on FPGA fabric.

Outsourcing other steps performed within the backpropagation algorithm could im-
prove training times drastically. Steps within the backpropagation algorithm are
very similar to the dot product accelerated in this work. They are implemented
as multiplications of matrices and vectors. and thus, could easily be ported to be
executed within the FPGA core.

This thesis did not examine the problem of memory bandwidth between ARM core
and FPGA. This should also be addressed by further research. The full network
initialization data could be placed in memory cells within the FPGA to achieve
higher bandwidth and avoiding redundant transfers of the networks weights.

While this work is using dynamic kernels that can be reused with any network size,
the algorithm could be even further parallelized by implementing static kernels for
specific kernel sizes. Multiple kernels implementing memory pipelines could be used
to transfer ones kernels result to the next kernels which can use them as input pa-
rameters. This would even lower processing times further and would avoid unneeded
memory transfers between ARM- and FPGA core.

The next iteration step should implement convolutional neural networks using this
technique, which would enable classification of sub-images inside a big image that
can be classified in any angle. Also, the image source should not be a static picture
that is fed from ARM core to the FPGA, but rather be a live image from a camera
source, directly fetched by the FPGA. By training the network with the CIFAR-100
dataset, classes of real-life objects can be classified instead of handwritten numbers.
Implementing multiple kernels in parallel would enable a real-time classification of
all detectable objects within a camera stream.

Attaching the FPGA driven convolutional network to a cloud service, images of
unidentified object can be automatically sent to the cloud provider and be identified
by other ways, for example by humans. These new datasets can then be used to
train an updated model of the network which is sent back to the processing system.
Like this the network could easily adapt to changes in the environment.

79





Bibliography

[1] Intel FPGA SDK for OpenCL Pro Edition - Programming Guide, Intel.

[2] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale convolu-
tional networks,” in IJCNN. IEEE, 2011, pp. 2809–2813.

[3] L. Zhang, X. Wu, and D. Luo, “Real-time activity recognition on smartphones
using deep neural networks,” in 2015 IEEE 12th Intl Conf on Ubiquitous Intelli-
gence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted
Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Com-
munications and Its Associated Workshops (UIC-ATC-ScalCom), Aug 2015, pp.
1236–1242.

[4] A. Sehgal and N. Kehtarnavaz, “A convolutional neural network smartphone
app for real-time voice activity detection,” IEEE Access, vol. 6, pp. 9017–9026,
2018.

[5] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural networks
with weights and activations constrained to +1 or -1,” vol. abs/1602.02830,
2016. [Online]. Available: http://arxiv.org/abs/1602.02830

[6] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” Computer Vision –
ECCV 2016, vol. 9908, pp. 525–542, 10 2016.

[7] M. Kim and P. Smaragdis, “Bitwise neural networks,” International Conference
on Machine Learning (ICML) Workshop on Resource-Efficient Machine Learn-
ing, 2015.

[8] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: Extending mnist
to handwritten letters,” in 2017 International Joint Conference on Neural Net-
works (IJCNN), May 2017, pp. 2921–2926.

[9] T. V. Huynh, “Deep neural network accelerator based on FPGA,” in 2017 4th
NAFOSTED Conference on Information and Computer Science, Nov 2017, pp.
254–257.

81

http://arxiv.org/abs/1602.02830


Bibliography

[10] J. Park and W. Sung, “FPGA based implementation of deep neural networks us-
ing on-chip memory only,” in 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), March 2016, pp. 1011–1015.

[11] Wang, Yang, Xu, and Fu, “Design of FPGA-based handwriting image recogni-
tion system,” in International Information and Engineering Technology Associ-
ation, Advances In Modelling and Analysis B, vol. 60, no. 2, 2017, pp. 493–504.

[12] L. Deng, “The mnist database of handwritten digit images for machine learning
research [best of the web],” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, Nov 2012.

