
A Construct-Based Evaluation of Kotlin-to-Swift
and Swift-to-Kotlin Transpilers

Master’s Degree Program: Media Informatics

Master’s Thesis

by

Larissa Manon Elisabeth Katharina Schneider
born in Regensburg

delivered at the
Department of Information Technology-Electrical Engineering-Mechatronics, Friedberg (Hessen)

Supervisor: Prof. Dr. rer. nat. Dominik Schultes
Co-Supervisor: Lisa Ranold, M. Sc.

Friedberg, 2022

Abstract

With Google’s Android and Apple’s iOS holding almost the entire market share for mobile
operating systems, third-party app developers should address both platforms for reaching the
most users possible. However, the tools intended by Google and Apple for developing apps
natively are specific to the two platforms. In addition to a particular software development
kit, different programming languages are required, with Kotlin being the primary language
for Android and Swift being the primary language for iOS and its operating system variants.
Since this makes code sharing between the platforms impossible, developers are often at
a crossroads when choosing the appropriate approach for developing their app. Multiple
cross-platform tools and frameworks, aiming to reduce the double effort of considering
both platforms, emerged over the years. Most of them achieve their goal by providing an
architecture that allows running one non-native code base on multiple target platforms by
employing a layer of abstraction. This, however, creates a dependency on the continuous
development of the tool used, since it has to adapt its architecture to updates of the
operating system.

An alternative approach would be to use a transpiler, translating the model and business
logic parts of an application from one platform’s native programming language to the other,
making the output code bases independently maintainable. In order to gain insight into the
current state of the art in this respect, this thesis evaluates the transpilers Gryphon (Swift-
to-Kotlin), Kotlift (Kotlin-to-Swift), SequalsK (both directions) and SwiftKotlin (Swift-to-
Kotlin) on their support of a set of basic constructs, taken from the overview chapters
of the Kotlin and Swift documentations. In addition to the mere support of a construct,
the readability of the output code is also examined by assessing it both manually and with
a linter based on acknowledged style guidelines for that language. Moreover, the results
on construct support are given more practical relevance by also considering the occurrence
of a transpiler’s unsupported constructs in open-source app projects. Data on construct
occurrence was obtained by counting the appearance of the relevant constructs in those
projects by using a tool specifically implemented for this thesis, referred to as the Construct
Analyzer Tool. This tool identified the constructs of interest from a parse tree, i.e., a model
representation of the input code file. Notably, constructs whose identification depended on
declarations made in a project’s external dependencies could not be recognized.

The results regarding construct support revealed that Gryphon and SequalsK can be
classified as the most mature, with both supporting ∼74% of the considered Swift constructs
and SequalsK supporting ∼78% of the Kotlin constructs. Meanwhile, SwiftKotlin shows only
satisfactory results by supporting ∼68% of the Swift constructs and Kotlift merely sufficient

i

Abstract

support by considering ∼54% of the Kotlin constructs. The evaluation of the valid output
w.r.t. readability unveiled that all transpilers produce generally readable code, with Kotlift
and SequalsK (for both directions of translation) achieving very good and Gryphon and
SwiftKotlin achieving good compliance with the respective language’s style guidelines.

For every construct unsupported by one or more transpilers, its occurrence within ev-
ery project of the respective language, normalized with that project’s logical lines of code,
was calculated. The resulting average value of all projects was established as a construct’s
popularity value. By setting the popularity values of all constructs unsupported by a tran-
spiler into relation with the popularity values of all constructs unsupported by one or more
transpilers of the same translation direction, the score W was determined. W presents an
indication of the manual effort required to correct a transpiler’s output code and ranges from
0 to 1, with 0 being the worst possible score and 1 being the best possible score. W.r.t. the
Kotlin-to-Swift transpilers, SequalsK proved to be far more applicable than Kotlift, scoring
a value of 0.964 for W while Kotlift only achieved 0.013. Regarding the Swift-to-Kotlin
transpilers, Gryphon achieved a W score of 0.680 and SequalsK of 0.622, while SwiftKotlin
scored last with a value of 0.263 for W . While a discrepancy between W for SequalsK
and Kotlift was to be expected, since Kotlift supports considerably less constructs than Se-
qualsK, the results for the transpilers of the Swift-to-Kotlin translation direction prove that
some constructs impact transpiler applicability more than others.

For further studies on construct popularity, the accuracy of the Construct Analyzer
Tool would profit from including declarations from a project’s external dependencies, since
excluding those resulted in a considerable amount of false negatives for constructs whose
identification depends on declarations made there. But regardless, the results obtained within
this thesis on the transpilers’ construct support only reflect their current situation, since their
future releases might include support for currently disregarded constructs. Recommended
directions for further studying Kotlin-to-Swift and Swift-to-Kotlin transpilers are to consider
more constructs and to test the transpilers on the model and business logic parts of app
projects from practice.

ii

Acknowledgements

In the following, I would like to thank the people who have supported me during this thesis in
various ways. Even when my path was occasionally paved with obstacles, they have helped
me to get closer to my goals one step at a time.

First, I would like to express my sincere gratitude towards my supervisor, Prof. Dr.
Dominik Schultes, for providing me with the opportunity to conduct a thesis in this field.
Throughout the past months, his professional and moral support helped me again and again
to find new motivation and continue working on this thesis. Moreover, his valuable feedback
helped me to improve its overall quality. Furthermore, I would like to thank Ms. Lisa Ranold,
M. Sc., for taking on the role of co-supervisor. I would also like to thank the Technische
Hochschule Mittelhessen, which provided me with a device on which I could conduct the
experiments for my research.

Besides, I would like to show my gratefulness towards my friends and family, who each
individually played a role in enabling me to realize this thesis. I would especially like to
thank my mother Gudrun Gauß-Schneider and my longtime friend Barbara Grotz, who both
proofread this thesis. Some special words of gratitude also go to my fellow students Pascal
Schüler, Niklas Spies and Sebastian Wolzenburg, with whom I was able to face the challenges
of our Master’s program together.

Finally, I would like to acknowledge the moral and emotional support of everyone else
who patiently and helpfully stood by me during this demanding, but rewarding time. Thank
you very much!

iii

Selbstständigkeitserklärung

Ich erkläre, dass ich die eingereichte Masterarbeit selbstständig und ohne fremde Hilfe ver-
fasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die
den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich
gemacht habe. Ich versichere, dass diese Arbeit in gleicher oder ähnlicher Form noch keiner
anderen Hochschule oder Prüfungsstelle vorlag.

Friedberg, Juli 2022

Larissa Manon Elisabeth Katharina Schneider

v

Contents

Abstract i

Acknowledgements iii

Selbstständigkeitserklärung v

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 3
1.3 Objectives . 4

1.3.1 Repeating the Experiments on Construct Support 4
1.3.2 Mining for Kotlin/Swift App Projects 4
1.3.3 Automatic Analysis of Code Structures 5
1.3.4 Evaluating Transpilers Considering the Popularity of Their Unsup-

ported Constructs . 5
1.4 Outline . 5

2 Theoretical Background 7
2.1 Kotlin . 7
2.2 Swift . 8
2.3 Programming Language Parsing . 8

2.3.1 Grammar . 9
2.3.2 Lexical Analysis . 10
2.3.3 Syntax Analysis . 11
2.3.4 Semantic Analysis . 13
2.3.5 Lexer/Parser Generators . 14

2.4 Transpilers . 15
2.5 Summary . 16

vii

Contents

3 State of the Art 19
3.1 Native Source-to-Source Translation in the Context of Android and Apple

OS Cross-Platform Development . 19

3.1.1 Java-to-ObjectiveC and ObjectiveC-to-Java 20

3.1.2 Java-to-Swift and Swift-to-Java 20

3.1.3 Kotlin-to-Swift and Swift-to-Kotlin 22

3.2 Translatability between Kotlin and Swift 23

3.3 Studies on the Language Adoption of Kotlin 25

3.4 Studies on the Language Adoption of Swift 26

3.5 Works with ANTLR . 28

3.6 Summary . 28

4 Testing Transpiler Construct Support 31
4.1 Description of the Test Case Pool . 32

4.2 Experiments . 34

4.3 Environment . 37

4.4 Summary . 37

5 Mining Open-Source Applications 39
5.1 Finding Relevant Kotlin and Swift Repositories 40

5.1.1 The GitHub REST API . 40

5.1.2 GitHub Search . 41

5.1.3 Filtering for Relevant Kotlin and Swift Projects 41

5.2 Identifying App Projects . 43

5.2.1 Criteria for Android App Projects 44

5.2.2 Criteria for Apple OS App Projects 44

5.2.3 Filtering the GHS Results for App Projects 45

5.3 Removing Dependencies . 47

5.4 Extracting General Metrics With cloc . 47

5.5 Summary . 48

6 Automatic Construct Recognition 51
6.1 Concept . 51

6.1.1 Accepting of Both Swift and Kotlin Projects 51

6.1.2 Automatic Recognition of a Predefined Set of Constructs 52

6.1.3 Result Output as CSV-File . 52

6.1.4 Form . 52

6.2 Implementation . 53

6.2.1 Parsers . 53

6.2.2 Language Models . 56

6.2.3 Construct Analyzer . 57

6.3 Tool Validation . 62

6.4 Summary . 63

viii

Contents

7 Results 65
7.1 Construct Support . 65

7.1.1 Kotlin-to-Swift Construct Support 67
7.1.2 Swift-to-Kotlin Construct Support 69

7.2 Construct Popularity . 72
7.2.1 Kotlin . 73
7.2.2 Swift . 78

7.3 Transpiler Evaluation . 78
7.3.1 Kotlin-to-Swift Transpilers . 79
7.3.2 Swift-to-Kotlin Transpilers . 80

7.4 Summary . 80

8 Summary and Future Work 83
8.1 Summary . 83
8.2 Future Work . 87

A Project Sample Pool Metrics 89

B Contents of the Attached CD 91

Glossary 93

Acronyms 95

Bibliography 97

ix

List of Figures

2.1 Programming language parsing . 9
2.2 DFA representing a regular expression . 11
2.3 Parse tree . 12

4.1 Testing construct support workflow . 35
4.2 Style warning in IntelliJ IDEA . 36
4.3 Style warning in Xcode with SwiftLint . 36

6.1 Construct analysis workflow . 52
6.2 Construct Analyzer Tool package view . 54
6.3 Kotlin parse tree generated with ANTLR . 55
6.4 Chained symbol tables . 57
6.5 Symbol models UML class diagram . 58

7.1 Construct inclusion in projects – Kotlin . 74
7.2 Normalized construct occurrence – Kotlin . 75
7.3 Construct inclusion in projects – Swift . 76
7.4 Normalized construct occurrence – Swift . 77

A.1 Metrics for the Kotlin projects sample pool. 89
A.2 Metrics for the Swift projects sample pool . 90

xi

List of Tables

4.1 Language constructs extracted for Swift and Kotlin 33
4.2 Transpiler versions . 37

5.1 Missing constructs in the 23 April 2016 version of “A Swift Tour“ 43
5.2 Criteria for identifying app projects . 48

7.1 Findings for Kotlift and SequalsK . 67
7.1 Findings for Kotlift and SequalsK . 68
7.1 Findings for Kotlift and SequalsK . 69
7.2 Findings for Gryphon, SequalsK and SwiftKotlin 70
7.2 Findings for Gryphon, SequalsK and SwiftKotlin 71
7.2 Findings for Gryphon, SequalsK and SwiftKotlin 72
7.3 Results for WKS for the Kotlin-to-Swift transpilers 79
7.4 Results for WSK for the Swift-to-Kotlin transpilers 80

xiii

Chapter 1

Introduction

Smartphones are everywhere. Touchscreen interface based mobile phones with so-called
smart features, e.g., internet connection, integration of various sensors and the ability to
install applications, have become vital to the digitization of everyday life. This is also
reflected in the global number of smartphone users. With around 80% of the population
owning a smartphone, North America and Europe lead in this regard [GSM21]. Demand for
third-party smartphone applications, more commonly referred to as (mobile) apps, became
even more popular in the past two years, when the COVID-19 pandemic resulted in stay-
at-home orders [Sen21]. On top of that, app development was deemed crisis relevant,
with governments worldwide commissioning apps offering services like tracking contacts or
displaying proof of vaccination.

Still, when trying to cover the most users possible, mobile third-party app developers are
faced with the particular challenge of platform fragmentation. Nowadays, the operating
system (OS) market is almost exclusively divided into the Android OS from Google and
Apple’s iOS [Sta22b]. In conclusion, access to a smartphone app should be provided for both
platforms for extensive market coverage. Notably, mobile phones are not the only target
devices for Android or for iOS and its variants, like macOS, watchOS, or tvOS. Nowadays,
the ecosystems of both platforms include, next to smartphones, tablets, smartwatches, com-
puters and smart TVs. Consequently, third-party app development is also possible for those
devices.

1.1 Motivation

Specialized development for a target platform, normally referred to as native development,
is the approach favored and officially supported by OS distributors. It requires using a
designated programming language, e.g., Kotlin or Java for Android and Swift or ObjectiveC
for Apple platforms, as well as a software development kit (SDK) provided by Google or
Apple. However, this results in the inability to directly share code snippets between platforms
and thus doubles the development effort and needed expertise when addressing both.

Given these circumstances, multiple approaches to cross-platform app development have
been established in recent years. While different taxonomies and architectural concepts exist

1

1. Introduction

in the literature, the Hybrid, the Interpreted and the Web approach are among the most
popular and widely discussed [BHGG19]. While this thesis is not a detailed comparison of
existing approaches to cross-platform development, those three approaches are described
briefly in the following for contextualizing their architectural background.

Mobile web apps are websites enhanced for smartphones. As every modern mobile OS
has a browser, they are cross-platform by nature. Recently, progressive web apps even
tackle multiple infamous problems concerning mobile web apps, like offline-access [Moz22].
Moreover, the standard web technologies HTML5, CSS3, and JS are often complemented by
frameworks like ReactJS [Met22b] or Angular [Goo22b]. However, mobile web apps cannot
be offered and downloaded via the OS specific marketplace. Hybrid apps are also developed
with web technologies, with their source code running in a browser environment which
accesses device functionalities through a layer of abstraction. This architecture is provided
by frameworks like Cordova [The22a] or Capacitor [Cap22], which make it also possible to
export the project in the OS app format. Thus, it can be published in the official Android
and iOS stores. Lastly, the Interpreted approach enables targeting multiple platforms with
its architecture, too. Frameworks like React Native [Met22a] or Flutter [Goo22d] use a
bridge layer to translate between the JavaScript-/Dart-source-code and the native code, as
well as OS specific components at runtime. Projects can also be exported to the OS app
format and published in the OS specific marketplace.

In summary, those three approaches promise a reduced development effort by deploying
a one-timely written, non-native code base to multiple target platforms. This is made pos-
sible by running the code in a cross-platform available environment, like a browser, and/or
communicating with OS specific components via a layer of abstraction. However, all app
projects relying on a framework’s or library’s specific non-native architecture or programming
language ultimately create a dependency on the tool’s continuous development, resulting in
an unmaintainable code base once it reached its end of life [VGM20, Sch21]. Additionally,
apps created with cross-platform tools might experience disadvantages compared to natively
developed apps, like restricted communication with OS-specific components, worse perfor-
mance [MLL+18, QGZ16] and a lack of the “look and feel“ the OS is usually known for
[RS12].

In an attempt to overcome these drawbacks of popular cross-platform development tools,
there have been some efforts to translating native code to native code by using a so-called
transpiler translating between mobile programming languages. Thereby, two independently
maintainable code bases can coexist. However, while other cross-platform development tools
cover the entirety of an app, transpilers usually prioritize the translation of non-platform
specific code. I.e., when given a model-view-controller (MVC) pattern fairly often used
as the base architecture of an app, only the model and business logic parts are translatable.
Although separating presentation layer and business logic is a common pattern in mobile
app design, neglecting such platform specific parts, especially view components, can be
classified as a disadvantage. At the same time, the enforcement of abstraction layers and/or
non-native interfaces is avoided.

While the J2ObjC [Goo21b] transpiler pioneered the transpiler approach in the field of
mobile development by translating from Java to ObjectiveC, this thesis focuses on transpilers
for the current primary programming languages for Android and iOS, Kotlin and Swift. For

2

1.2. Problem Definition

examining the current state of the art in Kotlin-to-Swift and Swift-to-Kotlin transpilers, the
four transpilers Gryphon [VGM20, Ven22a], Kotlift [Stu20], SequalsK [Sch21, Sch22] and
SwiftKotlin [Oll20] were selected for further examination. While Gryphon and SwiftKotlin
focus on the translation of Swift to Kotlin code, Kotlift enables the reverse process from
Kotlin to Swift. SequalsK supports bidirectional translation.

1.2 Problem Definition

On a surface level, Swift and Kotlin appear to share many syntactic similarities, making
them seemingly suitable for the transpiler approach [Mec17, Oll16]. Nevertheless, going
beyond simple differences like constant keywords or different notations for various kinds of
loops, it becomes quickly apparent that a simple search and replace is not sufficient [Sch21].
Even though more complex constructs are considered by the aforementioned transpilers to
a varying degree, all authors admit to deficits in language coverage [Oll20, Ven22a, Stu20,
Sch21]. Consequently, the question about the transpilers’ current operational capabilities in
a cross-platform development context arises. One way of approaching this question would be
by analyzing and comparing the transpilers’ translation capabilities. In light of independent
code base maintainability, the readability of their output code should be taken into account
as well. But to this date, no such study could be found in the literature, other than the
preliminary work done for this thesis [SS22].

The aforementioned paper was the result of the development project preparing this thesis.
There, the Gryphon, Kotlift and SequalsK transpilers were already tested on the language
constructs presented in the overview chapters of the respective official documentations of
Kotlin and Swift, named “Basic syntax“ and [Jet22a] “A Swift Tour“ [App22c]. Even though
the constructs presented there do not show the full capabilities of both languages, they do
provide an overview of commonly used features and some best practices. In general, the
results suggested that language coverage of common constructs appears to be achievable.
While SequalsK and Gryphon obtained good results, Kotlift’s language support was merely
sufficient. Some shortcomings affected all transpilers, such as “fundamental differences be-
tween Swift and Kotlin or constructs that were simply not considered“ [SS22]. Nevertheless,
the valid output code of all transpilers followed a majority of acknowledged style guidelines.

Regarding the deficits in language coverage, it must be taken into account that all
of these projects are much smaller compared to popular cross-platform tools like React
Native that is published by Meta. Consequently, those deficits are probably not just due
to faults in the transpiler approach, but due to the restrictions created by little manpower.
Therefore, besides profiting from an analysis of their translation capabilities, the transpiler
projects themselves would also benefit from gaining insight into an unsupported construct’s
popularity in every-day programming projects. Ultimately, this would help to focus efforts on
practically relevant areas. As no literature thoroughly analyzing language construct usage
in neither Swift nor Kotlin exists thus far (see Chapter 3), the need for conducting such a
study is created. Ultimately, this yields three research questions for this thesis:

• RQ1 : From a set of basic constructs featured in the input programming language,
which are supported by the transpilers?

3

1. Introduction

• RQ2 : Does the output code generated by the transpilers follow the language’s style
guidelines?

• RQ3 : How does the popularity of a construct unsupported by a transpiler affect its
applicability?

RQ3.1 : How popular is a certain construct in practice?

1.3 Objectives

The primary contribution of this thesis is to present a practically relevant evaluation of
Gryphon, Kotlift, SequalsK and SwiftKotlin by judging their applicability despite their unsup-
ported constructs by taking the popularity of those constructs into account. However, since
considering all aspects of Kotlin and Swift is outside the scope of this thesis, the transpilers
are tested on a set of basic but representative constructs instead. The popularity-metric
may be obtained by analyzing a statistically relevant sized sample pool of Kotlin and Swift
programming projects. At the same time, dealing with such massive amounts of code files
results in the need for automated construct recognition, since manually counting constructs
would simply not be feasible. Therefore, the results of this study regarding the popularity
of the considered Kotlin and Swift constructs present a secondary contribution of this the-
sis. When taking those two main goals into account, the objectives of this thesis can be
ultimately separated into four successive sections.

1.3.1 Repeating the Experiments on Construct Support

Since the transpilers are under ongoing development, the study regarding construct support
conducted in the preliminary work should be repeated [SS22]. Again, the test case pool
should be formed out of the code examples given in the overview chapters of the Kotlin
and Swift documentations to test the transpilers on a set of basic constructs. However, by
adding the SwiftKotlin transpiler to the once already evaluated transpilers Gryphon, Kotlift
and SequalsK, even more insight can be gained on the current state of the art regarding the
transpiler approach.

1.3.2 Mining for Kotlin/Swift App Projects

For extracting information on construct usage, a mining software repository study should be
conducted as part of this work. In order to be able to fall back on a statistically relevant
sample pool for this study, a sufficient amount of projects has to be collected. In the context
of this work, it therefore makes sense to mine open-source projects from a source like GitHub
[Git22b]. Since Gryphon, Kotlift, SequalsK and SwiftKotlin primarily advertise themselves as
translation tools between Android and Apple platforms, the sample pool should be narrowed
down to projects of this kind.

4

1.4. Outline

1.3.3 Automatic Analysis of Code Structures

To provide the study on construct support with more practical relevance, the popularity of the
constructs unsupported by one or more transpilers should be further examined. Consequently,
the files from the Kotlin and Swift project sample pools should be checked for the occurrences
of those constructs. Due to the presumably large amount of code, manually counting each
construct would likely be too time-consuming. Instead, an automated counting is aspired
by recognizing constructs from the file’s parse tree. The tool should be able to handle both
Kotlin and Swift files, so implementations of abstract concepts can be shared. Furthermore,
to reduce the development effort, the parser generator ANTLR should be used to create the
parts necessary to build a parse tree.

1.3.4 Evaluating Transpilers Considering the Popularity of Their
Unsupported Constructs

After determining the occurrence of the constructs, the transpilers are evaluated again. This
time, however, this occurrence-metric is taken into account when comparing the shortcom-
ings of the transpilers. All in all, the final results should represent an indication of the
manual effort required to correct the transpilers’ output.

1.4 Outline

The subsequent part of this thesis is divided into five parts — the theoretical background,
related works from the literature, the methodology employed, a discussion of the results and
the final summary of this work with recommendations for future works.

In the upcoming Chapter 2, the reader is familiarized with terminology and concepts
important for understanding the underlying topics of this thesis. This includes basic in-
formation on Kotlin and Swift, the principles behind programming language parsing and a
general definition of transpilers.

Then, this thesis’ contribution is placed in the context of the current state of the art
in Chapter 3. For this purpose, past works on native source-to-source translators for cross-
platform Android and Apple OS development are introduced. This also includes the tran-
spilers considered in this thesis, Gryphon, Kotlift, SequalsK and SwiftKotlin. In addition,
work focused on the translatability of Kotlin and Swift and the adoption of those two lan-
guages is presented. Furthermore, information on other works with ANTLR is given.

The subsequent three chapters are guided by the research questions of this thesis and
present the methodology used to attempt to answer them. Accordingly, Chapter 4 elaborates
on the experiment setup for testing a transpiler’s support of the basic constructs from Kotlin’s
and Swift’s overview chapters. This also includes verifying the compliance of a transpiler’s
output code with general coding style guidelines. First, however, the test case pool is
described in detail. Afterwards, the execution of the experiments is illustrated step-by-step,
including the environment for the experiments and the transpiler versions used.

In the following Chapter 5, the mining and preparing of the Kotlin and Swift project
sample pools is described. For this purpose, the criteria that classified a project as relevant

5

1. Introduction

for this thesis are provided. It is also elaborated on how these criteria were identified. The
chapter concludes by discussing how noise factors were removed and how metrics describing
the sample pools were extracted.

Chapter 6 presents the Construct Analyzer Tool developed for automatically counting
construct appearance within the aforementioned sample pools. Firstly, its basic workflow is
presented. Secondly, the tool’s implementation is described in detail. Lastly, the accuracy
observed when testing the functionality of the tool on an unrepresentative number of files
from the sample pools is reported.

Subsequently, Chapter 7 summarizes the results from the previous methodology chapters.
For this purpose, the results regarding construct support and style guideline compliance are
presented. Afterwards, the findings regarding the unsupported constructs’ occurrences are
disclosed. Ultimately, those results are used for evaluating the transpilers once again in a
more practice oriented fashion, revealing how their shortcomings potentially affect the need
for post-translation edits.

At last, Chapter 8 concludes this thesis. To this end, the reader is provided with a
summary of all the key findings from this work. Since this thesis was not possibly able to
fully examine all aspects of Kotlin-to-Swift and Swift-to-Kotlin transpilers, recommendations
on how the transpiler approach can be further studied in the context of cross-platform app
development are given. Even more so, propositions are made on how the Construct Analyzer
Tool could be improved.

6

Chapter 2

Theoretical Background

This chapter provides an overview on the theoretical background this thesis is built upon.
After giving general information on the Kotlin and Swift programming languages, the theory
behind programming language parsing is explained in detail. This includes briefly introducing
the parser generator ANTLR and describing its workflow for language parsing. Finally,
transpilers, which are a certain type of language processor making use of the previously
detailed parsing steps, are explored.

The goal of this chapter is to familiarize the reader with the principles and technologies
used in the following chapters without diving too deeply into their application in this thesis
or work related to this thesis. These points will be discussed later in Chapter 3.

2.1 Kotlin

Kotlin is a general-purpose, multi-paradigm and statically typed open-source programming
language [Jet22d]. Although Kotlin is majorly used for Android development, it can be
utilized in many different fields, like server-side applications, web fronted development, data
science or even mobile multiplatform development [Jet21]. Furthermore, an alternative to
the traditional way of defining user interfaces (UIs) for Android apps with XML layout
files is made possible by writing declarative Kotlin code using Jetpack Compose [Goo22e].

Nevertheless, Kotlin was originally developed independently of the Android platform.
According to JetBrains, the company behind Kotlin, they needed a programming language
fulfilling their needs that were unaddressed by Java, which had been used by them thus far
[Kri11]. Kotlin improves on Java by having a less verbose and more expressive syntax on
the one hand, but offering features making the code more fail-safe, like null-checks before
compiling and safely accessing nullable values, on the other. Due to the company’s history
with Java projects, Kotlin has full Java interoperability since the beginning. The language
was first made publicly available as open-source in 2011 [Ore12]. Google has been offering
first-class Android support for Kotlin since 2017 and promoted it to be the preferred language
for native Android Apps in 2019 [Goo21a].

7

2. Theoretical Background

2.2 Swift

Similar to Kotlin, Swift is a general-purpose, multi-paradigm and statically typed program-
ming language initially developed by Apple [App22d]. It was introduced at the 2014 WWDC
and exclusively released in the same year [Dow16]. At the following WWDC 2015, Swift 2
was announced to be open-source.

Swift was developed with the intention of eventually replacing ObjectiveC, which had
been the official, but aged, programming language for Apple systems for approximately
30 years. To prevent the need for total migration of ObjectiveC projects to Swift, Swift
offers great ObjectiveC interoperability. Additionally, Swift is designed to be a more modern
language with features like optional typing, functional programming patterns and safety
measures, e.g., automatically preventing null objects or overflowing arrays. Furthermore, its
syntax is concise and less verbose. Although the ultimate goal is for Swift to be compatible
on as many platforms as possible [App22e], only Linux is currently supported next to the
Apple platforms, namely iOS, macOS, watchOS, and tvOS. For the remainder of this thesis,
these aforementioned Apple platforms will be summarized by the term Apple OS.

Swift can be utilized in a diverse set of projects, ranging from systems programming to
cloud services. When using Swift for app development, it can also be used for declaratively
defining the UI by using the SwiftUI framework [App22g]. This proposes an alternative to
the traditional way of defining layouts with designated layout files.

2.3 Programming Language Parsing

After taking a closer look at the two programming languages relevant for this thesis, one
might ask how translating between them is possible in the first place. For this, understand-
ing how programming language processing works in general is vital. This section explains
the steps necessary to parse a piece of programming language code, so it can be further
processed.

Source code files boiled down are nothing other than text. Although those text files
possess different file endings, e.g., .kt for Kotlin files or .swift for Swift files, and the way of
defining programming routines might vastly differ from language to language, their content
can be handled by any simple text editor. To decipher the instructions given to build a
processable data structure, a special program, referred to as a parser, is used. Figure 2.1
(see page 9) visualizes the phases of programming language parsing. Firstly, the input source
code, most likely represented by a text file, which is made up of characters, is scanned and
processed into tokens in the lexical analysis phase. In the context of programming language
parsing, a token is the basic lexical unit. The token stream is then analyzed in the syntax
analysis phase on its validity in terms of how programs in that particular programming lan-
guage are defined. The syntax analysis usually produces a model representation of the input
source code called a parse tree. The semantic validity of this structure, including issues such
as type compatibility, is then verified in the semantic analysis phase. However, this phase is
sometimes skipped and further processing operates directly on the parse tree generated by
the syntax analysis phase. The language processors ultimately handling the output parse tree

8

2.3. Programming Language Parsing

Input Source Code

Lexical Analysis

Syntax Analysis

Semantic Analysis

Output for Further Language Processing

Character Stream

Token Stream

Parse Tree

(Verified and Updated) Parse Tree

Figure 2.1: Phases of programming language parsing.

include, among others, compilers generating machine-readable code, interpreters executing
operations directly in the source program and translators producing an output in an entirely
different high-level language.

2.3.1 Grammar

Before the individual phases are explained in more detail, it is shown how the syntactic
rules for a programming language are defined. For humans, learning how to read a natural
language, like English or German, encompasses two areas. Firstly, the grammar of the
language, which can defined as a set of rules to form syntactically and morphologically
correct sentences [The20], has to be studied. Secondly, a vocabulary that can be used
within that set of rules has to be acquired.

Even though programming languages are by definition formal languages that do not
serve the purpose of communication, a programming language’s grammar still describes
how syntactically correct sentences, or statements, are formed. A variable assignment, for
example, is an exemplary sentence from a lot of programming languages. However, unlike
natural languages, grammars for programming languages contain vocabulary definitions as
well. The grammar of a higher programming language like Kotlin or Swift can usually
be described as a context-free grammar (CFG) in accordance to the Chomsky Type 2
definition [Cho56]. CFGs can be defined by the tuple notation presented in Equation 2.1
and described as follows [Lee17] [Aho07].

G = (N,T, P, S) (2.1)

9

2. Theoretical Background

Let G be a CFG. T represents the basic symbols in a programming language, like keywords,
operators, etc., and is referred to as a set of terminals or tokens. N represents nonterminals
or syntactic categories/variables, like expressions or if-statements. Being independent of
the context in which nonterminals are used is fundamental to a CFG. S is the start symbol
of the grammar and a special, designated nonterminal. P represents productions following
n → α where n ∈ N and α ∈ { N ∪T} ∗. The non-terminal n represents a construct, while
α represents the written form of that construct. According to the ISO/IEC 2382 standard, a
programming language construct is the “syntactically allowable part of a program that may
be formed from one or more lexical tokens in accordance with the rules of a programming
language“ [ISO15]. In the terminology of this thesis, a construct is therefore one possible way
of implementing a programming language feature. Programming languages usually consist
of various features, like different kinds of loops, or object-oriented features like classes.

According to language theory, a language consists of sentences that are valid combina-
tions of its vocabulary [KVE94]. In context of a CFG, the complete language of a grammar
is defined by the terminals that can be derived from the start symbol [Aho07]. This process
of derivation is basically a step by step replacement of nonterminals by other nonterminals
and/or terminals until only a terminal is left. In conclusion, if it is not possible to derive
a string of terminals and/or nonterminals from the start symbol, it is not a syntactically
correct sentence in the given language.

2.3.2 Lexical Analysis

Typically, the process of tokenizing the direct text input is decoupled from the parser in
a separate program, commonly referred to as a lexer [Aho07]. The analysis performed
by the lexer can be divided into two steps: Firstly, the input character stream is scanned
and possibly unneeded characters such as comments and spaces are removed. Secondly, a
token stream is formed based on the input, in a process called lexical analysis. In lexical
analysis, a token is a logical unit represented by a pair. It consists of a token name, defined
by the language, and an optional attribute value. A lexeme is a string of characters that
matches the pattern of a token. The pattern of a lexeme itself can be described by a regular
expression. Per definition, regular expressions are the algebraic description of a certain set
of strings [Hop11]. They define regular languages, which are of Type 3 grammar, according
to the Chomsky hierarchy [Cho56]. Terminals of a CFG can usually be formulated as regular
expressions.

Three basic operations can be applied to languages defined by regular expressions. When
considering L andM as two regular languages, the union of the two, formally noted as L∪M ,
produces a set of strings that is in either language or both. Concatenation, either noted
with a dot operator (L.M) or no operator at all (LM), produces a set of strings by taking
any string from L and following it with any string from M . Lastly, the Kleene closure from
L, noted as L∗, represents concatenating any string from L zero or more times.

According to the Kleene’s theorem, regular expressions describe finite state automata
[K+56], more precisely non-determenistic finite automata (NFA) and determenistic
finite automata (DFA). DFA are usually the preferred implementation in lexers, as their
simulation of a regular expression containing a union is more straightforward [Aho07]. In

10

2.3. Programming Language Parsing

q0start q1

q2 q3

a

cb

c

b

b

c

Figure 2.2: Graphical representation of a DFA implementing a regular expression.

practice, DFA are often converted from the easier to design NFA, which was proven possible
by Rabin and Scott [RS59]. DFA can be defined by the following tuple notation presented
in Equation 2.2 [Hop11].

A = (Q,Σ, δ, q0, F) (2.2)

Let A be a DFA. Q is a finite set of states, while Σ represents a finite set of input symbols.
The transition function δ is parameterized by a state and an input symbol, and ultimately
returns a new state. The return value of δ marks the fundamental difference to a NFA,
as they return a subset of Q instead. The start state is q0 and F defines the set of
accepting states belonging to Q. Figure 2.2 depicts the graphical representation of a DFA
implementing the regular expression for a certain token. The DFA consists of the states
q0-q3 with q1-q3 as accepting states. The regular expression describing a lexeme matching
this token is a(b|c)*. Accordingly, a stream of symbols is accepted if an a is followed by
any combination of zero or more b and/or c. Possible valid combinations are a, abbb, acb,
accbbc and likewise.

2.3.3 Syntax Analysis

The validity of a token stream produced by the lexer is checked by the next phase, referred
to as syntax analysis [O’R16]. It is implemented by a program universally referred to as a
parser, although the term parser often refers to the whole architecture behind programming
language parsing as well. In this chapter, however, this term explicitly refers to the program
performing syntax analysis.

In case the input turns out to be not parsable, the parser returns a syntax error. In
addition to checking a token stream’s validity, it might create some kind of model for further
processing, which is usually in the form of a parse tree. Parse trees are also alternatively
referred to as syntax trees. Their tree-like structure represents the derivation of a sentence
of a language L(G) of a given grammar G. While its nodes construct the sentence, the root
is defined by the start symbol S of G. Ultimately, a syntactically correct program can be
represented by a parse tree. Figure 2.3 (see page 12) depicts the parse tree for the statement
(y + x) * 8 in an exemplary grammar G = (N,T, P,E) provided by Lee [O’R16]. N is
defined as {E, T, F} and T as {identifier, number, +, −, ∗, /, (,)}. P consist of

11

2. Theoretical Background

E

E

T

F

(E

T

T

F

x

+ F

y

)

* T

F

8

Figure 2.3: A parse tree example for a grammar provided by Lee [O’R16].

the production set defined in Equation 2.3.

E → E + T | E − T | T
T → T ∗ F | T/F | F
F → (E) | identifier | number

(2.3)

Parse trees are considered to be concrete if they represent a direct mapping of the grammar
to the tree structure. Abstract syntax trees, commonly abbreviated with AST, however omit
nodes unimportant for translation. Whether the parse tree the parser returns is concrete or
abstract depends on the parser itself. Approaches to creating a parse tree can be generally
divided into two categories; top-down parsers and bottom-up parsers.

Top-Down Parsers

Top-down parsers build the nodes of a parse trees from the root down by considering token
after token [Aho07]. As they can be implemented as a set of mutually recursive functions,
top-down parsers are sometimes called recursive descent parsers [O’R16]. Usually working
on so called LL grammars, the parser scans the input from left to right and performs the left
most derivation of that product. It is noteworthy, however, that recursive descent parsers
can get stuck in an indefinite loop when discovering a production P where the leftmost
symbol in α is the same as n. This phenomenon is called left recursion. In variations of the
LL grammar, the decision which production is followed is based on looking a certain number
of tokens ahead. A LL(1) parser for example considers one lookahead token, while a LL(k)
parser considers an arbitrary number of k tokens.

12

2.3. Programming Language Parsing

Bottom-Up Parsers

Contrary to top-down parsers, the construction of a parse tree performed by a bottom-up
parser starts at its lowest nodes and works up to the root [Aho07]. This process is generally
performed by replacing substrings matching α of a production P by n of that production.
This is implementable with a pushdown automata (PDA), performing shift reduce parsing.
Hence, those bottom-up parsers are occasionally referred to as shift reduce parsers [O’R16].

A PDA, which is a finite automaton with a stack, can be defined as shown in Equation
2.4 [Hop11].

P = (Q,Σ,Γ, δ, q0, Z0, F) (2.4)

Let P be a PDA. Q, Σ, q0 and F are analogous to definitions given in Chapter 2.3.2 for a
DFA. Γ represents a finite stack alphabet, which holds the set of symbols allowed to push
onto the stack. The transition function δ takes three arguments: Firstly, q, a state in Q.
Secondly, a, which is either an input symbol from Σ or an empty string, formally noted as
ϵ. Lastly, the stack symbol X, which is a member of Σ. δ ultimately returns a finite set of
pairs (p, γ), with p being the new state and γ being a string of stack symbols to replace X
at the top of the stack. Finally, Z0 denotes the start symbol, which is the initial content of
the PDA’s stack.

In the actual process of shift reduce parsing, tokens from the input buffer are shifted
onto that stack. If the incoming token results in the stack forming a production P from
the given grammar G partly or as whole, the part corresponding α is reduced to n at the
top of the stack. Consequently, a program valid for a given grammar can be reduced up to
S and results in an empty stack. Parsers implementing shift reduce parsing may be built
on LR grammars, for which reduction is performed by scanning the input from left to right
and executing the rightmost derivation of the product. Accordingly, for LR(k) grammars
the decision which production to choose is based on k symbols of lookahead. In addition to
the PDA, a LR parser built upon a LR grammar generally implements a parsing table, which
size depends on the grammar and the number of lookahead tokens [Aho07]. Traditionally,
the most used algorithm for a LR parser is LALR(1), as it covers the grammar of most
programming languages [O’R16] while maintaining a sensible sized parsing table [Aho07].
The LA references to lookahead, which, in case of LALR(1), is one token.

2.3.4 Semantic Analysis

To verify if a program is executable, it needs to be both syntactically and semantically correct
[Lee17]. The previously described syntactical checks are oblivious to how more logical aspects
of the language work. Although the statement a * b might pass as syntactically valid, it
might not be semantically valid, as the values behind the variables a and b are not intended
to be part of a production in that particular programming language. As some semantic issues
will only arise during runtime and can therefore be considered dynamic, a semantic analyzer
program is considered to be concerned only with static semantic issues. Those issues may
include type checking, scope and recognizing identifiers [Aho07].

The analysis is generally performed on the parse tree previously created by the parser,
possibly in combination with a data structure called a symbol table. These tables keep

13

2. Theoretical Background

track of identifiers by noting information relevant to them, like their definition, location
in the source code, typing and so on. Symbol tables can be constructed incrementally in
the analysis phases by binding the identifier to the aforementioned values or by extracting
that information from the parse tree. The semantic analysis may perform type conversion,
referred to as coercion, on the existing parse tree as well. Ultimately, the verified and
updated parse tree is the output of the semantic analyzer, ready for further processing.
However, some language processors skip this phase entirely and operate only on the parse
tree generated by the parser as it is.

2.3.5 Lexer/Parser Generators

While it is possible to implement the previously described lexer and parser models by hand, it
is oftentimes impractical. In the case of lexers, handwritten lexers may offer more flexibility,
but can become cumbersome to create and maintain, depending on the language. A lexer
generator is a tool that dynamically implements finite state machines for lexical analysis,
with lex [Les06] being a popular example for the C programming language. Lexer generators
usually require a set of regular expressions representing the lexemes of all tokens.

At the same time, while top-down parsers are generally written by hand, the complexity
behind the implementation of a bottom-up parser almost always results in the usage of a
parser generator. For building the parser, the generator requires the language’s grammar.
Oftentimes, parser generators take care of lexer generation as well. Popular parser generators
for CFGs include Yacc [Les06], using the LALR(1) algorithm for parsing, JavaCC [Jav22], us-
ing LL(1) and occasionally LL(k) and ANTLR4 [Par22], using the Adaptive LL(*) algorithm
[PHF14].

ANTLR

ANother Tool for Language Recognition (ANTLR) is a flexible parser generator tool,
capable of reading, processing, executing and translating structured text or binary files when
given an input grammar meeting its requirements [Par22, Par12]. ANTLR’s flexibility allows
it to be applied in a wide area of projects, ranging from legacy code converters to information
extractors for texts in natural languages. Large projects using ANTLR include Twitter’s query
parsing or NetBeans C++ parser. The latest installment, ANTLR4, was released in 2013
as a complete rewrite from older versions featuring the new parsing mechanism Adaptive
LL(*), or ALL(*) for short. For the remainder of this thesis, ANTLR4 will simply be referred
to as ANTLR.

ANTLR accepts any CFGs that do not include indirect left-recursion, which describe
rules calling themselves through another rule, and/or hidden left-recursion, which occurs
when an empty production results in left-recursion. Grammar rules are defined in extended
Backus–Naur form, combining both lexical and syntactical rules. Listing 1 (see page 15)
illustrates this notation style with a simple example, which defines a parser rule for concate-
nating any string of numbers from 0 to 9 with a plus sign at least one time. In addition, the
grammar can be enriched by two ANTLR-specific constructs, written in the output parser’s
host language. Firstly, side-effecting actions, officially called mutators, can be used for infor-

14

2.4. Transpilers

Listing 1 ANTLR4 grammar example.

grammar Foo; // generates class FooParser

// parser rules

sum: INT (PLUS INT)* ;

// lexer rules

INT : [0-9]+ ;

PLUS: '+' ;

mation extraction or other similar use cases. Secondly, a production’s semantic viability can
be dictated by semantic predicates, which are side effect free Boolean-valued expressions.
This opens the possibility of parsing grammars which do not meet ANTLR’s initial require-
ments. As output, ANTLR generates both a lexer and a recursive-descent parser with Java,
C#, Python 2 and 3, JavaScript, Go, C++, Swift, PHP and Dart as currently supported
target languages.

The parser generated by ANTLR operates on the ALL(*) algorithm that moves grammar
analysis to parse time [PHF14]. In case of multiple production options, an ALL(*) parser
dynamically builds pseudo-parallel sub-parsers that use DFAs exploring each option. Ulti-
mately, the surviving parser is chosen. If multiple parsers should survive in case of grammar
ambiguity, the first alternative defined in the grammar is chosen. The previously described
process illuminates the meaning behind the * in ALL(*), as the entire remaining input has
to be considered for the decision-making in a worst-case scenario. According to Parr et al.
this normally does not occur for common languages, and an overall linear complexity can be
observed instead [PHF14]. Although ALL(*) itself does not support left recursion, ANTLR
makes this possible by internally rewriting the rules prior to the parser generation.

Running the parser generated by ANTLR on an input text results in a parse tree out-
put, accessible through specific classes provided by the ANTLR framework. Processing the
information represented by the tree is facilitated by two tree walking mechanisms. The
ParseTreeListener interface can be implemented for performing a depth-first walk on a
specific node, while an implementation of ParseTreeVisitor allows explicitly visiting the
nodes of the tree while it is walked.

2.4 Transpilers

A transpiler is a language processor program capable of automatically translating between
programming languages of the same complexity, usually high level programming languages
[KCH15]. This differentiates them from compilers, that translate high level programming
code, which is usually written and understandable by humans, to machine code, which is
difficult to understand by humans but efficiently to process by a machine.

15

2. Theoretical Background

Transpilers are used for a variety of purposes and have been around for years. As early as
1980, Albrecht et al. describe translating between compatible subsets of the programming
languages Ada and Pascal [AGG+80]. Transpilers are also referred to as transcompilers
[HSKY19] or source-to-source compilers/translators [KCH15, AGG+80] in the literature,
but for the remainder of this thesis, only the term transpiler will be used.

The translation process from the input source code to the target output code is built upon
the phases described in Chapter 2.3. After recognizing language constructs through parse
tree traversal, the output is dynamically generated. Although many programming languages
can be categorized into groups that follow the same core concepts and even use similar
keywords and syntax, addressing all differences may prove difficult and too complex, if not
entirely impossible. Nonetheless, complete language coverage is oftentimes not absolutely
necessary. Although many programming languages do contain complex and therefore difficult
to translate language constructs, those may be rarely used by programmers in practice
[Yel88].