[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “Imagenet large scale visual recognition challenge,” Int. J.
Comput. Vision, vol. 115, no. 3, pp. 211–252, Dec. 2015. [Online]. Available:
http://dx.doi.org/10.1007/s11263-015-0816-y

[14] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int.
J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004. [Online]. Available:
https://doi.org/10.1023/B:VISI.0000029664.99615.94

[15] R. T. Ionescu and M. Popescu, Knowledge Transfer between Computer Vision
and Text Mining, 01 2016.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in Proceeding of the International Conference on
Learning Representations (ICLR), 2015, pp. 1–14.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2015, pp. 1–9.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, pp. 770–778.

82

http://dx.doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1023/B:VISI.0000029664.99615.94
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


Bibliography

[20] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convo-
lutional neural networks,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016, pp. 2414–2423.

[21] E. Schikuta and E. Mann, “N2sky — neural networks as services in the clouds,”
in The 2013 International Joint Conference on Neural Networks (IJCNN), Aug
2013, pp. 1–8.

[22] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolutional
neural networks,” J. Emerg. Technol. Comput. Syst., vol. 13, no. 3, pp.
32:1–32:18, Feb. 2017. [Online]. Available: http://doi.acm.org/10.1145/3005348

[23] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolu-
tional neural networks for resource efficient transfer learning,” in Proceeding of
the International Conference on Learning Representations (ICLR), 2017.

[24] Y. L. Cun, J. S. Denker, and S. A. Solla, “Advances in neural information
processing systems 2,” D. S. Touretzky, Ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1990, ch. Optimal Brain Damage, pp. 598–605.
[Online]. Available: http://dl.acm.org/citation.cfm?id=109230.109298

[25] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.

[26] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017, pp. 1800–1807.

[27] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[28] M. Courbariaux, Y. Bengio, and J. David, “Low precision arithmetic
for deep learning,” CoRR, vol. abs/1412.7024, 2014. [Online]. Available:
http://arxiv.org/abs/1412.7024

[29] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang, “Applied machine learning at face-
book: A datacenter infrastructure perspective,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb 2018,
pp. 620–629.

83

http://doi.acm.org/10.1145/3005348
http://dl.acm.org/citation.cfm?id=109230.109298
http://arxiv.org/abs/1412.7024


Bibliography

[30] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,
R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,
R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,
D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
and D. H. Yoon, “In-datacenter performance analysis of a tensor processing
unit,” in Proceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 1–12.
[Online]. Available: http://doi.acm.org/10.1145/3079856.3080246

[31] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,
S. Heil, M. Humphrey, P. Kaur, J. Y. Kim, D. Lo, T. Massengill, K. Ovtcharov,
M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger, “A cloud-
scale acceleration architecture,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Oct 2016, pp. 1–13.

[32] P. Sundararajan and C. Kulkarni, “Data store acceleration-as-a-service on
amazon fpga instances,” 2017. [Online]. Available: https://www.xilinx.com/
support/documentation/product-briefs/reniac-aws-f1.pdf

[33] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, J. Gray, M. Haselman, S. Hauck,
S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, E. Peterson, A. Smith,
J. Thong, P. Y. Xiao, D. Burger, J. Larus, G. P. Gopal, and
S. Pope, “A reconfigurable fabric for accelerating large-scale datacenter
services,” in Proceeding of the 41st Annual International Symposium on
Computer Architecture (ISCA). IEEE Press, June 2014, pp. 13–24.
[Online]. Available: https://www.microsoft.com/en-us/research/publication/
a-reconfigurable-fabric-for-accelerating-large-scale-datacenter-services/

[34] F. Rosenblatt, Principles of neurodynamics: perceptrons and the theory of brain
mechanisms, ser. Report (Cornell Aeronautical Laboratory). Spartan Books,
1962.

[35] R. Rojas, Neural Networks: A Systematic Introduction. Berlin, Heidelberg:
Springer-Verlag, 1996.

84

http://doi.acm.org/10.1145/3079856.3080246
https://www.xilinx.com/support/documentation/product-briefs/reniac-aws-f1.pdf
https://www.xilinx.com/support/documentation/product-briefs/reniac-aws-f1.pdf
https://www.microsoft.com/en-us/research/publication/a-reconfigurable-fabric-for-accelerating-large-scale-datacenter-services/
https://www.microsoft.com/en-us/research/publication/a-reconfigurable-fabric-for-accelerating-large-scale-datacenter-services/


Bibliography

[36] J. Raju, S. Kumar, and L. Sneha, “Realization of logic gates using mcculloch-
pitts neuron model,” in International Journal of Engineering Trends and Tech-
nology, vol. 45, 03 2017, pp. 52–56.