By reducing effort and human-made errors, transpilers are generally suitable for code
migration in the world of software development [Yel88]. Next to translating from one par-
ticular source language to one particular target language, a transpiler may be capable of
generating output code from different input languages. The .NET platform [Mic22a], for
example, can handle C#, F# and Visual Basic as input and translates them to native output
code. Translating between two versions of the same language is also a practical scenario,
implemented for example by Babel [Bab22] creating ES5 conform JavaScript out of ES6.
The extensibility of a language can be improved by transpilers as well, as shown by Sass
[Sas22] or Typescript [Mic22b]. With the increasing importance of web applications that
are subjects to data restrictions set by the internet connection, source code optimization
becomes a very relevant topic for transpilers. Google Closure [Goo22c] or UglifyJS [Baz22],
for example, reduce the file size of JavaScript by stripping the code of unneeded characters.
However, the output of the aforementioned tools is aimed towards workability rather than
readability, as they are used in a frequent translation cycles. Hence, the output code is
not designed for being manually and independently developed any further. Nevertheless,
projects focusing on the maintainability aspect of the output source code exist. Huijsman
et al. developed a transpiler for a permanent Algol 60 to Ada migration, focusing on read-
ability [HvKPT87]. Schaub and Malloy had the same goal for translating a Java subset
into Python and C++ [SM16]. Recently, in the field of translating between native mobile
programming languages, efforts to achieve independently maintainable output source code
have been made as well [Sch22, Oll20, Stu20, Ven22a]. As they’re particularly relevant to
this thesis, they will be further explored in Chapter 3.1.

2.5 Summary

This chapter gave background on Kotlin and Swift, the core concepts of programming
language parsing and transpilers. Kotlin and Swift are modern programming languages that
have replaced their predecessors Java and ObjectiveC as the preferred languages for the
Android and Apple platforms, respectively. In particular, they are characterized by their

16

2.5. Summary

less verbose and safer syntax. Next to app development, both languages can be used for a
diverse set of projects, like server-side applications or systems programming.

However, while Kotlin and Swift as high level programming languages are suited to be
understood by humans, their syntax cannot be easily processed by a machine. For con-
verting the instructions to a processable model, programming language parsing becomes
necessary. Three steps describe this process, although the last step may be omitted occa-
sionally [Aho07].

Firstly, a lexer is used to for transforming the incoming character stream to a token
stream. The tokens of a programming language are defined in its grammar, along with a
set of rules defining how these tokens can be used to form syntactically valid sentences, i.e.,
statements. The grammar of a higher programming language can usually be described as a
CFG in accordance to the Chomsky Type 2 definition [Cho56]. Tokens are identified from
the input by matching lexemes, which are strings of characters corresponding to the pattern
of a token. In this context, these patterns can be usually described by regular expressions,
which can be implemented by using DFA.

Secondly, the output token stream from the lexer is picked up by a parser checking its
syntactical validity. If a string cannot be completely derived from a special token known as a
start symbol, it is no valid sentence in the given language. The output of a parser is usually
a tree-like structure called parse tree, representing the derivation of the input token stream
from the start symbol of the language. Generally, parsers are divided into the two categories
of top-down and bottom-up parsers, working on LL or LR grammars respectively. While
top-down parsers build the nodes of the parse tree from the root down, bottom-up parsers
start at the lowest nodes and work their way up to the root. Both types might incorporate
an arbitrary number of lookahead tokens to determine the rule of the grammar that is being
followed by the input.

A potential last step, that is omitted by some language processors in favor of working
directly on the parse tree produced by the parser, is the semantic analysis. Not all rules of
the language can be defined in its grammar, as some of them do not arise before runtime.
E.g., the statement a * b might pass as syntactically valid while not being semantically
valid, as the typing of the values behind the variables a and b are not intended to be part of
a production in that particular programming language. Therefore, in the semantic analysis
phase, the parse tree is checked on its semantic validity conforming to rules w.r.t. type
checking, scopes and recognizing identifiers. Usually, this involves a data structure called a
symbol table, keeping track of identifiers and information relevant to them. Ultimately, the
output of the semantic analysis phase is a verified parse tree.

To reduce development effort, several lexer and parser generators exist. One of them
is ANTLR [Par22, Par12], a flexible and customizable parser generator tool for creating a
lexer, a parser, and various helper classes for traversing the parse tree. ANTLR was also
used for this thesis.

Transpilers are special language processor programs that usually translate between high
level programming languages [KCH15]. While being suited for code migration, they are
sometimes confronted with fundamental differences between their input and output language
[Yel88]. However, complex and difficult to translate language constructs might be rarely used
by programmers in practice. In the modern landscape, transpilers are, e.g., used for cross-

17

2. Theoretical Background

platform migration, legacy support, extension of a language or code optimization. However,
transpilers do not always focus on the maintainability and the readability of the output
code, but instead on its workability. Nevertheless, especially in cross-platform migration, it
might be desirable to create an independently maintainable output code base. The Swift-to-
Kotlin transpilers Gryphon [VGM20] and SwiftKotlin [Oll20], the Kotlin-to-Swift transpiler
Kotlift [Stu20] and the bidirectional Swift and Kotlin transpiler SequalsK [Sch21] aim to
produce readable output code that can be developed further without being dependent on
the transpiler itself. As a result, they open up opportunities for cross-platform Android and
Apple OS development. The current state of the art in regard to transpilers in this field is
therefore discussed, among others, in the next chapter.

18

Chapter 3

State of the Art

This chapter presents the current state-of-the-art relevant to different aspects of this thesis.
Towards the end of the previous chapter, Gryphon, Kotlift, SequalsK and SwiftKotlin were
briefly introduced as transpilers for cross-platform Android and Apple OS development.
Building on this, native source-to-source translators intended for that purpose, including the
aforementioned four transpilers, are described further in the following. Part of this thesis
includes uncovering deficits in Gryphon’s, Kotlift’s, SequalsK’s and SwiftKotlin’s language
coverage. To understand the differences between Kotlin and Swift and potential obstacles
for these transpilers better, previous work on the translatability between those languages
is briefly discussed afterwards. Since the impact of deficits in language coverage might
vary depending on their actual degree of usage in programming projects, existing studies
conducted on Kotlin and Swift usage are examined next. Lastly, this thesis is placed into
the context of other works using ANTLR.

On the one hand, this chapter aims to provide an overview of more concrete topics
regarding this thesis and show previous work that it is based upon. On the other hand, it
reveals why the current state of the literature is insufficient for evaluating Kotlift, SequalsK
and SwiftKotlin, thus making the study conducted in this thesis necessary.

3.1 Native Source-to-Source Translation in the Context of
Android and Apple OS Cross-Platform Development

The interest in translating between Android and Apple OS apps as described in Chapter
1 created varying approaches over the last years, including tools converting native code
to native code. Notably, the tools included in this section range from more traditional,
fully automated transpilers that operate as described in Chapter 2 to tools that perform
translation, but still require some degree of manual verification. However, they all share
common themes behind their motivation. The goal of these tools is usually to create an
independently maintainable, native output code base that does not rely on the continuous
development of a certain third-party-tool. Furthermore, some of them aim to decrease the
necessity of learning the native language of the other platform. Ultimately, like all cross-

19

3. State of the Art

platform development tools, they want to reduce the development effort for targeting both
platforms.

However, little literature exists considering the tools presented in this section when com-
paring other means of cross-platform development, which may be related to the novelty of
the native source-to-source translation approach in this area. Therefore, the only evalua-
tion of the tools available in the literature is often conducted within the works introducing
them. Still, those results certainly show promise and make further examination of the native
source-to-source translation approach interesting.

3.1.1 Java-to-ObjectiveC and ObjectiveC-to-Java

Pioneering the transpiler approach for Android’s and Apple’s natively supported languages,
the J2ObjC transpiler from Google was started in 2012, with version 1.0 released in 2016 to
the public [Goo21b]. The transpiler officially concentrates on the translation of client-side
business logic code from Java to ObjectiveC. For the code conversion, it operates on an
abstract syntax tree created from parsing the input. Due to the complexity of platform
specific application programming interfaces (APIs), J2ObjC only supports business logic
code [Goo16]. J2ObjC is open-sourced and internally used by Google apps like Gmail, Google
Docs or Google Drive. In addition, it is successfully incorporated in various works in the
literature regarding cross-platform Android and Apple OS development [CLTC15, FW16].
Although J2ObjC aims for “generally easy to debug source output“ [Goo16], its output code
is noted as difficult to read by the literature, as the transpiler prioritizes working code over
readable code [VGM20]. In their comparison of cross-platform development tools for mobile
platforms, the advantages for J2ObjC and transpilers in general were stated as the reusability
of code and the possibility of creating a native app from the output [EKAYW17].

A counterpart for translating ObjectiveC to Java code called objc2j exists, but is depre-
cated [Goo13].

3.1.2 Java-to-Swift and Swift-to-Java

Meanwhile, j2swift [Nie16], converts from Java to Swift by also analyzing the parse tree of
the input. Nevertheless, the project itself appears to be largely abandoned, with the last
commit six years ago and the supported language versions being Java 8 and Swift 1.2.

As part of their j2sInferer-tool for facilitating the porting of mobile applications, An et al.
included code translation from Java to Swift [AMT18]. This is done by creating a parse tree
from the Java input code and matching the lowest subtree representing the code block of
interest to the entries of a database consisting of abstract string template mappings. Thus,
the Swift output code is generated from an appropriate match by replacing the abstract
parameters with concrete substrings based on the input. The authors evaluated j2sInferer by
testing it on four applications that had both a Java and a Swift implementation. Ultimately,
they obtained an average translation accuracy of 76%, which outperformed j2swift that was
used on the same applications and obtained an average translation accuracy of only 57%.

Works surrounding the Trans Compiler Android to IOS Conversion (TCAIOSC)-
project aim to produce a whole independently maintainable app project for the respective

20

3.1. Native Source-to-Source Translation in the Context of Android and Apple OS Cross-Platform
Development

other platform by transpiling from Java to Swift [SHK+19] and Swift to Java [MME+20]. As
a proof of concept for their Android to iOS transpiler, they fully converted a simple Android
app for solving a second degree polynomial to an iOS app [SHK+19]. The code translation
from Swift to Java was evaluated with a Bilingual Evaluation Understudy (BLEU) score
[PRWZ02], a metric for evaluating machine generated translation in comparison to human
translation [MME+20]. Their test cases consisted of an app specifically developed for that
evaluation, in addition to four other apps. The results show an average of 88% BLEU score
of the translatable parts. Next to the business logic code, approaches for converting UI
code and other parts of the app leveraging native APIs were presented in subsequent work
[HSKY19]. The conversion is mostly done by, once again, leveraging the parse tree of the
input code and recognizing the usage of platform specific APIs, like sensor usage. Likewise,
views from XML layout files are mapped to corresponding code blocks from the input, so the
layout file for the other platform can be generated. These approaches were enhanced further
for the Swift-to-Java translation direction, as described in a follow-up paper, by generic
library mapping to prevent the need for manually defining API specific translations inside
the transpiler [MSSY21]. This is achieved by overriding the parser output based on JSON-
files that describe the mapping of a function to the corresponding other language. Those
JSON-Files are previously generated as output of a separate tool that semiautomatically
finds the equivalent of a library function in another language. Their methodology was
evaluated using BLEU. After previously mapping 91 functions of Swift’s and Java’s math
library and 90 functions of their string library, the improved system leveraging library mapping
achieved an average accuracy of 91.36% when translating the test cases from Ahmad et
al. [MME+20]. In another work, TCAIOSC was proposed to support the translation of
SwiftUI to Android UI classes and functions from the android.widget library [Goo22a]
and likewise [EKSY21]. For this purpose, every considered UI component was mapped to
its corresponding counterpart in a JSON-file. When using the extended tool based on the
version of Ahmad et al. [MME+20, MSSY21] on five example applications, an average
accuracy of 89% was achieved when performing a BLEU test. However, the conversion
presented in this work did not include the generation of XML layout files.

While not exactly being a transpiler in the traditional sense, Native-2-Native still performs
Java to Swift translation by leveraging popular online resources such as the popular Q&A
site Stack Overflow [Sta22a] in an “automated code synthesis“ [CBTR17, BCT15]. In
practice, suitable translations are suggested via an Eclipse plugin while editing the source
code. On the one hand, the selection requires a considerable amount of manual effort. On
the other hand, native APIs that are not included in the actual grammar of the language can
be easily covered. Similar to the transpilers presented thus far, Native-to-Native tokenizes
the input Java code to generalize it for creating a search query and a meta-data object.
Then, it tokenizes the Swift code of relevant results into meta-data objects, too, so they
can be matched to the Java meta-data object. As a proof of concept, Native-2-Native was
evaluated by its capability of translating 66 API functions for each direction of translation,
including communication with sensors, network interfaces and canonical library classes and
data structures [CBTR17]. Ultimately, 85% of these test cases retrieved at least one relevant
answer when converting Java to Swift and 92% when converting Swift to Java.

21

3. State of the Art

3.1.3 Kotlin-to-Swift and Swift-to-Kotlin

For translating between Kotlin and Swift, the primary programming languages of Android
and Apple OS, the four transpiler projects Gryphon, Kotlift, SequalsK and SwiftKotlin can
be found when searching online [Ven22a, Stu20, Sch21, Oll20]. Notably, all of these tools
currently only focus on the model with the business logic parts of an application.

Gryphon supports the translation of Swift to Kotlin while laying a heavy focus on both
the independence and the manual maintainability of the output code [VGM20, Ven22a].
Next to a command line tool, Gryphon is complemented by an Xcode-plugin. In addition
to the core transpiler, Gryphon provides two separate libraries for both Swift and Kotlin.
Thereby, classes and functions defined there, e.g., Gryphon’s own implementations of array
and map types, can be used to improve the workability of the transpiler. Furthermore, manual
translation can be provided inside the Swift input code. The authors evaluated their tool
with five example applications from the Computer Languages Benchmark Catalog [FG22] and
by bootstrapping Gryphon, i.e., translating the transpiler to Kotlin by using Gryphon itself.
After collecting benchmark runtimes for both manually written and transpiled versions of
the sample applications, they found the differences in the Gryphon versions to be acceptable,
as they ranged from 0.14% speedup to 3.01% slowdown. According to Gryphon’s official
GitHub page, it currently claims to support Swift 5.2 to 5.5 [Ven22b].

Notably, no designated work for Kotlift exists in the literature. However, according to the
official GitHub page of the project [Stu20], the code conversion is achieved by working with
regular expressions and a simplified tree representing the structure of the code. In addition
to the transpiler itself, Kotlift provides a file mapping the most basic Kotlin specific data
type functions from Kotlin’s and Swift’s standard libraries. However, this file is outdated and
cannot be used for current versions of Swift. The transpiler comes with two other options
for manual extensions. Firstly, the JSON-file describing the translation mappings can be
extended with custom translations. Secondly, custom rewrites can be set in code by using a
certain comment structure. Currently, Kotlift claims support for Kotlin 1.0.1 and Swift 2.2
and can be called as a command line tool.

SequalsK is the implementation of a bidirectional Kotlin and Swift transpiler, working
on the parse tree generated from the input code [Sch21, Sch22]. The translation process
is focused mainly on aspects of the language that are defined in its grammar. However,
when part of one language’s API was part of the actual grammar of the other language,
that API feature was considered still. The transpiler is accompanied by two support files
for the Kotlin and Swift output, respectively. Those do not only provide type extensions to
support the workability of the output code, but encompass the functionality for supporting
a loss free re-translation to the source language, e.g., by defining annotations. As a proof
of concept, the model part of a board game app written in Swift was translated to Kotlin,
another game was added to the app and the Kotlin model was translated back to Swift.
While the Swift to Kotlin translation produced 100% valid Kotlin output code, translating
back to Swift required further optimizations of the transpiler to be translated 100% correctly.
Those changes included 11% of the lines of code of the final transpiler. As the model part
of the app translated from Swift to Kotlin made up 86% of the whole app project before
adding the other game, the author observes a saved effort of 86% for this particular case

22

3.2. Translatability between Kotlin and Swift

study by using SequalsK instead of manually migrating the board game app. SequalsK is
available as a command line tool, a web tool and an Android plugin.

Like for Kotlift, no designated work about SwiftKotlin exists in the literature. Neverthe-
less, according to its official GitHub page [Oll20], the translation is performed by analyzing
an abstract syntax tree. The author disregards the translation of parts of the language
outside its grammar, like functions for string types, and encourages manual editing in these
cases. SwiftKotlin can be used as a command line tool or a Mac application.

While their approaches seem promising, all authors admit to deficits in language coverage
that are only partly documented. Given the complexity of Kotlin and Swift, this may be
rooted in the effort required to cover them fully. In the preliminary work for this thesis, some
of those shortcomings were uncovered when testing Gryphon, Kotlift and SequalsK on a set
of basic constructs that was derived from the overview chapters of the Kotlin and Swift
documentations [SS22]. Those included constructs for simple values and typing, strings,
collection types, classes, functions and so on. While Kotlift was identified as less mature
due to only supporting 55% of the test cases, Gryphon and SequalsK both achieved good
support of the test cases, with Gryphon supporting 73% and SequalsK supporting 74% when
translating Swift to Kotlin and 78% when translating Kotlin to Swift. Nevertheless, some
obstacles were observed when translating between the languages, like constructs that have
no counterpart in the other language, are difficult to identify and translate or make use of
data type specific functions.

3.2 Translatability between Kotlin and Swift

The transpilers evaluated in this thesis work on the claim that Kotlin and Swift share sim-
ilarities to an extent that makes translating between them possible. When comparing the
two languages, they do share common traits at a first glance. Both are general-purpose,
statically typed languages with aspects of both object-oriented and functional programming.
Furthermore, they are strongly typed with safe handling of nullable values. Some develop-
ers even point out that learning Kotlin is easier when already having experience in Swift
[OTE20].

Multiple articles online explore their similarities further by directly comparing the two
side to side [Oll16, Mec17]. These similarities are especially visible on a surface level for
constructs that can be either left as they are or only require a simple search and replace. At
the same time, more gravitating differences become visible when approaching more complex
features of the languages, as it was uncovered in the experiments of this thesis’ preliminary
work [SS22]. E.g., unlike Kotlin, Swift supports associated values for its enum type, so a
workaround has to be used for Kotlin. At the same time, Kotlin offers the smart casting
feature that makes explicit casting of a variable unnecessary if the typing of that variable has
already been checked previously in the same scope. However, Swift insists on explicit casting
in these cases. Consequently, simply translating from Kotlin to Swift without considering
this difference would lead to a compiler error in Swift.

When those differences remain unaddressed by the transpiler, their workability is put
at risk. At the same time, as constructs vary in their complexity, they also vary in the

23

3. State of the Art

Listing 2 Code examples for Schultes’ four categories regarding translation complexity
[Sch21].

/* Category 1 */

var a = 123 // Kotlin

var a = 123 // Swift

/* Category 2 */

val b = "Hello World!" // Kotlin

let b = "Hello World!" // Swift

/* Category 3 */

class Rectangle(val height: Double, val width: Double) // Kotlin

class Rectangle { // Swift

let height: Double

let width: Double

init(height: Double, width: Double) {

self.height = height

self.width = width

}

}

required effort for implementing their support. Hereby, Schultes differentiates between four
categories [Sch21]. The three categories that are translatable are exemplified by concrete
code examples in Listing 2. The first category includes identical keywords and constructs, like
the keyword for starting a variable declaration. Meanwhile, the second category only requires
a simple search and replace. A construct exemplifying this category is the declaration of a
constant. The translation of the third category of language constructs is still possible, but
in need of further transformation of the output code. E.g., Kotlin offers the possibility of
describing a class’ assignable properties in a so-called primary constructor that is declared
directly after the class’ identifier. Swift only supports a constructor placed in the class’ body,
so the properties declared have to be added to the class’ body and Swift’s class’ constructor
accordingly. Lastly, constructs of the fourth category are simply not translatable from one
language to the other. These include, e.g., Self Mutating Extensions in Swift that are not
allowed in Kotlin.

In conclusion, while the literature offers no thorough analysis of the common features
and fundamental differences of Kotlin and Swift, previous works suggests that translating
between them is generally achievable with exception to fundamental differences. What
aspects of the language a transpiler needs to focus on in particular to be widely usable can
be assessed by examining how the language is used.

24

3.3. Studies on the Language Adoption of Kotlin

3.3 Studies on the Language Adoption of Kotlin

The extent to which Kotlin is being adopted by Android developers and the problems en-
countered in various aspects of its use was the subject of Oliveira’s et al. research [OTE20].
Their paper provides a more general overview on language usage and problems develop-
ers encounter. Next to general problems with the Android platform, their paper examines
the Java-Kotlin interoperability and how intuitively functional paradigm aspects can be inte-
grated with Kotlin. Furthermore, the authors evaluate developers’ experiences when working
with popular Kotlin integrated development environments (IDEs) like Android Studio
and how developers use the language. For this purpose, automatically discovered topics from
Stack Overflow that are grouped together with the Latent Dirichlet Allocation (LDA)
algorithm [BNJ03], are cross-validated by semi-structured interviews with seven Android de-
velopers. The most questioned topics on Stack Overflow included general questions about
the language, Java-Kotlin interoperability and language specifics like the correct definition
of functions, properties and so on. Questions regarding the UI, the compilation process,
integration of Google or Android components like Firebase, multithreading and dealing with
data types and structures, including questions on data types like string, were grouped into
mediumly asked questions. Finally, connectivity issues, multimedia handling, data storage,
dependency injection and testing belonged into the lowest question group. Although the
Java-Kotlin interoperability is stated as an advantage, they identified that concepts not
available in Java can lead to problems. Moreover, none of the interviewees described a fully
migrated code base from Java to Kotlin in their current projects. Next to comprehension
issues when integrating functional paradigms in Kotlin, interviewees brought to attention
that those paradigms can make code harder to read. Although being the official Android
IDE, Android Studio poses a risk to the workability of projects, as minor upgrades can lead
to problems. Lastly, in addition to finding out that developers think of Kotlin as improving
productivity and quality of the source code, the interviews confirmed that the similarities
with Swift help adopting Kotlin.

Mateus and Martinez concentrate their study on actual feature adoption by measuring
the occurrence of certain constructs [MM20]. They examined whether those constructs were
actually adopted, the degree of their adoption, when they were introduced to a project and
how their usage evolved over time. Their dataset consisted of 387 open-source Android
applications from a list they curated in a previous study [MM19]. Constructs of interest
to their study are available in Kotlin, but not in Java, like Type Inference, Smart Casts,
Sealed Classes and so on. Their occurrence in the applications’ source code was detected
by a custom tool searching for a representation of the construct in an abstract syntax
tree provided by the Kotlin compiler API. For each construct, the number of applications
containing at least one instance was determined, in addition to the total number of instances
in the last commit on the corresponding Git repository. As their sample pool projects varied
in size, the extracted numbers were normalized. This was done using either the lines of code
of an application or a metric relevant to the construct, e.g., the relative occurrence of a Data
Class to normal class definitions. Furthermore, the first use of a construct in the repository
tree was noted. Their findings show that the most used feature is Type Inference, with 98%
of the applications making use of that feature. 77% of variable declarations did not have an

25

3. State of the Art

explicitly declared type. Lambdas were found in 95% of the applications, while Safe Calls
existed in 89%. Other popular constructs included the when control structure, Unsafe Calls,
Companion Objects and String Templates. Meanwhile, Type Alias, Super Delegation, Infix
Functions, Inline Classes and Contracts were found in less than 20% of the applications.
While the least used constructs were generally added later in the lifespan of a project, the
general usage of a construct tends to grow with the project’s evolution.

As part of a study on Kotlin construct diffusion and adoption in Android, Zayat also
took an automated approach to evaluate language feature usage [Zay20]. Their dataset of
33,267 open-source applications was retrieved via a custom Java application connecting to
the GitHub API [Git22a] and filtering for projects containing the AndroidManifest.xml file as
well as the setContentView method. The repositories had to be last updated in October
2017, the month and year Kotlin was officially supported as a language for Android. However,
limitations of the GitHub API returning only 1000 results per search resulted in a total of
26 hours to get all Android projects using the Kotlin language. The constructs considered,
namely Data Classes, Nullability, Mandatory Casts and Argument Lists were mapped to
regular expressions and identified with the rigrep search tool [Gal22]. The results illustrate
the percentage of applications containing a certain feature at least once. On the one hand,
Unsafe Casting by making use of the as operator, exists in 71% of the applications. On
the other hand, Safe Casting with as? is only found in 11% of the applications. Defining a
Default Value for an Optional is found in 54.7% of the applications. The vararg keyword
working as a placeholder for an argument list in Kotlin is used in 15% of the applications.
The following results slightly differ from the observations by Mateus and Martinez. However,
Safe Calls are, once again, identified as popular with 70.4% of the projects using them at
least once. Meanwhile, Unsafe Calls with the null assertion operator !! were found in only
56.5% of the applications, opposing Mateus and Martinez result of 87.6%. Data Classes
show a little lower occurrence, with 49% of applications using them, opposed to 65.1% in
Mateus’ and Martinez’ study.

3.4 Studies on the Language Adoption of Swift

With Swift being pushed by Apple to eventually replace ObjectiveC, Rebouças et al. exam-
ined how developers deal with that transition [RPE+16]. They took a closer look at Swift’s
error handling mechanisms and Optionals, as those greatly differ from ObjectiveC. Despite
not involving actual source code analyzation, this study provides a general overview on the
experience of developing with Swift and what features are interesting to developers. The
first, quantitative part of their methodology consisted of mining posts from Stack Overflow
that are associated with Swift. Afterwards, those are automatically summarized into 25
topics with LDA. To validate those results with a qualitative study, they conducted 12 semi-
structured interviews, with half of the interviewees claiming familiarity and the other half
strong familiarity with Swift. Their results show that, while the core language seems to be
easily adoptable, most of the questions on Stack Overflow center around libraries and frame-
works used in combination with Swift. Dealing with Optionals, especially correctly handling
Optionals that are introduced by frameworks, proofs to be a popular question topic compared

26

3.4. Studies on the Language Adoption of Swift

to other Swift features that do not exist in ObjectiveC. As the error handling mechanisms
were newly introduced at the time of the paper, migrating from ObjectiveC to Swift and the
difference between their approaches appeared to be a problem for some developers as well.
As Swift was just a year old by the time of their study, the authors admit that deficiencies
with the Swift tool set, like the Swift compiler that received its fair share of critic in both
the online questions and the interviews, might improve over time. Nevertheless, to the best
knowledge of the author of this thesis, no study exists with updates on how challenges for
developers with regard to the Swift programming language as a whole might have changed.

However, Casse et al. further examined how developers use Swift’s error handling mech-
anisms [CPCS18]. Their study centers around three research questions. Firstly, the degree
of adopting recommendations provided by six popular online guides, including the official
Swift documentation. Secondly, the occurrence of well-known antipatterns and thirdly, the
differences between experienced and novice developers when writing error handling code.
The quantitative aspects of their methodology consisted of mining open-source Swift repos-
itories using GHTorrent [Gou13]. With the assumption that 50% of the projects found by
GHTorrent included error handling, they retrieved a sample size of 9,000 projects. To exclude
personal or naive repositories, they applied Reaper, a classification framework for identifying
projects serving a general purpose [MKCN17]. For extracting syntactical information about
error handling mechanisms, a custom tool, referred to as metric extractor, was developed.
A parse tree representation of the code for the metric extractor to work on was generated by
swift-ast [yan19]. The popular Swift dependency managers CacaoPods and Carthage were
excluded from the analyzation process. Ultimately, 2,733 projects containing error handling
mechanisms, including variants of try and do, types that implement the Error protocol
and error throwing and catching declarations were extracted by their tool. Those results
were complemented by a qualitative study that included interviewing four experienced and
six novice Swift developers, as well as manually analyzing commits pushed by expert and
novice Swift developers. Their findings exhibit that only half of the projects considered even
use Swift’s error handling mechanisms to consume or signal errors. While less than a third
only consumes, the remaining fifth both consumes and signals errors at least once. Try is
by far the most used error handling construct examined, although it and its variants are
only used more than five times in little over a half of the error handling projects. Addition-
ally, custom error types, e.g., with an Enum, are defined sparsely. In light of the interviews
conducted, this is attributed to the counter-intuitiveness to novices, practical limitations,
problems with the compiler as well as a lacking documentation of Swift’s error handling
mechanisms. Swallowing or ignoring errors with try? or leaving an empty generic catch

block are among the antipatterns most observed.
In order to gain more insight into code smell occurrences in iOS applications, Rahkema

and Pfahl also took an automated approach to code smell detection [RP20]. For the de-
tection of the 36 code smells they identified from reputable sources in the literature, they
generated a model of the code and entered it into a graph database, using their custom tool
GraphifySwift. Notably, only application source code was considered for their study, not
imported libraries. The code smells were defined as queries. The 273 sample applications
stemmed from a collaborative list of open-source iOS applications from GitHub [dkh22].
Their findings show, that the most common code smells are Lazy Class, Long Method,

27

3. State of the Art

Message Chain, Ignoring Low Memory Warning and Data Class.

3.5 Works with ANTLR

ANTLR is used as a tool in the literature in an array of works surrounding language pro-
cessing. Evidently, some tools presented in 3.1 work on a parse tree generated with the help
of ANTLR [Nie16, AMT18, SHK+19, MME+20, Sch21]. Naturally, building a translator
based on ANTLR is not exclusive for translating the native languages of Android and Apple
OS. Examples from other areas of computer science include porting legacy software [SS21],
translating between very purpose-specific programming languages, e.g., for sound genera-
tion and manipulation [Dem15] or translating SQL queries to the query languages of NoSQL
systems [RLMW14]. This flexibility of ANTLR is achieved by its dynamic generation of the
lexer and parser based on a grammar file. So theoretically, any language that is described
by a grammar file valid to ANTLR can be processed. This allows integrating ANTLR into
language independent frameworks that can be adapted for concrete use, e.g., for static
code analysis [RBS13]. Works using ANTLR for code analysis through leveraging the parse
tree is related the closest to the intended usage of ANTLR for this thesis. Other examples
from the literature include the identification of code clones [AP21, SYCI18], proposing code
recommendations based on recognized constructs [LYB+19], or extracting a set of metrics
evaluating an implementation of a Smart Contract [APT20].

3.6 Summary

This chapter introduced the reader to the current state of the art regarding the topics
relevant to this thesis.

Evidently, transpilers and similar tools for native source-to-source translation can be
found in the literature that attempt to overcome the drawbacks of other cross-platform tools
for Android and Apple OS. While J2ObjC pioneered this approach in that particular field
by translating from Java to ObjectiveC, multiple projects can also be found for translating
between Java and Swift and Kotlin and Swift. Although most of these projects show promise,
achieving good results for translating between the languages and considering many aspects
of migration between Android and Apple OS, they are usually not considered in works
comparing different means of cross-platform development. Therefore, the only evaluation of
these tools is most often within the works presenting them, due to a deficiency of coverage
regarding native source-to-source translation for mobile cross-platform development
in the literature. Thus, this thesis aims to improve upon this situation by evaluating
Kotlin-to-Swift and Swift-to-Kotlin transpilers, as those languages are officially preferred
for native development by Google and Android. The transpilers considered for this thesis,
namely Gryphon, Kotlift, SequalsK and SwiftKotlin currently do not translate parts of an
app outside the pure language and some standard libraries. Regarding the need for post-
translation edits, the transpilers differ in their demands. While Gryphon and SequalsK aim
for little manual editing of the output and value meeting the stylistic standards of the output

28

3.6. Summary

language, Kotlift and SwiftKotlin are less ambitious. However, all of them admit to deficits
in language coverage.

In any case, for successfully translating between programming languages, a certain de-
gree of similarity between those languages must exist. While Kotlin and Swift are very
syntactically similar on a superficial level [Oll16, Mec17], differences that are more difficult
to overcome exist, in addition to features that have no counterpart in the other language.
Generally, the constructs of both languages can be divided into four categories regarding
their translatability, namely identical, replaceable, adaptable with a certain amount of
effort and not translatable [Sch21].

The impact of a transpiler’s deficits and capabilities regarding language coverage can
be better evaluated by looking at the way the language is adopted in practice. Thus far,
little work on both Kotlin and Swift exists in this regard. Although some findings were
already made that are also relevant to this thesis, only a limited selection of constructs was
considered in related work. Nevertheless, some insights regarding certain constructs were
given. E.g., Safe Calls were identified as popular constructs in Kotlin [Zay20, MM20]. W.r.t.
Swift, findings showed that approximately 50% of the test applications did not use Swift’s
error handling mechanisms [CPCS18].

In conclusion, the contribution of this thesis can be summarized as follows: Although
concepts regarding native source-to-source translation, especially by transpilers, appear to
be an up-and-coming approach to cross-platform development for Android and Apple OS,
they are hardly considered by the literature. Therefore, this thesis aims to built upon the
preliminary work evaluating the transpilers Gryphon, Kotlift and SequalsK [SS22]. This
subcategory of transpilers was chosen because Kotlin and Swift are the primary native pro-
gramming languages of Android and Apple OS, respectively. To the best knowledge of the
author, no other work directly comparing Kotlin-to-Swift and/or Swift-to-Kotlin transpilers
exists in the literature, besides the preliminary work. For an even better insight on the
current state-of-the art regarding those kinds of transpilers, the Swift-to-Kotlin transpiler
SwiftKotlin is evaluated next to the three transpilers chosen for the preliminary work. Fur-
thermore, as proposed there, the transpilers should be evaluated in a more practical fashion
by considering the popularity of unsupported constructs. However, since there is insuffi-
cient data in the literature regarding the considered constructs’ popularity, the necessity for
conducting such a study for this thesis arises. For that study, parse trees created from the
source code of a project sample pool should be analyzed, like it was done in some of the
previously mentioned works on language adoption [MM20, CPCS18]. However, as this thesis
deals with more than one language, the flexible ANTLR tool is chosen as a parser generator.
Unlike language specific compilers, ANTLR can generate lexers and parsers from any gram-
mar file meeting its requirements. ANTLR is widely used in the literature for different works
requiring language processing. Works using ANTLR for code analysis indicate its suitability
for this thesis [AP21, SYCI18, LYB+19, APT20].

The next chapters will further describe how the studies regarding construct support of
the transpilers and language usage of Swift and Kotlin were conducted within the scope of
this work.

29

Chapter 4

Testing Transpiler Construct
Support

In the preliminary work for this thesis [SS22], the language support of the considered tran-
spilers was taken as an indication of their capabilities. Constructs unsupported by a tran-
spiler would likely be ignored by the translation process or be translated incorrectly. To
better assess whether using a transpiler for a project is worthwhile, it is valuable to have
this information in advance.

Nevertheless, which aspects of the language are supported by Gryphon, Kotlift, SequalsK
and SwiftKotlin is only partly transparent at this point in time. As illustrated in Chapter 3,
the authors of the transpilers do not claim full support of the input language and limit their
project to a set of supported language constructs. Although the support of those constructs
is proven by providing code examples, shortcomings are not described in detail. Moreover,
given the number of features in both Kotlin and Swift, it is likely that unsupported constructs
unknown to the developers of the transpiler projects exist.

Admittedly, testing the transpilers on all aspects of Kotlin and Swift is out of scope
for this thesis as well. Therefore, analyzing the support of basic constructs from the input
programming language is presented as a starting point for evaluating the transpilers. This
builds on the study conducted in the preliminary work, by repeating the experiments with
the most recent versions of the transpilers and adding SwiftKotlin to the examination.

Next to the actual language construct support, all four presented Kotlin-to-Swift and
Swift-to-Kotlin transpilers have differentiating aspirations regarding post-translation edits
and the conformity of the output code to acknowledged style guideline’s of the output lan-
guage. While Gryphon aims to produce output code “without the need for post-translation
edits“ that is “reasonably understandable“ [Ven22a], Kotlift just promises “largely valid
code“ [Stu20]. SequalsK wants to “strive for code that most programmers of the target lan-
guage will prefer“ [Sch21] while SwiftKotlin’s emphasizes that the translation “will require
manual editing“ [Oll20]. Consequently, as the independent maintainability of the output is
stated as an advantage for all the aforementioned transpiler projects, its stylistic correctness
becomes an additional subject of study.

The following chapter describes how the study from the preliminary work was repeated.

31

4. Testing Transpiler Construct Support

Firstly, the test case pool of language construct is described. Secondly, a step-by-step
explanation on how the experiments were conducted is presented. Lastly, the specifics of
the experiment environment are listed for reproduction purposes.

4.1 Description of the Test Case Pool

As previously stated, a thorough analysis of the transpilers’ language coverage w.r.t. all as-
pects of Kotlin and Swift is outside the scope of this thesis. Instead, this work aims to test
the transpilers on a set of basic constructs representing both languages on a surface level.
Both the documentations for Kotlin and Swift possess an overview chapter, namely “Basic
syntax“ for Kotlin [Jet22a] and “A Swift Tour“ for Swift [App22c], with example code snip-
pets fitting that description. Although both chapters only present selected features, they
introduce the reader to commonly used core features, some advanced features and ultimately
best practices. Those include, among others, variable and class declarations, conditionals,
loops and (optional) typing. To avoid a completely random selection of constructs, the code
snippets presented in those chapters were therefore chosen as test constructs for the tran-
spilers. Notably, this possibly gave SequalsK an advantage over Gryphon and SwiftKotlin,
as it already targeted the constructs presented in “A Swift Tour“ as test cases [Sch21].

Table 4.1 (see page 33) summarizes the constructs that were ultimately extracted from
both documentations and reworked into test cases. At the time of the experiments, “Basic
syntax“ from the Kotlin documentation represented Kotlin 1.6.21 and “A Swift Tour“ rep-
resented Swift 5.6. The goal for the test case pool was to take the code snippets from both
documentations as literally as possible. Nevertheless, not all exemplary constructs could be
used unchanged as a test case, as some of them were not compilable as top-level declarations
and required to be placed in some form of context, i.e., a function.

Aside from this, the examples given by both documentations often included constructs
that were primarily unrelated to the feature that was actually shown in that section of the
documentation. Next to describing the basic principles of the language, these chapters
have a representative function as well, which might lead to exemplifying a feature more
complex than necessary to spark interest in the language. E.g., the String Templating code
example in the Kotlin documentation includes the string function for replacing part of a
string with another. In Kotlin, this can be achieved by calling String.replace(...),
while the corresponding Swift function is String.replacingOccurrences(...). In case
the transpiler does not support this translation and leaves the function as it is, the String
Templating test case results in non-working output code. Yet, this outcome does not provide
any meaningful insight on the transpiler’s support of string templates in general. In order
to better differentiate between the basic translatability of a feature and problems caused by
unrelated directives that were part of the example code, simplified test cases of the feature
in question were added to the test case pool, if necessary. Additionally, such constructs were
listed separately in Table 4.1.

32

4.1. Description of the Test Case Pool

Table 4.1: Language constructs extracted for Swift(S) and Kotlin(K).

Construct Construct
Comments Printing
End-Of-Line CommentSK Print InlineSK

Block Comment on Multiple LinesSK Print LineSK

Nested CommentSK Strings
Simple Values and (Optional) Typing String & Number ConcatenationSK

Variables & ConstantsSK Interpolating One VariableK

Explicit Typing (for Int & Double)SK Interpolating ExpressionSK

Type Casting (String → Int)SK Multiline-StringSK

Implicit TypingSK Uppercase4, Replace, Starts WithSK

Type Handling Without InitializationSK Custom Types and Instances
Top Level DeclarationSK Classes With Properties/FunctionsSK

Deferred AssignmentSK Empty ClassesK

Type Checking With isSK/!isK SuperclassesSK

Automatic CastingK Subclasses (Overriding Prop./Func.)SK

Optional Value & Func. Return TypeSK Constructor5-LikeSK/Deconstructor-LikeS

Control Binding StructureSK Property get & setSK

Smart Cast After Null Check K willSet & willSet Access. Other Prop.S

Default Value for OptionalSK Object InstantiatingSK

Safe Accessing of OptionalSK Properties & Function AccessingSK

Collection Types EnumerationSK (W. FunctionSK)
Array-1/Map2-Like DefinitionSK Enum. WithSK/FromS Raw Value
Initializing Empty Array-/Map-likeSK Enum. With Associated ValueS

Overwr. Array-/Map-Like W. EmptySK Shorthand Enumeration AccessingSK

In CollectionSK Data ClassK/StructS

Array-Like Filter, Sort By & MapSK Interface-Like Def. & ImplementationSK

Functions and Lambda-Likes Overriding Interface-Like FunctionSK

Function W. Return3 & Typed Param.SK ExtensionSK (Incl. Self-MutatingS)
Function CallSK Control Flow and Ranges
Function Labels (Included and Omitted)S Iterating Array-LikeSK (With Index)SK

Function Body as ExpressionK Iterating Array-Like With forEachSK

Return VoidSK, Expl. VoidSK, Func.SK Iterating Map-LikeSK (With PlaceholderS)
Function as ArgumentSK While Loop & Do-While-Like LoopSK

Assign Function to VariableK Switch-LikeSK

Nested FunctionSK Conditional in Typed Switch-LikeSK

Lambda-LikeSK (Without Return TypeSK) If-ElseSK

Error Handling and Generics Within a RangeSK

Defining Exception-LikeSK Out of a RangeSK

Throwing/Catching Exception-LikeSK Iterating Over a RangeSK

Safe Variable AssignmentSK Iterating Over a ProgressionSK

DeferS Misc.
Gen. Func.SK, Enum.S & RequirementsS ++/– –K

33

4. Testing Transpiler Construct Support

1 listOf, mutableListOf, arrayListOf, arrayOf, mapOf were considered for Kotlin.

2 mapOf, mutableMapOf were considered for Kotlin.

3 Including multiple returns for Swift.

4 It was tested if either the deprecated toUpperCase or uppercase worked.

5 Both primary and secondary constructors were considered for Kotlin.

4.2 Experiments

Figure 4.1 (see page 35) depicts the workflow of the experiments for one direction of trans-
lation, whose steps will be described in more detail in the following. In order to extend
the test case pool for both languages and provide an expected translation to compare the
transpiler output code to, the examples from both documentations were manually translated
into the respective other programming language. This resulted in the coverage of even more
features for each language. E.g., “A Swift Tour“ covers enums while Kotlin’s “Basic syntax“
chapter does not. However, both languages contain features that, to the best knowledge
of the author, are unparalleled in the other language. Those include, e.g., Self Mutating
Extensions in Swift. Although the constructs representing those features were kept for their
originating language to evaluate the transpilers’ output, no manually translated example was
provided. Furthermore, any duplicate constructs adding no additional valuable insight were
excluded from the test case pool.

In summary, 104 constructs for the translation from Swift to Kotlin and 102 constructs
for the translation from Kotlin to Swift are considered for the experiments in this thesis. The
number of constructs was increased from the preliminary work due to further differentiation
made necessary by including SwiftKotlin. Notably, the constructs for Package Import and
Program Starting Point from the Kotlin chapter were deliberately taken out of the evaluation,
as their translation could not be simply reduced to being correct or incorrect. While Kotlin
uses a package and import logic like Java, import statements are reserved to frameworks
in Swift and unnecessary for the content of other files in the project. As for the starting
point of the program, Kotlin requires a main-function, while Swift starts at the first line
of the project’s main.swift-file. As reported in Section 4.1, the test case pool was initially
composed of examples from both the language’s overview chapter and manually translated
examples from the other language’s chapter. Adjustments to the code guaranteeing its
compilability were made in that step as well. The resulting test cases were then used
as input to the transpilers which would return files of the target programming language.
This step introduced a level of automatization, by calling all transpiler’s command line
interface (CLI) tools relevant to the current translation direction from a separate shell
script, to reduce the effort of addressing each tool separately. Notably, manual translation
options offered by Gryphon and Kotlift were not used, except for replacing Int32 with Int

in Kotlift’s configuration file to avoid return type mismatching when testing the output with
specifically written unit tests.

34

4.2. Experiments

Examples from language's
overview chapter

Translated examples from other
language's overview chapter

Using test cases

on transpilers

Output
compilable?

Output
passes test?

Yes No

Identify problem
No

Yes

Mark as

successful

Mark as
unsuccessful

Check Linter

Add adjusted
example

Adjusted
examples were

only added if they
provided more

insight on a
feature

Figure 4.1: Workflow for identifying construct support of the transpilers.

35

4. Testing Transpiler Construct Support

Figure 4.2: Style warning in IntelliJ IDEA.

Figure 4.3: Style warning in Xcode with SwiftLint.

Support files provided by SequalsK and Gryphon were considered, as they are seen as part
of the core transpiler. Although Kotlift also offers such a support file, it could not be used
for the experiments as it used a deprecated Swift version using now invalid syntax.

The output created in the previous step was then further analyzed in an IDE native to the
output programming language, namely IntelliJ IDEA [Jet22c] for Kotlin and Xcode [App22h]
for Swift. If the output turned out to be not compilable, the problem was identified and
an adjusted example was added to the test case pool, if further evaluation of the construct
was deemed necessary. The current test case itself was then marked as unsuccessful for
the transpiler in question.

If the output was compilable, a unit test corresponding to the test case was run in the
environment of the aforementioned IDE. Those unit tests were manually written for each
test case in the XCTest framework [App22i] for Swift and the kotlin.test library [Jet22g]
for Kotlin. Ultimately, only output code both compilable and passing the unit test was
marked as successful. In case the test should fail, the construct translation was marked as
unsuccessful.