[37] X. Li and X. Wu, “Constructing long short-term memory based deep recurrent
neural networks for large vocabulary speech recognition,” in 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), April
2015, pp. 4520–4524.

[38] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28, ser.
ICML’13. JMLR.org, 2013, pp. III–1310–III–1318. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3042817.3043083

[39] K. Hornik, “Approximation capabilities of multilayer feedforward networks,”
Neural Netw., vol. 4, no. 2, pp. 251–257, Mar. 1991. [Online]. Available:
http://dx.doi.org/10.1016/0893-6080(91)90009-T

[40] T. Masters, Practical Neural Network Recipes in C++. San Diego, CA, USA:
Academic Press Professional, Inc., 1993.

[41] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, jul 2006. [Online].
Available: http://dx.doi.org/10.1162/neco.2006.18.7.1527

[42] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[43] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural network
model for a mechanism of visual pattern recognition,” in Competition and Coop-
eration in Neural Nets, S.-i. Amari and M. A. Arbib, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1982, pp. 267–285.

[44] W. Zhang, K. Itoh, J. Tanida, and Y. Ichioka, “Parallel distributed processing
model with local space-invariant interconnections and its optical architecture,”
Appl. Opt., vol. 29, no. 32, pp. 4790–4797, Nov 1990. [Online]. Available:
http://ao.osa.org/abstract.cfm?URI=ao-29-32-4790

[45] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, Nov 1998.

[46] S. Albelwi and A. Mahmood, “A framework for designing the architectures of
deep convolutional neural networks,” Entropy, vol. 19, no. 6, 2017. [Online].
Available: http://www.mdpi.com/1099-4300/19/6/242

85

http://dl.acm.org/citation.cfm?id=3042817.3043083
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.deeplearningbook.org
http://ao.osa.org/abstract.cfm?URI=ao-29-32-4790
http://www.mdpi.com/1099-4300/19/6/242


Bibliography

[47] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in Advances
in Neural Information Processing Systems, J. Platt, D. Koller, Y. Singer, and
S. Roweis, Eds. NIPS Foundation (http://books.nips.cc), 2008, vol. 20, pp. 161–
168. [Online]. Available: http://leon.bottou.org/papers/bottou-bousquet-2008

[48] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in
Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996
NIPS Workshop. London, UK, UK: Springer-Verlag, 1998, pp. 9–50. [Online].
Available: http://dl.acm.org/citation.cfm?id=645754.668382

[49] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Neurocomputing:
Foundations of research,” J. A. Anderson and E. Rosenfeld, Eds.
Cambridge, MA, USA: MIT Press, 1988, ch. Learning Representations
by Back-propagating Errors, pp. 696–699. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=65669.104451

[50] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in Advances
in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates,
Inc., 2015, pp. 3123–3131. [Online]. Available: http://papers.nips.cc/paper/
5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.
pdf

[51] CUDA API REFERENCE MANUAL, NVIDIA Corporation, 4 2012, version
4.2.

[52] C. Grozea, Z. Bankovic, and P. Laskov, “Facing the multicore-challenge,”
R. Keller, D. Kramer, and J.-P. Weiss, Eds. Berlin, Heidelberg: Springer-
Verlag, 2010, ch. FPGA vs. Multi-core CPUs vs. GPUs: Hands-on
Experience with a Sorting Application, pp. 105–117. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1980597.1980612

[53] Intel FPGA SDK for OpenCL Pro Edition - Best Practices Guide, Intel.

[54] D. A. Patterson and J. L. Hennessy, Computer Organization and Design, Fifth
Edition: The Hardware/Software Interface, 5th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2013.

[55] S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance comparison of fpga,
gpu and cpu in image processing,” in FPL 09: 19th International Conference
on Field Programmable Logic and Applications, 08 2009, pp. 126–131.

[56] CUDA RUNTIME API, NVIDIA Corporation, 7 2017, vRelease Version.