Lastly, the maintainability aspect of working output code was assessed manually by the
author of this thesis by judging its readability. This was done by examining the output code
on its formatting and similarity in naming compared to the input code. In order to test
conformity with existing style guidelines, a linter was run on the code separately. Linters are
programs for static code analysis that flag problems in the code, ranging from semantic and
syntactical issues to stylistic preferences. Those preferences may include spellings, formatting
or naming conventions. For Kotlin, IntelliJ IDEA’s built-in style guide for Kotlin following
official coding conventions was used. For Swift, the SwiftLint [Rea22] plug-in for Xcode was
used, which is based on generally accepted guidelines from the Swift community. If a style
warning should appear for the translation, this was noted accordingly. Figure 4.2 depicts
how a warning was displayed in the Kotlin code in IntelliJ IDEA, while Figure 4.3 shows a
warning within the Swift code in Xcode. Suggestions that were already noted in the source

36

4.3. Environment

code, such as shortened variable declarations, were not considered.

4.3 Environment

The experiments were conducted on macOS Catalina, version 10.15.7. The output from the
transpilers was evaluated using IntelliJ IDEA 2022.1 and Xcode version 12.0. The SwiftLint
plugin was in version 0.47.1. Table 4.2 shows the version of the transpilers used for the
experiments.

Table 4.2: Transpiler versions.

Version Last Updated

Gryphon 0.18.1 9 Nov 2021

SequalsK 0.8.5.4 12 Jan 2022

Kotlift N/A1 26 Mar 2020

SwiftKotlin 0.2.5 17 May 2020

1 Kotlift lacked any information on its versioning, but the most current available version was
pulled from GitHub.

4.4 Summary

This chapter described the methodology used for assessing construct support for Gryphon,
Kotlift, SequalsK and SwiftKotlin.

The experiments conducted built upon the preliminary work done for this thesis [SS22].
To evaluate the transpilers’ translating capabilities, construct-based experiments were pre-
sented. The test case pool for these experiments was assembled from the overview chapters
of the Swift and Kotlin documentations by transforming the code snippets provided there
into compilable test cases. Then, they were manually translated by the author of this thesis
to the respective other programming language and ultimately used as additional test cases.
In the end, 104 distinct constructs for Swift and 102 constructs for Kotlin could be derived
from the test cases.

The experiments for each direction of translation were conducted as follows: Firstly,
the test case pool derived from the input language’s overview chapter and the manual
translations of the target language’s overview chapter were used as input for the transpilers.
Secondly, the compilability of the output code was tested. If it failed, the problem was
identified and the construct was marked as unsuccessful for the transpiler, concluding the
experiment. If further examination of the problem seemed appropriate, an adjusted example

37

4. Testing Transpiler Construct Support

was added to the test case pool. If the output was compilable, a specifically written unit test
was run on the output code. Only if the outcome was valid, the construct was ultimately
marked as successfully translated. Additionally, the readability and therefore maintainability
aspect of the output code was assessed using both manual evaluation and a linter following
the best practices of the target language. Any notable warnings that were produced by the
linter were written down. Afterwards, the experiment was concluded.

The intention behind the experiments presented in this chapter was to test transpiler
support of a presumably basic set of constructs. While conducting the experiments, every
construct was treated equally and two possible outcomes regarding their translatability were
expected – either supported or unsupported. However, a look at the test case pool
shows that some constructs differ significantly in terms of their complexity and presumably
translatability. At the same time, it can be assumed that developers do not use all aspects
of a language in equal measure. In conclusion, the impact of unsupported constructs on
the applicability of the transpilers differs as well. Analyzing the popularity of a language
construct would add more practical relevance to the study presented thus far.

38

Chapter 5

Mining Open-Source Applications

As previously described in Chapter 4, code examples from the two overview chapters of the
Kotlin and Swift documentations, namely “A Swift Tour“ and “Basic syntax“ for Kotlin,
were chosen to create a test case pool roughly representative of the languages. These
chapters are the starting point of the respective language’s documentation, and it can be
assumed that the features described there are widely known amongst developers. At the
same time, previous studies suggested that the constructs used to exemplify those features
might not garner the same popularity regarding their usage [CPCS18, MM20, Zay20]. Nev-
ertheless, most of the test constructs presented in Chapter 4 are not covered by previous
work. Undoubtedly, a transpiler’s applicability would suffer from neglecting a construct
that is popular amongst developers from the input programming language’s community. In
addition, treating the support of each construct equally is not representative of how differ-
ent constructs affect transpiler applicability, as some constructs might be used more often
than others. In conclusion, a construct’s popularity should be applied as a metric to the
results from Chapter 4 for evaluating Gryphon, Kotlift, SequalsK and SwiftKotlin in a more
practice-oriented fashion.

Moreover, not only developers who want to use one of the transpilers would benefit
from such an extension of the study. During the experiments illustrated in Chapter 4, if a
construct from the documentation included a directive that caused an incorrect translation,
this directive was viewed separately and a simplified construct was potentially added to the
test case pool. On the one hand, this provided more insight on the transpiler’s general
support of a feature. On the other hand, this increased the already existing dissonance in
translation complexity between the entries in the result table. Chapter 3 already showed
potential difficulties for translating between Kotlin and Swift. This included a categorization
for classifying the translatability of language constructs by Schultes [Sch21], ranging from
identical translation to not translatable. Thus, varying implementation effort is required
when adding the support of another construct to a transpiler. In this context, it is important
to know to what extent this effort is worthwhile to the authors of Gryphon, Kotlift, SequalsK
and SwiftKotlin.

Determining the popularity of the constructs from the test case pool of Chapter 4 requires
a large enough sample pool of relevant Swift and Kotlin projects. Consequently, source code

39

5. Mining Open-Source Applications

was mined from third party sources in amining software repository (MSR) study [KCM07]
for this thesis. MSR studies are conducted to gain insight into various aspects of software,
e.g., how developer behavior evolves over time or to what extent certain constructs are used.

The following chapter describes how the sample pool for the MSR study conducted
in this thesis was assembled and prepared for further processing. Firstly, a step by step
explanation presents how relevant repositories were found using GitHub Search [DAB21],
followed by a description of the criteria applied to the projects to identify them as Android
and Apple OS app projects. Next, it is outlined how potential noise created by third party
dependency managers was removed from Swift projects. Subsequently, the usage of the
cloc tool [Dan22] for extracting general metrics relevant to the later evaluation process is
elaborated.

5.1 Finding Relevant Kotlin and Swift Repositories

Source code collaboration tools, and especially their most popular representative by far,
GitHub [Git22b], are widely popular amongst developers for various reasons [Jet22h]. GitHub
does not only make version control and setting up continuous integration pipelines easy, but
offers a safe environment for collaboration on a project through multiple branches, project
forking and reviewing of merge requests by outside contributors. In addition, public projects
can be published for free. GitHub prides itself with being an open-source friendly platform,
with millions of open-source projects existing there [Git22d].

With regard to the MSR study conducted for this thesis, it could be assumed that
a sensible size of open-source Kotlin and Swift projects reside on GitHub. In order to
achieve statistical significance and diminish the influence of outliers, it was decided to collect
as many relevant projects as possible illustrating construct usage. Still, GitHub is not
built with mining its repositories in mind and searching for a representative amount of
repositories fulfilling research criteria is not straight-forward. One way of achieving this is
by leveraging the GitHub representational state transfer (REST) API [Git22a], or using
tools incorporating it.

5.1.1 The GitHub REST API

The GitHub REST API, for the remainder of this thesis simply referred to as the GitHub
API, allows “to create integrations, retrieve data, and automate your workflows“ [Git22a].
Generally, REST APIs allow the retrieval or manipulation of data via HTTP by sending
either GET, POST, PUT or DELETE as a request method to an endpoint of the API. In
the case of the GitHub API, JSON is used for sending and receiving data. However, the
number of requests that can be sent to the GitHub API is limited to 60 requests per hour
for unauthenticated clients and 5,000 requests an hour for authenticated clients. Further
restrictions include a maximal number of 1,000 results when using the GitHub API for finding
specific items in repositories, accompanied by not being able to send more than 30 requests
per minute as an authenticated request and 10 requests per minute as an unauthenticated
request. Notably, these circumstances lower the efficiency of finding data suited to the
criteria of a MSR study.

40

5.1. Finding Relevant Kotlin and Swift Repositories

5.1.2 GitHub Search

In order to improve upon the applicability of the GitHub API for MSR studies, Dabic et al.
developed the GitHub Search (GHS) tool [DAB21]. GHS facilitates filtering repositories
according to certain criteria including programming language, date-based filters, filters on
activity and the repository’s popularity. Notably, the programming language filter returns
projects which are written mainly in the sought after language. Unlike when using the
GitHub API, no restrictions regarding limited requests per hour are imposed. Furthermore,
GHS only mines projects having at least 10 stars, i.e., projects that have been marked as
a favorite by 10 or more GitHub accounts. Although the authors admit that stars are no
reliable indicator of the quality and/or relevance of a project, they claim that this restriction
“provides a reasonable compromise between the quality of data and the time required to
mine and continuously update all projects“ [DAB21]. After the completion of the querying
process, the user can download the results from GHS as an XML-, JSON- or CSV-file. These
files include all information that is normally visible by visiting the project’s GitHub page, like
its full name, number of commits, contributors, default branch and the number of watchers.

5.1.3 Filtering for Relevant Kotlin and Swift Projects

When using GHS for finding Kotlin and Swift projects, 22,471 results can be obtained for
Swift and 13,576 for Kotlin as of 22 May 2022. Traditionally, MSR studies have a proneness
to being skewed by noise, as pointed out by Barros et al. [BHWS21]. When basing a study
on source control management systems, they recommend filtering for relevant repositories
beforehand and extracting only necessary data from those repositories. As described in
the previous subsection, GHS already excludes projects with less than ten stars in order to
reduce unwanted results. Still, upon further inspection of these projects, some appeared
to being abandoned for quite some time, possibly using old versions of Kotlin/Swift. As a
consequence, a filter regarding the last commit to the project was applied.

Kotlin

According to the timestamp visible in the “Basic syntax“ chapter from the Kotlin documen-
tation, the last update was performed on 13 September 2021 [Jet22a]. However, according
to the publicly available changelogs, these changes merely contained updating the chapter
with information on a Kotlin course [Jet22b]. As the chapter itself was added to the doc-
umentation on 11 February 2021, it can be assumed that most of the features presented
in “Basic syntax“ already existed before its release. Notably, the only changes since then
included fixing typing errors and switching the deprecated string function toUpperCase to
uppercase, in accordance with the release of Kotlin 1.5.0. However, since the latter is a
non-breaking change and toUpperCase is still usable, most developers would not feel urged
to update their code accordingly right away. Hence, the date this change was made is not
adequate as a filter for narrowing down the GHS results.

To approximate a more relevant date, the Markdown-file that is used for rendering the
“Basic Syntax“ chapter in the web front-end was examined further [Jet22f]. Listing 3 (see
page 42) shows an excerpt of the file basic-syntax.md. The Kotlin code exemplifying a

41

5. Mining Open-Source Applications

Listing 3 Excerpt of basic-syntax.md from the Kotlin documentation [Jet22f].

{kotlin-runnable="true" kotlin-min-compiler-version="1.3"}

A function body can be an expression. Its return type is inferred.

```kotlin

//sampleStart

fun sum(a: Int, b: Int) = a + b

//sampleEnd

fun main() {

println("sum of 19 and 23 is ${sum(19, 23)}")

}

```

feature is located inside ```kotlin [...] ````. The directives outside //sampleStart

and //sampleEnd remain invisible to the viewer of the “Basic syntax“ chapter, so only the
function sum will appear as an exemplary code snippet on the website. In the whole file, every
subsection containing a piece of runnable exemplary code is preceded by a directive stating
the minimal Kotlin compiler version as Kotlin 1.3. When comparing the release notes since
Kotlin 1.3 to the test cases directly derived from “Basic syntax“ and the manually translated
“A Swift Tour“ test cases, all constructs existed at Kotlin 1.3 release. Kotlin 1.3 itself was
released on 29 October 2018 and introduced features that are relevant to the test case pool
from Chapter 4, like the automatic casting of variables that were already type checked.
Consequently, the GHS results were filtered for projects having at least one commit after 29
October 2018. Ultimately, 11,605 of the previous 13,576 projects remained.

Swift

The revision history for the Swift documentation dates the last modification of “A Swift
Tour“ to 21 March 2016 [App22a]. Since the fast evolving Swift programming language
underwent three major releases in the meantime from then until 2022, this was met with
suspicion and examined further. The WayBack Machine [Int22] is an online service archiving
the state of billions of websites over time. The earliest available state of “A Swift Tour“
implementing the changes noted in the 21 March 2016 entry of the Swift documentation’s
revision history can be found in the recording of the WayBack Machine from 23 April 2016
[App16]. When comparing the state of the site then to the most recent state of the site,
some deviations in code examples became apparent indeed. Most likely, changes to “A
Swift Tour“ since 21 March 2016 have not been noted explicitly in the revision history.
Next to minor differences, like comments or printing, and an example for variable argument
size for functions that is missing in the current version of “A Swift Tour“, some differences
affecting the test cases described in Chapter 4 exist. Table 5.1 (see page 43) lists these

42

5.2. Identifying App Projects

differences, adds the Swift version the construct was released and the date of the state they
are accessible for the first time via the WayBack Machine. The changes surrounding arrays
and dictionaries solely modify existing examples by adding or changing directives to language
constructs that have been present since Swift 1.0. Nonetheless, changes in the argument
label syntax and the enumeration cases notation were introduced in Swift 3.0 Similarly,
Multiline Strings were introduced in Swift 4.0. With this in mind, only repositories with a
commit after the release of Swift 4.0 have a chance of incorporating the constructs that are
described in the most current version of “A Swift Tour“.

Table 5.1: Missing constructs in the 23 April 2016 version of “A Swift Tour“.

Since Swift Present in “A Swift Tour“1

Multiline Strings 4.0 30 June 2017

Appending Array Items 1.0 20 September 2018

Different Syntax for Initializing
Empty Arrays/Dictionaries

1.0 30 June 2021

Placeholder for Iterating a Dic-
tionary

1.0 27 February 2021

Different Syntax for Argument
Labels

3.0 21 February 2017

Lowercased Enumeration Cases 3.0 21 February 2017

1 This date is an approximation done by searching through the WayBack Machine and
possibly does not reflect the real date of change in the Swift documentation.

In addition to the test cases directly derived from “A Swift Tour“, the test case pool described
in Chapter 4 consists of manually translated examples from the “Basic syntax“ chapter of
the Kotlin documentation. Therefore, those were reviewed on any language constructs that
were added to Swift after the 4.0 release. In fact, Implicit Returns, that were used as a
translation of Kotlin’s Function Body as Expression, were added in Swift 5.1. As a result, a
repository from the sample pool must have at least one commit after 10 September 2019,
the day Swift 5.1 released. This reduced the number of results from GHS to 10,876.

5.2 Identifying App Projects

Gryphon, Kotlift, SequalsK and SwiftKotlin primarily are advertised as tools for cross-
platform mobile development [Ven22a, Stu20, Sch21, Oll20]. However, as pointed out in
Chapter 1, the Android and Apple OS ecosystems comprise a multitude of platforms, from
mobile devices like smartphones and tablets to smart TVs. As some projects target multiple

43

5. Mining Open-Source Applications

hardware anyway and other platforms than mobile do present possible use cases for the
transpilers, all app projects developed for Android and Apple OS platforms were considered
relevant for the MSR study performed in this thesis. Yet, identifying them from the projects
collected by GHS thus far required analyzing the content files of the repositories. For this
purpose, certain criteria were defined for both Android and Apple OS apps.

5.2.1 Criteria for Android App Projects

Zayat proposes a way of differentiating Android projects from libraries and other utilities
by a set of certain properties [Zay20]. According to their thesis, the manifest file An-
droidManifest.xml, that must exist in every Android app project, and the usage of the
setContentView function in an Activity class are characteristic to Android projects. In
Android, an Activity serves as a container class for processing the input from user inter-
action. The setContentView function is used to load an XML layout file describing the
respective UI file for the current Activity. Therefore, a project using setContentView at
least once can be assumed to be an app with an UI. However, this is not true for Android
apps whose UI is solely built with Jetpack Compose [Goo22e]. Jetpack Compose is an alter-
native, declarative way of defining an UI in Kotlin, opposed to the traditional XML layout
files.

While building on Zayat’s methodology to identify Android projects by searching for the
existence of an AndroidManifest.xml, this thesis proposes an extension of the recognition
of existing app views. In addition to searching Java and Kotlin files for setContentView,
Kotlin files should be searched for characteristics of Jetpack Compose as well. When using
Jetpack Compose, the building blocks of the UI are instantiated in the block of setContent.
Therefore, the existence of a setContent statement suggests the existence of an UI.

5.2.2 Criteria for Apple OS App Projects

For identifying Apple OS app projects from the 10,876 Swift repositories found by GHS, a
similar approach to the one described for Android was taken. When creating a project with
Xcode, which is the native IDE for developing Apple OS app projects, a property list file
named Info.plist must exist for all executable bundles of the project [App22b]. Therefore,
the first criterion for a Swift project to potentially be an Apple OS app project is to possess
an Info.plist file, something a library project would lack. However, this criterion alone would
include frameworks. Consequently, the existence of at least one view describing an UI was
the next logical condition for identifying an Apple OS app project.

In an Apple OS app project, a view can either be defined by an XML like structured layout
file or alternatively in Swift in a declarative fashion by using SwiftUI [App22g]. The lifecycle
for apps building upon XML structured layout files is usually handled by a class implementing
either UIApplicationDelegate for apps for iOS-based devices, WKExtensionDelegate
for watchOS for Apple Watch apps or NSApplicationDelegate for macOS apps. The
implementing class can be seen as the root object of the app and is, among others things,
responsible for managing the app’s views. Therefore, the existence of either of those pro-
tocols in a Swift or ObjectiveC file suggests an app project with an UI. Opposite to apps

44

5.2. Identifying App Projects

whose UI are defined by XML layout files, the views defined in SwiftUI usually do not use
a separate controller class. Instead, the response to user interaction is handled directly in
the object describing the structure of the view, which implements SwiftUI’s View proto-
col. Consequently, the existence of a Swift file importing SwiftUI and declaring an object
implementing the View protocol suggests a SwiftUI based app project with an UI.

5.2.3 Filtering the GHS Results for App Projects

In a first attempt to filter the list of Kotlin projects found by GHS, requests were sent to
the GitHub API to get information about the content of the repositories. However, this had
multiple downsides. The GitHub API is protected against abuse by inflicting various rating
limits against clients if too many requests are sent in a short period of time. Generally, they
are two types of rate limits: A primary rate limit is triggered, when the client exhausted
the allowed number of requests that can be sent within a certain time period. The condition
for hitting a secondary rate limit is to “repeatedly request data that is computationally
expensive“ [Git22c]. However, this definition is somewhat vague, and the response triggered
by a secondary rate limit does not contain any information on when the request can be
repeated. The client has no choice but to wait for an arbitrary number of seconds before
trying again, while still potentially hitting another secondary rate limit. When using the
GitHub API for the purposes of this study, which can be considered costly as they required
searching through the code in the repository, the process was notably slow as the secondary
rate limit was hit regularly.

Furthermore, some inconsistencies were observed when sending requests to the GitHub
API. In some cases, the API response suggested that the project did not meet the search
criterion, although manual verification showed that the project was indeed an Android app
project. When repeating the request, the API would most often return the expected result.
Although this behavior could not be reproduced reliably, it does not seem to be exclusive to
this study, as proven by a community post [Ale22]. The participants of the thread describe
the same problem when using both Python and Ruby and suspect a bug within the GitHub
API itself.

In addition to these drawbacks, the search query does not allow regular expressions and
connection of query strings with a logical AND. However, the criterion defined for detecting
a SwiftUI based app requires looking for both the import statement of the framework and
the implementation of View in the same file.

After weighing up these disadvantages in conjunction with the time required, it was
decided to download the repositories as ZIP-archives instead and then to verify them lo-
cally. On the one hand, the worst-case of this methodology would include downloading
and analyzing repositories that are of considerable size but are not app projects. On the
other hand, downloading the first 600 Kotlin repositories as archives and verifying them
took approximately 13 minutes, while just verifying the same amount using the GitHub API
took approximately 1 hour and 18 minutes. Downloading the repositories as ZIP-archives
was implemented as a Python script. Listing 4 (see page 46) shows the function used for
requesting the ZIP-file contents. The fetch_zip-function was called inside a for-loop that
iterated all entries of the CSV-file exported by GHS. It was parametrized with the current

45

5. Mining Open-Source Applications

Listing 4 Function for cloning the repositories as ZIP-archives.

def fetch_zip(repo_name, default_branch):

response = requests.get("https://github.com/" + repo_name +

"/zipball/refs/heads/" + default_branch)↪→

if response.status_code != 200:

print(response.status_code)

raise RepoNotValid

else:

return response.content

Listing 5 Function for validating the ZIP-Archives as app projects.

def check(pattern, path, include_file):

stdout = os.popen('zipgrep -Elzw ' + pattern + ' ' + path + ' ' +

include_file).read()↪→

return len(stdout) > 0

entry’s repository name and default branch. Firstly, inside fetch_zip’s body, a call was
made to GitHub requesting the default branch of a repository as a ZIP. If the response
had a HTTP status code of 200 and was therefore fulfilled, its content was returned and
then written to a ZIP-file. If the response had a status code other than 200, the custom
exception RepoNotValid was raised. As the file download from GHS and the download of
the ZIP files had a time discrepancy of a few days, some of the repository’s naming changed
in the meantime. In the case of the Swift repositories, one was even deleted. Therefore,
RepoNotValid was handled by writing down the repository’s name in a separate CSV-file,
so it could be corrected manually, and then the download process could be repeated for
those projects.

The verification of the projects as Android and Apple OS app projects was done using
zipgrep [Gai22]. Zipgrep allows searching the contents of a ZIP-archive for regular expres-
sion matches. Listing 5 shows the function used for checking the downloaded ZIP-archive
of a repository’s default branch. The pattern argument passed to the function check de-
scribes a regular expression for the searched term, e.g., ''setContentView''. The path

argument contains the location of the ZIP-archive, while include_files describes what
kind of files should be included in the search. E.g., when trying to find the characteristics of a
SwiftUI app, only .swift files should be included. By using the popen function of the Python
module os, which opens a pipeline to the command interpreter, the zipgrep command was
issued. The E option declares the conformity of the search pattern to POSIX Extended
Regular Expressions, while the l option defines that only the name of the first matching file
is sent to the output and the search will be stopped afterwards. The z option defines that
newline characters are omitted from the input. Finally, the w option declares that a match

46

5.3. Removing Dependencies

must either be at the beginning of the line or preceded by a non-word constituent character,
or at the end of the line or followed by a non-word constituent character. The output of
zipgrep is saved to stdout and as stdout’s length would be zero in case no matching file
was found, check is only true when stdout’s length is greater than zero. Ultimately, 7,483
Swift app projects and 7,417 Kotlin app projects remained.

5.3 Removing Dependencies

When comparing the findings of their study on iOS code smells with related work, Rahkema
and Pfahl noted that keeping project dependencies as part of the analyzed source code leads
to different results [RP20]. As developers usually do not concern themselves with the source
code of these dependencies, they decided to remove them from their source code analysis.
Furthermore, as those dependencies might be used in several projects, they could potentially
skew the perception of the importance of a certain construct. Therefore, it was decided to
ignore dependencies when counting the constructs for this study, too.

In their study on the usage of error handling mechanisms in Swift projects, Cassee et
al. removed the default download directories for the popular Swift third-party dependency
managers CocoaPods [Coc22] and Carthage [Car22] from the project prior to the source code
analyzation process [CPCS18]. This methodology was adopted for this study. However, as
the recognition of some constructs relied on information from other files, as it is further
elaborated in Chapter 6, they were not removed permanently. Still, they are not counted
into the total number of analyzed files, and they were not examined for construct usage.

Another popular way of adding dependencies to Swift projects is by using the Swift
Package Manager [App22f]. However, the source files of remote dependencies are not saved
directly to the project, but cached to a local folder by default. In the Android development
ecosystem, Gradle [Gra22] is a frequent choice for dependency management, as it is already
configured by default when creating a new Android project with Android Studio, the native
IDE for developing Android projects. Apache Maven [The22b] is another poplar tool for
managing dependencies in that context. Like Swift Package Manager, both of them cache
dependencies outside the actual project directory by default. Therefore, no further actions
were taken regarding the Android app projects. Notably, third party libraries that were added
manually to the project’s folder still remain as part of the source code. However, given the
sheer amount of projects in the sample pool, it was not feasible to remove all of them
manually. Consequently, the results have to be evaluated with this in mind.

5.4 Extracting General Metrics With cloc

For finalizing the sample pool, the metrics on the number of files, blank lines, lines with
comments, and lines of code for Kotlin or Swift respectively were extracted from the repos-
itories. This was implemented using the cloc CLI tool [Dan22]. Cloc offers writing the
results in CSV-format. After being called by a Python script, the CSV output from cloc was
appended to the existing CSV-file containing the results of GHS.

47

5. Mining Open-Source Applications

5.5 Summary

This chapter outlined how the sample pool for conducting a MSR study for gaining insight
on the popularity of the constructs collected as described in Chapter 4 was created. The
projects were taken from GitHub, which is a popular source code collaboration tool where
many open-source projects reside. Because of downsides including slow response time and
limited search options, relevant repositories were searched for by using the GitHub Search
(GHS) tool instead of the official GitHub API, which is not as suited for assembling a
sample pool for a MSR study. The relevancy of a project of said sample pool was defined
by, firstly, being mainly written in either Kotlin or Swift, secondly having at least one
commit contributed after the construct from the test case pool (see Chapter 4) that
was last introduced to the language was released, and thirdly, being an app project. The
filters regarding the programming language and the limit for the last commit were applied
by configuring GHS accordingly, with 29 October 2018, the day Kotlin 1.3 was released
as the limit for Kotlin, and 10 September 2019, the release of Swift 5.1, as the limit for
Swift. Ultimately, 11,605 results were found for Kotlin and 10,876 for Swift. The results
were downloaded in form of a CSV-file, that included various information about each project
like commits, stars, contributors, in addition to its name. Afterwards, those projects were
downloaded as ZIP-archives and analyzed on predefined characteristics of Android and Apple
OS app projects. Table 5.2 describes these criteria, that can be summed up as the possession
of a file that must exist in an app project and is absent from other kind of projects, e.g.,
libraries, and a function indicating the implementation of an UI.

Table 5.2: Criteria for identifying app projects.

Android App Projects Apple OS Projects

App Project File AndroidManifest.xml Info.plist

User Interface
Implementation

setContentView in Java
or Kotlin files (XML layout)
and/or setContent in Kotlin
files (JetPack Compose)

UIApplicationDelegate,
WKExtensionDelegate or
NSApplicationDelegate

in ObjectiveC or Swift
files (XML layout) and/or
import SwiftUI and View in
Swift files (SwiftUI)

This resulted in the final list of relevant projects, with 7,417 Kotlin based Android and 7,483
Swift based Apple OS app projects. In order to remove noise and potential redundancies from
the sample pool, the default folders of popular third party dependency managers CocoaPods
and Carthage for Swift were excluded from construct analyzation. No folders were excluded
for Android projects, as they usually rely on Android Studio’s built-in dependency manager
Gradle, which caches libraries outside the project by default. For finalizing the sample pool,
metrics regarding each project’s used programming languages and their lines of code in the

48

5.5. Summary

project were extracted using the cloc tool and added to the CSV describing the sample pool.
All in all, the sample pool consists of 7,417 Kotlin based Android and 7,483 Swift based
Apple OS app projects, with a total of 640,231 Kotlin files and 429,512 Swift files1. For a
visualization of the metrics regarding files per project, stargazers, commits, and contributors,
please refer to Appendix A Figure A.1 for the Kotlin projects and A.2 for the Swift projects.
For a comprehensive list including all collected information about the Kotlin and Swift sample
pools, please refer to the corresponding CSV-files in Appendix B.

Ultimately, the files from both sample pools became the input for a tool for automatic
construct recognition, described in the next chapter, that detected the total occurrences of
the unsupported constructs from Chapter 4.

1The files included by the aforementioned dependency managers CocoaPods and Carthage are excluded
from this number.

49

Chapter 6

Automatic Construct Recognition

Although a sample pool as large as the one described in Chapter 5 helps the study for exam-
ining construct usage to attain statistical relevancy, manual counting of relevant language
constructs becomes not feasible. Therefore, the usage of a tool for automatic construct
recognition became necessary. While automatic construct recognition is part of the method-
ology of several related works on Kotlin and Swift [Zay20, MM20, CPCS18, RP20], a ma-
jority of the constructs considered in this thesis were not part of those studies. Therefore,
the tools developed for automatic construct recognition in related work, even if they were
made public, would have needed to be extended and adapted to fit the needs of this thesis.
In addition, this work looks at two programming languages opposite to related work, that
normally just focuses on either Kotlin or Swift and uses a language specific parser.

Consequently, a tool specifically for the MSR study conducted in this thesis was de-
veloped. For the remainder of this thesis, this tool will be referred to as the Construct
Analyzer Tool (CAT). The following chapter presents the concept behind this tool firstly
and its implementation secondly. Thirdly, the validation of the tool is illustrated.

6.1 Concept

The goal behind the implementation of CAT was to create a program that took the sample
pool of Kotlin and Swift projects, automatically counted the number of occurrences
of the unsupported constructs and output the results in a suitable data format for further
processing and evaluation. This general workflow is summarized by the depiction in Fig-
ure 6.1 (see page 52). Further specifications regarding these three basic requirements are
described in the following.

6.1.1 Accepting of Both Swift and Kotlin Projects

Since this thesis deals with both Kotlin-to-Swift and Swift-to-Kotlin transpilers, and therefore
with constructs from both Kotlin and Swift, it seemed effort reducing for CAT to be able to
handle both languages. Developing a single program allowed for shared code between the

51

6. Automatic Construct Recognition

Kotlin or Swift
Project

INPUT

Construct Analyzer Tool Result CSV File

OUTPUT

PARSING ERROR

List of Unparsable
Projects

Figure 6.1: Workflow of the Construct Analyzer Tool.

Kotlin and Swift analyzer parts, w.r.t. abstract concepts applying to both. This included,
e.g., models mapping language components like classes or variables.

6.1.2 Automatic Recognition of a Predefined Set of Constructs

As previously stated, the automation of the counting process was a necessity for the feasibility
of the study. The general idea behind CAT was analyzing a parse tree for recognizing subtrees
representing constructs. Next to constructs that could be simply identified by the existence
of a certain node, this allowed for the identification of more complex constructs that were
dependent on the context they were implemented in. In addition, the symbol table concept
present in other language processing tools like compilers or transpilers was adopted (see
Chapter 2). Thus, constructs whose identification depended on previous declarations, could
be identified, too.

6.1.3 Result Output as CSV-File

After the project was analyzed, the results had to be noted in a file format that allowed
further processing and creation of diagrams in an uncomplicated fashion. The CSV-format
was a fitting choice, as CSV-files are not only more compact than other comparable formats
like JSON, but can be easily imported in statistics programs and programming languages
for data processing.

Nevertheless, it had to be assumed that some files would result in a parsing error,
either due to errors in the input code files or to deficiencies in CAT. These files and their
corresponding projects were noted in a separate lists.

6.1.4 Form

It was decided that CAT should be accessible from the command line. Since the author of
this thesis was the only user of the tool, the implementation of a graphical interface was

52

6.2. Implementation

not necessary. Furthermore, this allowed for the tool to be easily called by other automated
processes. From the command line, the user should be able to pass the location of the
project to be analyzed, the location of the output file and the input language.

6.2 Implementation

As previously stated, CAT was created as a standalone CLI tool. Most importantly, it
depended on the ANTLR parser generator [Par22] previously introduced in Chapter 2, namely
version 4.9.3. With exception to the Java classes and interfaces generated by ANTLR, the
tool was entirely written in Kotlin. For creating the output CSV-file, the CSV generator
from Apache Commons CSV [The21] was used.

Figure 6.2 (see page 54) depicts the general architecture of CAT in a package view.
The architecture was composed of three main packages, with Main representing the entry
point of the application, handling the user input from the command line. Dependent on
the arguments passed to the command line, the components of the constructAnalyzer

package analyzed the Kotlin or Swift input files accordingly and produced the output CSV-
file. The analyzation of the input was performed by leveraging the classes created by ANTLR
for language parsing, included in the parsers package. The models for mapping constructs
to the symbol table were combined in the package languageModels.

In the following, the collaboration of the three main packages will be described in more
detail.

6.2.1 Parsers

For creating parser and lexer classes, ANTLR expected a grammar file in the .g4 format.
For Kotlin, the official grammar source file was used [Jet22e]. For Swift, an unofficial .g4
file was used [TY21, TYM21]. However, the website of that file also stated that it might
be incomplete and possibly contained ”ambiguities or wrong rules” [TYM21].

An instance of the lexer class for the respective language, subclassing ANTLR’s Lexer
class, processed the input character stream from the current Kotlin or Swift file. The specific
parser class for the respective language subclassing ANTLR’s Parser class was instantiated
by using the lexer class as an input token stream. With the instance of the parser class,
the parse tree was created by addressing the root node of the tree. Figure 6.3 (see page
55) depicts an exemplary parse tree for a Kotlin file containing the constant declaration
val a = 5. Every node of the parse tree represented a specific rule from the input grammar
or a terminal node at the end of a branch. For walking the parse tree, ANTLR’s parse tree
visitor concept for explicitly visiting the nodes of a parse tree by calling them was leveraged.
For that purpose, ANTLR created an interface extending ParseTreeVisitor. This interface
is implemented by a base class extending AbstractParseTreeVisitor, so a custom visitor
class can extend this base class.

In order to easily map nodes to the language models used in the symbol tables, the func-
tionality of the parser classes created by ANTLR was extended by using Kotlin’s extension
feature.

53

6. Automatic Construct Recognition

languageModelsparsers

constructAnalyzer

Main

kotlin

constructs finders constructs finders

swift

«interface»

AnalyzerVisitor

«interface»

ConstructFinder

«interface»

GlobalDeclarationsVisitor

ConstructAnalyzer

ParseTreeLoader

antlrKotlinParser

antlrSwift5Parser

helpers

symbolModels

environmenttype

constructModels resultMap

visitors visitors

Figure 6.2: Construct Analyzer Tool package view.

54

6.2. Implementation

Figure 6.3: Kotlin parse tree generated with ANTLR.

55

6. Automatic Construct Recognition

Listing 6 Function extending Kotlin parser class.

fun KotlinParser.MultiVariableDeclarationContext.toModel(environment:

Environment): List<VariableModel> {↪→

val p = this.parent as KotlinParser.PropertyDeclarationContext

val expression = p.expression()

val declarations = this.variableDeclaration()

val models = mutableListOf<VariableModel>()

for (d in declarations) {

models.add(

VariableModel(

expression.text,

d.type()?.toType(environment),

true,

d.simpleIdentifier().text

)

)

}

return models

}

E.g., Listing 6 shows the transformation of a Kotlin rule declaring multiple variables to a
list of VariableModels by extending the MultiVariableDeclarationContext class with
the toModel function.

6.2.2 Language Models

As various constructs required implementation context, the concept of symbol tables was
incorporated into the implementation of CAT. This made accessing information about pre-
viously declared variables, functions and other programming components possible.

The basic implementation of a chained symbol table, represented by the Environment

class, was based on the Java implementation by Aho et al. [Aho07]. By stacking an
instance of Environment into another instance, the concept of block scoping was imple-
mented, as illustrated by Figure 6.4 (see page 57). Next to an Environment instance
representing the outer scope saved to the property prev, an Environment instance holds a
list of SymbolModel implementations in an instance of SymbolTable.

Figure 6.5 (see page 58) depicts the classes mapping the language symbols from the
subpackage symbolModels of the languageModels package. It’s noteworthy, that only
symbols needed for the analyzation process were actually implemented and that the models
implemented for CAT do not represent the full extent of Kotlin and Swift features. All

56

6.2. Implementation

Environment

- prev: Environment?
- symbolTable: SymbolTable

...

Environment

- prev: Environment?
- symbolTable: SymbolTable

...

Environment

- prev: Environment?
- symbolTable: SymbolTable

...

Global

Scope

Scope

#1

Scope

#2

Figure 6.4: Chained symbol tables for implementing scopes.

concrete symbol classes implement the SymbolModel interface, giving access to the sym-
bol’s identifier and symbol type. The SymbolType enum consists of six members, namely
VARIABLE, CLASS, INTERFACE, ENUM, DATA_STRUCTURE and FUNCTION. For some symbols,
like interfaces or variables, the behavior is similar enough to describe them with the same
model for both Kotlin and Swift. However, some differentiating concepts made separate
classes necessary. E.g., functions in Swift can have multiple returns, while in Kotlin only
one type can be returned. Next to the primitive types existing in both Kotlin and Swift,
like integers, strings or booleans, custom types can be defined by declaring, e.g., classes or
interfaces. To make these declarations easily accessible for typing variables, symbols that fell
under this category extended AbstractTypeModel that implemented the Type interface.
The primitive types of both languages were declared in enums also implementing Type.

6.2.3 Construct Analyzer

As described before and depicted in Figure 6.2 (see page 54), the actual analysis is trig-
gered within the constructAnalyzer package. From the starting point of the application
described in Main, the function analyze of an instance of the ConstructAnalyzer was
called.

Firstly, all files from the project were parsed with the language specific parser and the
parse trees created were stored into a HashMap with the name of the file as key. For
improving parsing decision performance, ANTLR caches decision made thus far [PHF14].
In the case of CAT, this feature took a considerable amount of random-access memory
(RAM) for a large number of input files, leading to a Java OutOfMemoryException. In
addition, the overall parsing process was slowed down with less and less RAM available.
After some trial and error, the solution that worked best for preventing this problem was by
clearing the lexer and the parser caches every 400 files by using their reset function and
the clearDFA function for the parser interpreter class.

57

6. Automatic Construct Recognition

AbstractTypeModel

+ keyword: String

+ functions: ArrayList<FunctionMember>?

+ implementedInterfaces: ArrayList<InterfaceModel>?

+ identifier: String

+ properties: ArrayList<PropertyMember>?

+ symbolType: SymbolType

+ hasProperty(String): Boolean

+ hasFunction(String): Boolean

<<interface>>

SymboltModel

+ identifier: String

+ symbolType: SymbolType

<<interface>>

DataStructureMember

+ identifier: String

DataStructureModel

+ functions: ArrayList<SimpleDataStructureMember>?

+ implementedInterfaces: ArrayList<InterfaceModel>?

+ identifier: String

+ properties: ArrayList<SimpleDataStructureMember>?

FunctionModel

+ parameters: ArrayList<Pair<String, Type>>?

+ identifier: String

+ symbolType: SymbolType

InterfaceModel

+ functions: ArrayList<SimpleDataStructureMember>?

+ implementedInterfaces: ArrayList<InterfaceModel>?

+ identifier: String

+ properties: ArrayList<SimpleDataStructureMember>?

KotlinClassModel

+ open: Boolean

+ superclassIdentifier: String?

+ functions: ArrayList<KotlinClassMember>?

+ implementedInterfaces: ArrayList<InterfaceModel>?

+ identifier: String

+ properties: ArrayList<KotlinClassMember>?

KotlinFunctionModel

+ returnType: Type?

+ parameters: ArrayList<Pair<String, Type>>?

+ identifier: String

SwiftClassModel

+ superclassIdentifier: String?

+ functions: ArrayList<SimpleDataStructureMember>?

+ implementedInterfaces: ArrayList<InterfaceModel>?

+ identifier: String

+ properties: ArrayList<SimpleDataStructureMember>?

SwiftEnumModel

+ identifier: String

+ cases: List<String>

+ symbolType: SymbolType

SwiftFunctionModel

+ singularReturnType: Type?

+ returnTypes: ArrayList<Type>?

+ parameters: ArrayList<Pair<String, Type>>?

+ identifier: String

<<enumeration>>

SymbolType

VariableModel

+ type: Type?

+ initializedWithValue: Boolean

+ declaredInScope: Boolean

+ identifier: String

+ implicitlyTyped: Boolean

+ value: String?

+ symbolType: SymbolType

+ update(String, Type?): Unit

<<data>>

data KotlinClassMember

+ open: Boolean

+ identifier: String

<<data>>

data SimpleDataStructureMember

+ identifier: String

Figure 6.5: Simplified UML class diagram of the symbol models.

58

6.2. Implementation

Still, some files took a considerable amount of time for parsing. Although the perfor-
mance of the parser in general could be possibly improved upon by reworking the gram-
mar, implementing and testing such changes was outside the scope of this thesis. At
the same time, allowing the parsing process to take whatever time it needed was not
feasible with the large amount of files that had to be parsed. Hence, the lexical analy-
sis and the parsing process were limited to three minutes each and stopped when taking
more. This timeout was implemented by the classes ParserATNSimulatorWithTimeOut

and LexerATNSimulatorWithTimeOut from the helpers subpackage of the parsers pack-
age. Those were used as the value for interpreter for the parser and lexer classes, re-
spectively. This solution was strongly based on a Stack Overflow post experiencing a similar
problem [Kil19]. Files that were neglected due to the aforementioned time limit or files that
were simply not parsable due to possibly incorrect source code were noted in a separate
output file.

Before the parse tree of each parsable file could be analyzed for constructs, a global
Environment incorporating all global declarations was built. For Kotlin, the specific imports
for a file could be traced back by examining the subtree representing the import statements
from the top of the file. In addition, all parse trees from files residing in the same directory
had to be considered, too, as those would not need an explicit import. For Swift, import
statements are only necessary for frameworks, and all declarations made inside the whole
project are accessible from anywhere. Therefore, all files had to be added to the global
Environment instance. All in all, it is noteworthy that declarations from dependencies
outside the scope of the project were not included, as those would require downloading the
source files of each library separately and analyzing them. In addition, declarations made
in Java or ObjectiveC files that were incorporated into the Kotlin or Swift files through the
interoperability of those languages, were not analyzed.

As previously described, constructs were found in the parse tree by making use of
ANTLR’s parse tree visitors. The corresponding base class was inherited by specific imple-
mentations for each Kotlin and Swift, namely the KotlinAnalyzerVisitor and
SwiftAnalyzerVisitor classes, residing in the visitors package in the corresponding
language’s subpackage. Both of these classes also implemented the AnalyzerVisitor in-
terface, that contained fields for the Environment, the list of constructs to be considered
and a ResultMap instance. Within the ResultMap class, the occurrence of a construct was
stored within a HashMap. This HashMap had objects implementing the Construct interface
as keys and an ArrayList of instances of Entry as value. An Entry object would contain
the name of the file the construct was found in and the line, so this information could later
be listed in the output file.

The Construct interface, residing in the constructModels subpackage, was imple-
mented by two specific enums for each language, namely KotlinConstruct and
SwiftConstruct residing in the constructs package in the corresponding language’s sub-
package. Their members would list all constructs that were detectable by CAT.

In general, all constructs had a corresponding implementation, except for Swift’s Super-
class Definition, Swift’s String And Number Concatenation and any constructs describing
comments from both Kotlin and Swift. Since all Swift classes can function as superclasses
without further specifications, all classes could be categorized as superclasses. However, this

59

6. Automatic Construct Recognition

Listing 7 Tier I construct example.

override fun visitDeinitializer_declaration(ctx:

Swift5Parser.Deinitializer_declarationContext?) {↪→

noteResult(ctx!!,

nodeConstruct = SwiftConstruct.CLASS_DEINIT

)

super.visitDeinitializer_declaration(ctx)

}

is likely not representative of the count of classes actually used as superclasses. So instead,
classes implementing a custom superclass were searched for to still get a metric on superclass
definition importance. W.r.t. String And Number Concatenation, the problematic part of
the construct was the string type casting of an integer instead of the concatenation itself.
So, the casting from an integer to string became the construct of interest. Comments were
omitted by the parser, so it was impossible for CAT to recognize them in the parse tree. For
the constructs that were represented in the parse tree, the complexity of identifying them
could be divided into three tiers.

Tier I

Constructs from Tier I could be identified by the existence of a certain node in the parse
tree. Therefore, their appearance was added to the results whenever the respective function
for visiting that node was called. Listing 7 shows the overridden function for visiting the
declaration of a Deinitializer in a Swift class from SwiftAnalyzerVisitor. Since this
function is called upon for every Deinitializer declaration, the appearance of this construct
is added to the SwiftAnalyzerVisitor’s ResultMap by the function noteResult every
time.

Tier II

For a Tier II construct, nodes in proximity had to be analyzed as well to clearly identify
the construct. The identification of constructs belonging to Tier II and III was outsourced
to separate classes implementing the ConstructFinder interface. Listing 8 (see page 61)
provides an example for such a class. A class conforming to ConstructFinder would
firstly override the ctx property with a class extending ParserRuleContext, representing
a subtree from the parse tree. Secondly, the construct property held the member of either
KotlinConstruct or SwiftConstruct representing the construct of interest. Thirdly, the
function check would contain the logic for identifying the construct in the tree. Classes
implementing the ConstructFinder interface were instantiated in the body of the visit
function for the node serving as the root of the subtree passed for ctx. In the case of the
class described by Listing 8, this was the node for a property declaration.