86

http://leon.bottou.org/papers/bottou-bousquet-2008
http://dl.acm.org/citation.cfm?id=645754.668382
http://dl.acm.org/citation.cfm?id=65669.104451
http://dl.acm.org/citation.cfm?id=65669.104451
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf
http://dl.acm.org/citation.cfm?id=1980597.1980612


Bibliography

[57] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, Heterogeneous Com-
puting with OpenCL, 1st ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011.

[58] The OpenCL Specification Version 1.2, Khronos OpenCL Working Group, 11
2012, rev. 19.

[59] A. Munshi, B. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg, OpenCL
Programming Guide, 1st ed. Addison-Wesley Professional, 2011.

[60] R. Banger, B. Bhattacharyya, and K. Bhattacharyya, OpenCL Programming
by Example, ser. Community experience distilled. Packt Publishing, 2013.
[Online]. Available: https://books.google.de/books?id=1O80ngEACAAJ

[61] OpenCL on FPGAs for GPU Programmers, Accelware, 6 2014, version 1.0.

[62] S. McConnell, Software Estimation - Demystifying the Black Art. Microsoft
Press, 2006.

[63] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock,
Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra, and G. Boudoukh,
“Can fpgas beat gpus in accelerating next-generation deep neural networks?”
in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’17. New York, NY, USA: ACM, 2017,
pp. 5–14. [Online]. Available: http://doi.acm.org/10.1145/3020078.3021740

[64] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and D. Marr, “Ac-
celerating binarized neural networks: Comparison of fpga, cpu, gpu, and asic,” in
2016 International Conference on Field-Programmable Technology (FPT), Dec
2016, pp. 77–84.

[65] Cyclone V Reference Manual, Intel, 6 2018, version 2.

[66] D. Bailey, Design for Embedded Image Processing on FPGAs, 01 2011.

[67] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial Intel-
ligence and Statistics, 2010.

[68] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in optimiz-
ing recurrent networks,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, May 2013, pp. 8624–8628.

87

https://books.google.de/books?id=1O80ngEACAAJ
http://doi.acm.org/10.1145/3020078.3021740


Bibliography

[69] L. N. Smith, “Cyclical learning rates for training neural networks,” in 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV), March 2017,
pp. 464–472.

[70] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[71] Y. Bengio, “Practical recommendations for gradient-based training
of deep architectures,” in Neural Networks: Tricks of the Trade.
Springer,Berlin,Heidelberg, 2012, pp. 437–478.

[72] D. Hebb, The Organization of Behavior: A Neuropsychological Theory. Taylor
& Francis, 1949.

[73] Cyclone V Device Datasheet, Intel, 5 2018.

88

http://jmlr.org/papers/v15/srivastava14a.html

	Acknowledgements
	Abstract
	Introduction
	Context
	Motivation
	Work Assignment
	Thesis Structure

	State of Art Review
	Theoretical Background
	Artificial Neural Networks
	Perceptron
	Artificial Neurons
	Networks of Neurons
	Learning as a Gradient Descent
	Backpropagation Algorithm
	Binarized Neural Networks

	Parallel Computing Platforms
	Overview of Platforms
	Parallel Computing Frameworks
	Challenges for Parallel Hardware Architectures

	Performance Indicators
	Classification Accuracy
	Execution-Time per Frame
	FPGA Logic Gates used
	Development Cost
	Training Cost
	Energy Consumption


	System Architecture
	Intel De0-Nano SoC
	HPS-FPGA Interconnect

	Network Structure
	OpenCL Integration

	Implementation Details
	Network Implementation
	Input Preprocessing
	Hidden Layers
	Activation Function
	Weights Scaling
	Forward Propagation
	Gradient Calculation
	Binarizing Weights
	Network Optimizations

	OpenCL Implementations
	Matrix Dot Product
	XNOR Product
	Compressed XNOR Product


	Analysis
	Performance Measurements
	Classification Accuracy
	Execution-Time Per Frame
	FPGA Logic Gates used
	Training Cost
	Development Cost

	Evaluation of KPI
	Classification Accuracy
	Execution-Time per Frame
	FPGA Logic Gates used
	Training Cost
	Development Cost


	Conclusions
	Summary
	Future Work

	Bibliography