60

6.2. Implementation

Listing 8 Tier II construct example.

class FunctionAssignedVariableFinder(override val ctx:

KotlinParser.PropertyDeclarationContext): ConstructFinder {↪→

override val construct: KotlinConstruct =

KotlinConstruct.FUNCTION_ASSIGNED_VARIABLE↪→

override fun check(): Boolean {

return ctx.expression()?.start?.type == KotlinParser.FUN

}

}

Listing 9 Tier III construct example.

class ClassOverridingProtocolFunctionFinder(override val ctx:

Swift5Parser.Class_memberContext, val environment: Environment) :

ConstructFinder {

↪→

↪→

override val construct: SwiftConstruct =

SwiftConstruct.CLASS_OVERRIDING_PROTOCOL_FUNCTION↪→

override fun check(): Boolean {

if (ctx.declaration()?.function_declaration() != null) {

val identifier = (ctx.parent.parent.parent as

Swift5Parser.Class_declarationContext).class_name().text↪→

val classModel = environment.get(identifier,

SymbolType.CLASS, null) as SwiftClassModel?↪→

if (classModel?.implementedInterfaces != null &&

classModel.functions != null) {↪→

val functionName =

ctx.declaration().function_declaration()↪→

.function_name().text

for (protocol in classModel.implementedInterfaces) {

if (protocol.hasFunction(functionName)) return true

}

}

}

return false

}

}

61

6. Automatic Construct Recognition

Tier III

For identifying a construct from Tier III, it was necessary to involve symbol tables addition-
ally. The classes for identifying such constructs were instantiated and called upon similarly as
for constructs of Tier II. However, the current state of the Environment was passed so that
definitions from its accessible symbol tables could be called upon. During the analyzation
process, the formerly created global Environment was dynamically amended with declara-
tions of the current scope. Constructs that required the symbol tables included string- and
array-specific functions, the overriding of an inherited member like a superclass or interface
function and dependencies on formerly made declarations and their typing. Listing 9 (see
page 61) shows the finder for identifying the overriding of a protocol function by a Swift
class. As a first step, the corresponding class model of the function member was taken from
the Environment. Then, it was checked if any of the implemented protocols included a
function of the same name as the class’s function member.

6.3 Tool Validation

The possible inaccuracy of CAT posed a great threat to the validity of the results when
determining the constructs’ popularity. However, a thorough test of CAT was outside the
scope of this thesis. To still gain insight on its capabilities and limitations, 20 random
files were chosen from each language’s project sample pool and manually examined. Then,
the results were compared to CAT’s results. While such a small sample size is not suffi-
cient for calculating reliable results regarding CAT’s accuracy, some trends became visible
nevertheless.

The overall precision of CAT when analyzing the Kotlin files amounted to 96.38%. How-
ever, vast differences were disclosed between the accuracy for the Tier I and II constructs and
the Tier III constructs. The accuracy for Tier I constructs was 100%, while Tier II constructs
were detected with an accuracy of 99.14%. Shortcomings of the Tier II detection mainly
included contexts in which a relevant construct occurred that were previously unknown. Tier
III constructs were discovered with an accuracy of only 20.83%. While interpreting symbol
tables did work successfully in some cases and such constructs were recognized, the most
obvious problem was a lack of information on declarations made in external dependency files.
Naturally, Android apps make use of a multitude of classes, interfaces, and functions from
the Android SDK. This was most evident in the overriding of functions from a superclass,
a construct most often not found by CAT due to the extension of an unknown superclass.
Still, as for constructs of Tier I and II, all constructs that were recognized were true positives.

When analyzing the Swift files, CAT achieved an overall accuracy of 63.5%. Tier I
precision was noted at 100% again, while Tier II precision amounted to 94.18%. Constructs
belonging to Tier III were recognized with an accuracy of 49.47%. While still struggling
with dependencies outside the project and typing that could not be determined definitely,
CAT profited from including dependency files from CocoaPods and Carthage that existed
within the projects. Like for the Kotlin side, no false positives were discovered by CAT.

In conclusion, it was assumable that the results for Tier III constructs were more unre-
liable than for the Tier I and Tier II constructs. Being limited to declarations made inside

62

6.4. Summary

the project poses a weakness for the accuracy of CAT and as a consequence more Tier III
constructs possibly existed in the projects than determinable by the tool.

6.4 Summary

This chapter described the Construct Analyzer Tool (CAT) for automatically detecting the
constructs that were unsupported by one or more of the considered transpilers in the Kotlin
and Swift project sample pools (see Chapter 5). The tool was implemented as an CLI tool
written mainly in Kotlin, taking both Kotlin and Swift projects as input. For each project,
it would produce a CSV-File listing the occurrence of each relevant construct in the project.
However, it was likely that not every file would be parsable by CAT, either due to incorrect
input or because of CAT itself. In particular, the grammar files for Kotlin and Swift dictated
the allowed input characters and language coverage. In some edge cases, the structure of
the file resulted in such inefficient lexical analysis or parsing that a timeout was required
to prevent the analyzation of all projects of becoming infeasible. This possibly led to some
files being excluded by the tool despite being syntactically and semantically correct. In
conclusion, being highly dependent on the given grammar files presented a limitation of
CAT.

Constructs were identified by analyzing the parse trees generated by lexer and parser
classes created by ANTLR. However, comments were omitted in the parsing process, there-
fore excluding the recognition of any comment related constructs from CAT’s capabil-
ities and presenting another limitation of the tool. The core parser functions were extended
to create models for language components such as variables and classes. These models were
saved to symbol tables, so their properties could be called upon when necessary. The symbol
tables were implemented following the concept of chained symbol tables presented by Aho
et al. [Aho07], allowing for block scoping to be represented. To include global declarations,
a global environment including such declarations in a symbol table was created prior to
the construct recognition. For finding constructs within the parse tree, its relevant nodes
were visited by extending ANTLR’s corresponding utility classes. In general, constructs were
divided into three tiers:

• Tier I: Represented by a single node

• Tier II: Required analyzing other nodes in proximity

• Tier III: Required the symbol table(s)

For revealing general shortcomings of CAT, 20 files from each the Kotlin and Swift sample
pools were manually analyzed and then compared to CAT’s results. While constructs of Tier
I were identified with an accuracy of 100%, Tier II constructs were still recognized reliably
with an accuracy of 99.14% for Kotlin and 94.18% for Swift. However, constructs of Tier
III were only recognized in 20.83% of the Kotlin cases and 49.47% of the Swift cases. When
building a symbol table, CAT only included Kotlin or Swift files made within the project,
i.e., excluding Java and ObjectiveC files and external dependencies. However, missing in-
formation on declarations made there greatly impacted the accuracy of identifying Tier III

63

6. Automatic Construct Recognition

constructs, like Overriding a Superclass Function. Therefore, not including declarations
from Java/ObjectiveC files and external dependencies poses another limitation of CAT,
affecting especially the detection accuracy of Tier III constructs. Still, no false positives were
found by CAT when comparing its results to the manually evaluated results. Ultimately, its
overall accuracy for Kotlin was calculated to be 96.38% and 63.5% for Swift, although a
sample size as small as previously described does not yield a reliable representation of the
tool’s general accuracy.

64

Chapter 7

Results

This chapter summarizes how the research questions RQ1 -RQ3 introduced in Chapter 1
were answered by the experiments conducted within this thesis. Firstly, the results regarding
the experiments for evaluating construct support (see Chapter 4) are shown for answering
RQ1 (From a set of basic constructs featured in the input programming language, which are
supported by the transpilers?) and RQ2 (Does the output code generated by the transpilers
follow the language’s style guidelines?). Secondly, the construct occurrence found by CAT
(see Chapter 6), used on the project sample pools acquired with the methodology of Chapter
5, is reported. This provides the groundwork for answering RQ3 (How does the popularity of
a construct unsupported by a transpiler affect its applicability?) by presenting the frequency
of use of the considered constructs in accordance to RQ3.1 (How popular is a certain
construct in practice?). Lastly, the final evaluation of the transpilers and therefore this
thesis’ answer to RQ3 is described by considering the average occurrence of a transpiler’s
unsupported constructs within each project normalized with that project’s logical lines of
code (LLOC).

7.1 Construct Support

In an attempt to answer RQ1 and RQ2, this section reveals Gryphon’s, Kotlift’s, SequalsK’s
and SwiftKotlin’s support of the constructs highlighted in Chapter 4. For this purpose, the
results are presented in tabular form, showing both a construct’s support by a transpiler and
the accordance to style guidelines of supported constructs.

A construct is marked as working when the corresponding output code is both compilable
and passes the corresponding unit test (✓). Non-working constructs did not fulfill those
requirements (✗). Since in almost all cases a non-compilable translation was the cause of
the error, no symbolic distinction was made between not compilable and not passing the
unit test. Furthermore, if the translation was inadequate due to a failed unit test, manual
correction would often require the same effort as for comparable non-compiling translations.
Listing 10 (see page 66) illustrates this claim and shows an excerpt of a function making
use of Kotlin’s when. Please consider items: List<String> to be a parameter originally
passed to the function.

65

7. Results

Listing 10 Construct translation failing unit test.

// Original Kotlin code

...

var str = "Nothing to say."

when {

"orange" in items -> str = "juicy"

"apple" in items -> str = "apple is fine"

}

...

// SequalsK Swift output code

...

var str = "Nothing to say."

...

Listing 11 IntelliJ IDEA preferred spelling suggestion.

// Original Swift code

let appleSummary = "I have \(apples) apples."

// Gryphon Kotlin output code

internal val appleSummary: String = "I have ${apples} apples."

// Suggested spelling by the editor

internal val appleSummary: String = "I have $apples apples."

Since SequalsK most likely does not support in-expressions in when-statements yet, it com-
pletely neglects the construct while the rest of the code is still translated. Inserting a
suitable switch-statement would probably require about the same effort as correcting a
non-compilable switch-statement. Usually, unsupported constructs were just ignored by
the transpiler and adopted to the output code literally. For Gryphon, some unsupported
constructs resulted in a transpiling error. Gryphon was configured to still continue the
translation process and would therefore insert <<Error>> at the corresponding position in
the output code.

Overall, all transpilers achieved at least good results regarding the readability of their
validly translated output code. The manual evaluation by a person with little to average
experience in Kotlin and Swift yielded understandably formatted output code. Nevertheless,
translations not meeting the style guidelines imposed by IntelliJ IDEA or SwiftLint were
noted in the table (✽). However, the changes those warnings suggested were oftentimes
only a minimal improvement on readability. This is illustrated by Listing 11.

66

7.1. Construct Support

For clarity, the constructs were divided into categories, although multiple constructs were
occasionally grouped in the same row for saving space (✓✗).

7.1.1 Kotlin-to-Swift Construct Support

Table 7.1 shows the construct support of Kotlift and SequalsK w.r.t. the 102 considered
Kotlin constructs. Notably, Kotlift officially supports Kotlin version 1.0.1 and Swift version
2.2, while the test cases are based on the latest available versions of the respective introduc-
tory chapters representing Kotlin 1.6.21 and Swift 5.6. Any results that would have been
different for older versions of the two languages were therefore marked with a footnote. Se-
qualsK achieved good results, covering around 79% of the constructs. Nevertheless, Kotlift
showed only sufficient support by considering around 54% of the constructs. While the
support and negligence of constructs was distributed across all categories, both transpilers
seemed to neglect string and collection-type functions to a high degree.

Although the poorer performance of Kotlift was partly due to its outdated language
support, most of the deficits arose from constructs that were simply not considered. E.g.,
next to the collection constructors featured in the “Basic syntax“ chapter of the Kotlin
documentation, arrayListOf and arrayOf were considered additionally since Kotlift sup-
ported none of the others. However, while Kotlift supports arrayListOf, despite it being
introduced in Kotlin 1.1, it ignores listOf available since Kotlin 1.0.

W.r.t. the compliance of code style conventions, both transpilers showed very good
results for meeting SwiftLint’s requirements. The few warnings that occurred were limited
to incorrect formatting and redundant keywords.

Table 7.1: Findings for Kotlift and SequalsK.

Construct Kotlift SequalsK
Comments and Printing
End-of-line/Block/Nested Comments ✓✓✓ ✓✓✓

Print Line/Inline ✓✗ ✓✗

Simple Values and Typing
Variables and Constants ✓✓ ✓✓

Explicit Typing (Int/Double) ✓✓ ✓✓

Type Casting (String→ Int/Int→ String) ✗✗ ✗✓

Implicit Typing ✓ ✓

Type Handling without Initialization ✓ ✓

Top Level Declaration ✓ ✓

Deferred Assignment ✓ ✓

Type Checking With is and !is ✗✗ ✗✗

Automatic Casting ✗ ✗

Strings
String and Number Concatenation ✗ ✗

Interpolating One Variable/Expression ✓✓ ✓✓

Multiline String ✓ ✗

67

7. Results

Table 7.1: Findings for Kotlift and SequalsK.

Construct Kotlift SequalsK
Replacement/Starts With/Uppercase ✗✗✗ ✗✗✗

Arrays and Maps
Array With listOf/mutableListOf ✗✗ ✓✓

Array with arrayListOf/arrayOf ✓✗ ✗✓

Map With mapOf/mutableMapOf ✗1 ✗1 ✓✓

Initializing Empty Array/Map ✗✗ ✓✓

Overwriting Array/Map With Empty ✗✗ ✓✓

in Operator ✗ ✗

Array Filter/Map/Sort By ✓✓✗ ✓✓✗

Classes and Instances
Class Definition With Property/Function ✓✓ ✓✓

Empty Class Definition ✗ ✓

Superclass/Subclass Definition ✓✓ ✓✓

Overriding Superclass Function/Property ✓✗ ✗✓

Primary Constructor ✓ ✓

Secondary Constructor ✗ ✓

Property Involving Other Properties ✗ ✓

Property get and set ✓ ✓

Instantiating Object (With Prop.) ✓✗ ✓✓

Accessing Properties/Functions ✓✓ ✓✓

Enumeration and Data Classes
Enumeration (With Function) ✓✓ ✓(✽) ✓(✽)
Enumeration With Raw Values ✗ ✓

Shorthand Enumeration Accessing ✓ ✓

Data Class ✗ ✓

Interfaces and Extensions
Interface Definition ✗ ✓

Class/Data Class Interface Implementation ✓✗ ✓✗

Overriding Interface Function/Property ✓✗ ✓✓

Extension Properties ✗ ✓

Functions and Lambdas
Function With Parameters and Return ✓ ✓

Function Call (With Arguments) ✓✗ ✓✓

Function Body as Expression ✗ ✓

Return Void/Unit/Function ✓✓(✽) ✓ ✓✓✓

Function as Argument ✓ ✓

Assign Function to Variable ✗ ✗

Nested Function ✓ ✓

Lambda With Return Type ✗ ✗

Lambda With Omitted Return Type ✗ ✓

68

7.1. Construct Support

Table 7.1: Findings for Kotlift and SequalsK.

Construct Kotlift SequalsK
Control Flow
Iterating Array (With Index/forEach) ✓✓✓ ✓✓✓

Iterating Map ✓ ✓

While/Do-While ✓✗ ✓✓

when statement ✓(✽) ✓(✽)
Boolean Expression in Typed when ✗ ✓

If-Else ✓ ✓

Range
Within/Out of Range ✗✗ ✗✗

Iterating Over Range ✓ ✓

step ✗ ✓

Optionals
Optional Value/Return ✓✓ ✓✓

?.let Structure ✗ ✓

Smart Cast After Null Check (One Var./Conjunction) ✓✗ ✗✗

Default Value for Optional ✓ ✓

Property Accessing for Optional ✓ ✓

Error Handling and Generics
Throwing/Catching an Exception Type ✗✓ ✓✓

Variable Assignment With try ✗ ✗

Generic Function ✓ ✓

Misc.
++/-- ✗2 ✓

Total 55/102 80/102

1 Supports initialization with Pair, which was deprecated in Kotlin 1.1.

2 ++/-- worked until Swift 3 (deprecated in Swift 2.2).

7.1.2 Swift-to-Kotlin Construct Support

The results regarding the Swift construct support of Gryphon, SequalsK and SwiftKotlin
are shown in Table 7.2 (see pages 70-72). In general, Gryphon and SequalsK showed good
results by supporting ∼74% of the considered constructs. SwiftKotlin proved slightly less
mature, achieving only satisfactory results by considering ∼68% of the constructs. Like for
the Kotlin to Swift translation, a lack of support for string- and collection-type functions
was noticeable. Constructs not directly translatable to Kotlin corresponding to Schultes’
fourth category regarding translation complexity [Sch21] (see Chapter 3.2) like Self-Mutating
Extensions or Addressing Closure Parameters By Number were oftentimes ignored or led to
an error in the case of Gryphon.

69

7. Results

Although all transpilers were able to translate array and dictionary definitions to valid
Kotlin code, it is noteworthy that those translations might still lead to not compilable
output. As visible in Table 7.1 (see pages 67-69), various array and map types exist in
Kotlin for implementing mutable and immutable collection types. I.e., if a collection type
in Swift was to be translated to an immutable collection type in Kotlin, although that
collection would be mutated later, a compilation error would occur. This problem is a.o.
visible in SwiftKotlin, which consistently translates to Kotlin’s immutable collection types.
Likewise, errors regarding typing may also arise when an immutable collection is expected,
but the translation resulted in a mutable collection type. This may still occur for SequalsK’s
approach of consistently translating to Kotlin’s mutable collection types. For this reason,
Gryphon proposes using its own MutableMap/MutableList type defined in its support file.
Otherwise, Gryphon consistently translates to immutable collection types like SwiftKotlin.

For their validly translated constructs, SequalsK showed very good compliance w.r.t. the
official Kotlin code style conventions and Gryphon and SwiftKotlin showed good compliance.

Table 7.2: Findings for Gryphon, SequalsK and SwiftKotlin.

Construct Gryphon SequalsK SwiftKotlin
Comments and Printing
End-of-line/Block/Nested Comments ✓✗✗ ✓✓✓ ✓✓✓

Print Line/Inline ✓✓ ✓✓ ✗✗

Simple Values and Typing
Variables and Constants ✓✓ ✓✓ ✓✓

Explicit Typing (Int/Double) ✓✓ ✓✗ ✓✗

Type Casting (String→ Int) ✓ ✗ ✗

Implicit Typing ✓(✽) ✓ ✓

Type Handling without Initialization ✓ ✓ ✓

Top Level Declaration ✓ ✓ ✓

Deferred Assignment ✓ ✓ ✓

Type Checking With is ✓ ✗ ✓

Strings
String and Number Concatenation ✓ ✗ ✗

Interpolation ✓(✽) ✓(✽) ✓(✽)
Multiline String ✓ ✗ ✓

Replacement/Starts With/Uppercase ✗✗✓(✽) ✗✗✗ ✗✗✗

Arrays and Dictionaries
Array ✓ ✓ ✓

Dictionary ✓ ✓ ✓

Initializing Empty Array/Dictionary ✗✗ ✓✓ ✓✓(✽)
Overwriting Array/Dictionary With Empty ✓✓ ✓✓ ✓✓

In Collection ✓ ✗ ✓

Array Filter/Map/Sort By ✓✓✗ ✓✓✗ ✓✓✗

Classes and Instances
Class Definition With Property/Function ✓✓ ✓✓ ✓✓

70

7.1. Construct Support

Table 7.2: Findings for Gryphon, SequalsK and SwiftKotlin.

Construct Gryphon SequalsK SwiftKotlin
Superclass/Subclass Definition ✓✓ ✓✓ ✗✓(✽)
Overriding Superclass Function/Property ✓(✽) ✓(✽) ✓✓ ✗✓

Initializer ✓(✽) ✓ ✓(✽)
Deinitializer ✗ ✗ ✗

Property get and set ✓ ✓ ✓

Property willSet ✗ ✓ ✓

willSet Accessing Other Variables ✗ ✗ ✗

Instantiating Object (With Prop.) ✓✓ ✓✓ ✓✓

Accessing Properties/Functions ✓✓ ✓✓ ✓✓

Enumeration and Structures
Enumeration (With Function) ✓✓ ✓(✽) ✓(✽) ✓✗

Enumeration With Raw Values ✓ ✓(✽) ✓(✽)
Enumeration Type From Raw Value ✓ ✓ ✓

Enumeration With Associated Value ✗ ✗ ✓(✽)
Shorthand Enumeration Accessing ✓ ✗ ✗

Struct ✓ ✓ ✓(✽)
Protocols and Extensions
Protocol Def. (With Mutating Function) ✓✓ ✓✓ ✓✗

Class/Struct Protocol Implementation ✓✗ ✓✗ ✓✗

Overriding Protocol Function/Property ✗✗ ✓✓ ✗✗

Extension ✓ ✓ ✓

Self-Mutating Extension ✗ ✗ ✗

Functions and Closures
Function With Parameters and Return ✓ ✓ ✓(✽)
Function Call (With Arguments) ✓✓ ✓✓ ✓✓

Function Labels (Omitted) ✓✓ ✓✓ ✓✓

Omitting return keyword ✓ ✓ ✓

Return impl. Void/expl. Void/Function ✓✓✗ ✓✓✓ ✓✓✗

Multiple Function Returns ✗ ✗ ✗

Function as Argument ✗ ✓ ✗

Nested Function ✓ ✓ ✓

Closure With Return Type ✓(✽) ✓(✽) ✓(✽)
Closure With Omitted Return Type ✓(✽) ✓(✽) ✓(✽)
Addressing Parameters By Number ✗ ✗ ✗

Control Flow
Iterating Array (W. Enumerated/forEach) ✓✗✓ ✓✗✓ ✓✗✓

Iterating Dictionary (With Placeholder) ✓✗ ✓✗ ✓✓

While/Repeat ✓✗ ✓✓ ✓✗

switch statement ✓ ✓ ✓

where in Typed switch ✗ ✗ ✗

If-Else ✓(✽) ✓ ✓

71

7. Results

Table 7.2: Findings for Gryphon, SequalsK and SwiftKotlin.

Construct Gryphon SequalsK SwiftKotlin
Range
Within/Out of Range ✓✓(✽) ✓✓(✽) ✓(✽) ✓(✽)
Iterating Over Range ✓ ✓ ✓

Iterating Over Progression ✗ ✓ ✗

Optionals
Optional Value/Return ✓✓(✽) ✓✓(✽) ✓✓(✽)
if let Structure ✓ ✓ ✓

as? in if let structure ✓ ✗ ✓

Default Value for Optional ✓ ✓ ✓

Property Accessing for Optional ✓ ✓ ✓

Error Handling and Generics
Error Enum ✓ ✗ ✗

Throwing/Catching an Error Type ✓✓ ✓✓ ✓✗

Optional Conversion With try? ✗ ✓ ✓(✽)
defer ✓ ✗ ✗

Generic Function ✓ ✓ ✓

Generic Enum ✗ ✗ ✗

Requirements for Generic ✗ ✗ ✗

Total 77/104 77/104 71/104

7.2 Construct Popularity

Before being able to determine how the lacking support of certain constructs affects a
transpiler’s applicability and therefore answering RQ3, the frequency of use of the constructs
unsupported (or constructs comparable to them) has to be analyzed in accordance to RQ3.1.
For this purpose, this section shows the results of using CAT on the sample pools of Kotlin
and Swift projects (see Chapter 5).

Notably, not all files were parsable by CAT due to faulty syntax or unsupported input
characters, timeout restrictions or because they utilized grammar rules not covered by the
ANTLR grammar used. However, next to possibly containing Tier I and Tier II constructs,
their neglection also impacted the recognition of constructs belonging to Tier III, as declara-
tions made in those files were not added to the global symbol table. For each programming
language, the following further elaborates on the number of files ultimately considered. Sub-
sequently, CAT’s results are presented by discussing the percentage of project’s containing a
certain construct at least once. Afterwards, the occurrence of the considered constructs in
each project, normalized with the LLOC of that project, is described. Within a project p, the
normalized occurrence oc of a certain construct c can be calculated as shown in Equation
7.1.

oc(p) =
countc(p)

llocp
(7.1)

72

7.2. Construct Popularity

While countc is the total number of appearances that were counted for that construct, llocp
represents the total number of LLOC of the currently considered project. Notably, constructs
that appeared multiple times on the same line of a file were counted just once. Furthermore,
all files of a project that were determined to be non-parsable were excluded from llocp.

7.2.1 Kotlin

The original Kotlin sample pool included 7,417 projects with a total of 640,231 files. How-
ever, out of those files, 33,118 from 164 projects were non-parsable due to the aforemen-
tioned reasons. More precisely, it was discovered that many files were not parsable because
they included unsupported input characters in the code, e.g., Chinese characters in variable
and function names. This offers a possible explanation why a relatively small amount of
projects included non-parsable files, as those characters were likely to be used repeatedly
within the project.

Figure 7.1 (see page 74) visualizes the percentage of projects including a certain construct
at least once. Notably, the Lambda With Omitted Return Type construct occurred in
∼98% of the projects. In their study, Mateus and Martinez observed a similar result in the
occurrence of Lambas generally, as they appeared in ∼95% of the applications from their
sample pool [MM20]. The percentage of projects including a Data Class construct was also
alike in the study of Mateus and Martinez (∼65%) and the study conducted for this thesis
(∼69%). At the same time, these results differ from Zayat’s results for Data Classes being
included in 49% of the applications considered [Zay20]. However, differences to Mateus’
and Martinez’ study exist in the occurrence of Automatic Casting, i.e., implicitly casting to a
specific type when that type has been previously verified in a condition. They found out that
∼65% of the applications considered by them featured such casts, while this study noted
∼39% of projects including the Automatic Casting construct. These differences may be
funded in the different ways the construct is identified by CAT and by the tool implemented
by Mateus and Martinez. For this thesis, an Automatic Casting construct had to contain
an is check for a variable in the condition of an if and use the variable within the control
structure’s body. When comparing the application coverage of the Type Checking With is

construct of ∼61% to Mateus’ and Martinez’ results for Automatic Casting, a more similar
result becomes apparent indeed.

The construct used in most applications was Function Call With Arguments (∼99.9%
of the projects). This result was to be expected, since calling functions with arguments is
a basic building block of many programming languages. On the opposite side of the scale,
the construct present in the least projects was step (∼1%). Likewise, the Array Sort By
construct was also featured in only ∼1% of the projects. Admittedly, this construct was part
of the Tier III constructs, which were assumed to frequently fall victim to false negatives
(see Chapter 6.3). In fact, string and array functions were gathered at the lower and of the
scale, with String Replacement being the most presented and appearing in ∼11% of the
applications. Overriding Superclass Function was the most popular construct from Tier III,
used in ∼31% of the projects.

73

7. Results

0 20 40 60 80 100
step

Assign Function to Variable
Array Sort By

Overwriting Map with Empty
Type Casting (String→Int)
Lamb)a With eturn Type

Overri)ing Super(lass Property
Print Inline

String Upper(ase
String an) Number Con(atenation

Overwriting Array with Empty
Out of ange

Do-While
String Starts With

String Replacement
- -

Variable Assignment with Try
Overriding Interface Property

Type Casting (Int→String)
Initializing Empty Map

Mutliline String
Map w. mapOf

Type Checking With !is
Map w. mutableMapOf
Array w. arrayListOf

Enumeration With Raw Values
Within Range/in Operator

Extension Properties
Data Class Interface Implementation

Overriding Superclass Function
+ +

Secondary Constructor
Automatic Casting

Initializing Empty Array
Smart Cast Conjunction
Array w. mutableListOf

Array w. arrayOf
Boolean Expression in Typed when

Array w. listOf
Throwing Exception Type

Property Involving Other Properties
Type Checking With is
Smart Cast One Var.

?.let Structure
Data Class

Interface Definition
Empty Class Definition

Function Body as Expression
Instantiating Object With Prop.

Lambda With Omitted Return Type
Function Call With Arguments

50
61
70
95
112
121
193

305
348
411
450

591
716
779
785

890
1036

1132
1195
1205
1255
1314

1439
1487
1497

1619
1785
1794

2080
2305

2478
2857
2917

3065
3111
3125
3173

3284
3774

4204
4461
4493
4533

4728
5089

5338
5555

5867
7190
7242

7407

Tier 1
Tier 2
Tier 3

Figure 7.1: Percentage (and total number) of Kotlin projects including a certain construct.

74

7.2. Construct Popularity

0.0 0.2 0.4 0.6 0.8
Array Sort By

Overwriting Map with Empty
Type Casting (String→Int)

step
Assign Function to Variable
Lambda With Return Type

Overriding Superclass Property
String Uppercase

Overwriting Array with Empty
String and Number Concatenation

Out of Range
String Replacement

Do-While
String Starts With

Print Inline
- -

Variable Assignment with Try
Initializing Empty Map

Type Casting (Int→String)
Type Checking With !is

Enumeration With Raw Values
Map w. mutableMapOf

Map w. mapOf
Within Range/in Operator

Overriding Interface Property
Array w. arrayListOf

Data Class Interface Implementation
Mutliline String

+ +
Extension Properties

Smart Cast Conjunction
Automatic Casting

Boolean Expression in Typed when
Initializing Empty Array
Array w. mutableListOf

Array w. arrayOf
Overriding Superclass Function

Secondary Constructor
Throwing Exception Type

Smart Cast One Var.
Array w. listOf

Property Involving Other Properties
Interface Definition

?.let Structure
Data Class

Type Checking With is
Empty Class Definition

Function Body as Expression
Instantiating Object With Prop.

Lambda With Omitted Return Type
Function Call With Arguments

Figure 7.2: Results for oc(p) for the Kotlin projects.

75

7. Results

0 20 40 60 80 100
Print Inline

String Starts With
WillSet Accessing Other Variables

Protocol Def. With Mutating Function
Type Casting (String→Int)
S(l)-Mutating Ext(nsion

String Upp(rcas(
It(rating Ov(r Progr(ssion

R(turn Function
 yp(Casting (Int→String)

Prop(rty willS(t
R(p(at

G(n(ric Enum
String R(plac(

It(rating Dictionary With Plac(hold(r
wh(r(in yp(d switch

Array Sort By
Ov(rriding Protocol Prop(rty

Struct Protocol Impl(m(ntation
Multipl(Function R(turns

Ov(rriding Protocol Function
Multilin(String

In Coll(ction
d()(r

It(rating Array With Enum(rat(d
 yp(Ch(c-ing With is

Enum(ration With Function
Error Enum

Explicit yping Doubl(
Adr(ssing Param(t(rs By Numb(r

D(initializ(r
Sup(rclass Ext(nsion

R(quir(m(nts)or G(n(ric
Initializing Empty Dictionary

Enum(ration With Associat(d Valu(
Optional Conv(rsion With try?

Catching an Error yp(
Function As Argum(nt

Shorthand Enum(ration Acc(ssing
Print Lin(

as? in i) l(t Structur(
Initializing Empty Array

Ov(rriding Sup(rclass Function

60
97
131
202
253
287
294
374
396
469
471
485
520
521
603
621
640
730

912
976
1135

1378
1480
1639
1737
1804
1849
1853
1884

2243
2347
2350

2681
2779
2910
3052

3591
3986
4008
4103

4389
5460

6578

Tier 1
Tier 2
Tier 3

Figure 7.3: Percentage (and total number) of Swift projects including a certain construct.

76

7.2. Construct Popularity

0.0 0.1 0.2 0.3 0.4
S1ring S1ar1s Wi1h

Prin1 Inline
Pro1ocol Def. Wi1h M21a1ing F2nc1ion

WillSe1 Accessing O1her Varia les
Self-M21a1ing Ex1ension

Ty-e Cas1ing (S1ring→In1)
String Uppercase

Iterating Over Progression
Generic Enum

Type Casting (Int→String)
Repeat

where in Typed switch
Array Sort By

Return Function
String Rep)ace
Property wi))Set

Iterating Dictionary With P)aceho)der
Mu)tip)e Function Returns

Struct Protoco) Imp)ementation
In Co))ection

Overriding Protoco) Property
Enumeration With Function

Error Enum
Iterating Array With Enumerated

defer
Overriding Protoco) Function

Mu)ti)ine String
Type Chec(ing With is

Deinitia)izer
Adressing Parameters By Num er

Exp)icit Typing Dou)e
Enumeration With Associated Va)ue

Initia)izing Empty Dictionary
Superc)ass Extension

Requirements for Generic
Optiona) Conversion With try?

Catching an Error Type
Function As Argument
as? in if)et Structure

Print Line
Initia)izing Empty Array

Shorthand Enumeration Accessing
Overriding Superc)ass Function

Figure 7.4: Results for oc(p) for the Swift projects.

77

7. Results

Figure 7.2 (see page 75) depicts the occurrence of the considered constructs within the
files, normalized with the project’s LLOC. Most constructs appear quite seldom, with Array
Sort By being the least frequent construct on average, identifiable only every ∼0.000003
lines. Function Call With Arguments appears the most frequent on average, being found
every ∼0.16 lines.

7.2.2 Swift

The sample pool of Swift projects comprised 7,483 projects and a total of 429,512 files.
Nevertheless, 18,888 files from 2,969 projects were not parsable by CAT due to the reasons
described in the introduction to this section. It became especially apparent that the Swift
ANTLR grammar used by CAT does not support the SwiftUI syntax, possibly excluding
many files with actually correct Swift syntax.

Figure 7.3 (see page 76) depicts the percentage of projects including a certain construct
at least once. Compared to the 2018 study of Casse et al., an increase in the catch clause
from ∼39% to ∼48% became noticeable [CPCS18]. Furthermore, Casse et al. found only
∼5% of their considered projects featured an enum implementing the Error protocol, while
∼25% of the Swift projects analyzed for this thesis featured at least one enum implementing
Error. This evolution hints that Swift developers possibly became more accustomed to the
best practices for exception handling over time.

In contrary to the Kotlin results, the Overriding Superclass Function construct was
largely detected in the considered projects despite it being a Tier III construct. In fact, it
is the construct featured in most projects, i.e., ∼88% of the projects. The detection rate
of this construct was possibly improved by the inclusion of third party dependencies from
CocoaPods and Carthage in the global symbol table.

On the lower end of the scale, the Print Inline construct scored last place, with being
featured in only ∼0.8%. This is possibly due to the unintuitive way of formulating this
construct, as it requires passing an empty String to the terminator parameter of print.
Quite possibly, printing inline is also less popular than the Print Line construct, which was
present in ∼55% of the projects.

All considered string functions and the considered array sorted function were observed
in <10% of the projects. However, as they belong to the Tier III category of constructs, it’s
quite possible not all their occurrences were recognized by CAT.

Figure 7.4 (see page 77) depicts the occurrence of the considered constructs within the
projects, normalized with the project’s LLOC. Noticeably, none of the constructs occur in
great frequency within the projects. When sorted according to their average usage, the
Overriding Superclass Function construct appeared most frequently every ∼0.0098 lines.
The construct that was encountered least compared to the LLOC was String Starts With
every ∼0.000005 lines.

7.3 Transpiler Evaluation

While the percentage of projects using a certain construct is a metric suited to assess the
overall popularity of a construct within a programming language’s community, developers

78

7.3. Transpiler Evaluation

aiming to use a transpiler are more likely interested in how many lines they have to man-
ually correct in the transpiler’s output. Therefore, the average occurrence of a construct
normalized with the LLOC from its origin project is a more fitting metric for evaluating how
an unsupported construct affects the development workflow when using a transpiler.

The average occurrence ac of a certain construct c can be calculated as depicted in Equa-
tion 7.2, by dividing the sum of all values of oc (see Equation 7.1, page 72) for all projects
by the total number of projects np of the sample pool of the currently considered language.
The entirety of those projects is described by the set P , with P = {p1, p2, p3, ..., pnp}.

ac =

∑np

i=1 oc(pi)

np
(7.2)

The entirety of all average occurrences of all constructs unsupported by one or more tran-
spilers is described by the set A of either Kotlin or Swift, with A = {ac1 , ac2 , ac3 , ..., acm}
and m being the total number of those constructs. For the Kotlin-to-Swift transpilers,
mKotlinConstructs is 51 and for the Swift-to-Kotlin transpilers, mSwiftConstructs is 43.

Equation 7.3 incorporates the elements of A of a transpiler for calculating the score
W , indicating a transpiler’s applicability despite its unsupported constructs. The result
of W ranges from 0 to 1, with 1 representing the highest possible score for applicability
and 0 representing the lowest possible score. While A contains the average occurrence of
every construct considered, the set U only includes the values ac of constructs the currently
considered transpiler does not support.

W = 1−
∑

U∑
A

(7.3)

This section will describe the results and implications of W for the Kotlin-to-Swift (WKS)
and Swift-to-Kotlin transpilers (WSK).

7.3.1 Kotlin-to-Swift Transpilers

Table 7.3 suggests that large differences exist between SequalsK and Kotlift in terms of
the average number of lines of code that need to be changed after the translation process.
While SequalsK achieved a WKS score of 0.964, Kotlift scored only 0.013. However, it
was to be expected that Kotlift would be less applicable, since it supported less constructs
than SequalsK. Even more so, the constructs not considered by Kotlift included, among
others, the three constructs with the highest average occurrence, namely Function Call With
Arguments, Lambda With Omitted Return Type and Instantiating Object With Properties,
all of which SequalsK supported.

Table 7.3: Results for WKS for the Kotlin-to-Swift transpilers.

Kotlift SequalsK

WKS 0.013 0.964

79

7. Results

7.3.2 Swift-to-Kotlin Transpilers

As seen in Table 7.4, the least amount of manual editing of the output code w.r.t. the
considered constructs is likely to be required for Gryphon compared to the other Swift-to-
Kotlin transpilers. Still, Gryphon’s result of 0.680 for WSK is close to the result of SequalsK
of 0.622, although the transpilers show quite a few differences in the constructs they support.
However, in contrary to Gryphon, SequalsK does not support the construct with the second-
highest average occurrence, Shorthand Enumeration Accessing, and the fifth-highest, as? in
if let Structure. Although Gryphon does not consider the third-highest ranking construct
w.r.t. average occurrence, Initializing Empty Array, it otherwise covers four of the five
constructs with the highest occurrence, while SequalsK covers three.

Despite considering only a few less constructs than Gryphon and SequalsK, SwiftKotlin
places last by far with a WSK score of 0.263. Notably, SwiftKotlin disregarded some con-
structs leading w.r.t. their average occurrence, like Overriding a Superclass Function and
Print Line. Meanwhile, both of these constructs were supported by Gryphon and SequalsK.

Table 7.4: Results for WSK for the Swift-to-Kotlin transpilers.

Gryphon SequalsK SwiftKotlin

WSK 0.680 0.622 0.263

7.4 Summary

In summary, this chapter presented the results for the underlying research questions RQ1 -
RQ3 of this thesis.

To answer RQ1 (From a set of basic constructs featured in the input programming lan-
guage, which are supported by the transpilers?) and RQ2 (Does the output code generated
by the transpilers follow the language’s style guidelines?), the study described in Chapter 4
and previously conducted in the preliminary work for this thesis [SS22] was repeated with
the newer versions of Gryphon, Kotlift and SequalsK in addition to the SwiftKotlin tran-
spiler. Similar results to before were acquired, classifying Gryphon and SequalsK (for
both directions of translation) as more mature with a good coverage of the consid-
ered constructs, while SwiftKotlin only achieved satisfactory results and Kotlift only
sufficient. Nevertheless, all transpilers were affected by shortcomings spread across all cate-
gories of constructs, including fundamental differences between the languages and constructs
that were simply not considered alike. W.r.t. code maintainability, the manual evaluation
yielded no outlandish formatting or other obstacles to code readability. At the same time,
all transpilers generally followed most of the acknowledged style conventions, with Kotlift
and SequalsK (for both directions of translation) achieving very good results and
Gryphon and SwiftKotlin achieving good results.

As a next step for ultimately dealing with RQ3, the results for RQ3.1 (How popular
is a certain construct in practice?) were discussed. When being used on the app project

80

7.4. Summary

sample pools (see Chapter 5), the results of CAT regarding the Kotlin files suggested that
the Function Call With Arguments construct was found in most (∼99.9%) of the projects,
in addition to being the construct with the highest average usage every ∼0.16 lines. At the
same time, step was found in the fewest projects (∼1%). W.r.t. average line occurrence,
Array Sort By was found the least, appearing only every ∼0.000003 lines on average. In
general, the results for the Kotlin construct usage is possibly largely affected by the exclusion
of declarations made in external dependencies and therefore worsening the accuracy for Tier
III constructs.

On the contrary, the results for the Swift sample pool did not only propose that Overriding
a Superclass Function, a Tier III construct, was featured in the most projects (∼88%) but
that it had also the highest average occurrence, appearing every ∼0.0098 lines. In this
case in particular, the precision of CAT profited from the inclusion of the CacaoPods and
Carthage dependencies existing inside the project. While Print Inline was found in the least
projects (∼0.8%), String Starts With had the fewest average occurrences, being identified
only every ∼0.000005% lines.

Finally, RQ3 (How does the popularity of a construct unsupported by a transpiler affect
its applicability?) was examined by determining the score W suggesting a transpilers ap-
plicability despite its unsupported constructs, ranging from 0 to 1 with 0 being the worst
possible outcome and 1 being the best possible outcome. It was calculated by using the
previously determined results regarding construct occurrence normalized with the projects’
LLOC. I.e., W represented an indication of the manual effort required to edit a transpiler’s
output code.

For the Kotlin-to-Swift transpilers, SequalsK proved to be far more applicable than
Kotlift, scoring 0.964 while Kotlift only achieved 0.013. Regarding the Swift-to-Kotlin
transpilers, Gryphon achieved a score of 0.680 and SequalsK of 0.622. Therefore, Gryphon’s
output is likely to require slightly less manual editing than SequalsK’s w.r.t. the
considered constructs. SwiftKotlin scored last by far with a value of 0.263, although
it supported only six constructs less than SequalsK. All in all, these results confirm the
previously made assumption that the impact different constructs have on the applicability
of a transpiler greatly varies.

81

Chapter 8

Summary and Future Work

To conclude this thesis, the upcoming chapter summarizes the key aspects of each chapter
to remind the reader of the central themes of this thesis and present its scientific contri-
bution. However, as this thesis could not cover all aspects of its underlying problems, the
following also presents recommended directions for future work, including improvements on
the proposed solutions from this thesis.

8.1 Summary

This thesis provided insight into the current state of the art in Kotlin-to-Swift and Swift-
to-Kotlin transpilers in the field of cross-platform development for Android and Apple OS
by examining transpiler support of a set of basic constructs. Moreover, this study was given
more practical relevance by also including the occurrence of unsupported constructs in real
programming projects in the final evaluation of the transpilers.

The demand for cross-platform development tools like transpilers arises especially from
the current situation of the mobile OS market. There, Google’s Android and Apple’s iOS are
the dominant players, holding almost the entire market share together [Sta22b]. However,
when developing third-party applications for these platforms, developers have to use a certain
programming language that differs between those OS, in addition to a designated SDK
contributed by either Google or Apple. This situation created various tools for cross-platform
mobile development over the years. They usually pursue the goal of reducing development
effort by providing concepts that only require the development of one code base. For most
of them, this is achieved by employing a layer of abstraction to run non-native code on the
device. However, apart from losses in performance [MLL+18, QGZ16] and possibly failing
to accomplish the ”look and feel” the OS is known for [RS12], this creates a dependency
on the continuous development of the tool to stay up to date with new releases of the
OS [VGM20, Sch21]. An alternative approach would be using a transpiler, translating
from one platform’s native programming language to the other, making the output code
bases independently maintainable. Notably, most transpilers focus on the translation of
the pure language, i.e., neglecting platform-specific and other libraries. Consequently, when
considering that an app is designed according to the MVC pattern, only the model with the

83

8. Summary and Future Work

business logic parts are translatable.
For the primary native languages of Android and Apple OS, Kotlin and Swift, the

four transpilers Kotlift [Stu20], translating from Kotlin to Swift, Gryphon [Ven22a] and
SwiftKotlin [Oll20], translating from Swift to Kotlin, and SequalsK [Sch21], supporting
bidirectional translation, can be found online. The transpilers work on the underlying as-
sumption that Kotlin and Swift are translatable to each other. In fact, Kotlin and Swift share
general common traits, like being modern programming languages that are both character-
ized by their less verbose and safer syntax compared to their native programming language
predecessors, Java and ObjectiveC. Moreover, their syntactical similarity is explored in nu-
merous articles online [Oll16, Mec17], although more complex differences exist other than
constructs that are either identical or replaceable. While some of them are still adaptable
with a certain amount of effort, others are simply not translatable [Sch21].

However, to the best knowledge of the author, no other study examining the capabil-
ities of Kotlin-to-Swift and Swift-to-Kotlin transpilers exists in the literature, besides the
preliminary work done for this thesis [SS22]. Even more so, there appears to be a general
lack of works on the suitability of transpilers and other source-to-source translation tools for
Android and Apple OS cross-platform development. While various works introducing own
implementations of such tools suggest that source-to-source translation might become an
alternative approach to cross-platform development, their abilities are oftentimes only eval-
uated within the works presenting them. W.r.t. Gryphon, Kotlift, SequalsK and SwiftKotlin,
all transpilers admit to deficits in language coverage while also stating different demands
regarding the need for post-translation edits, therefore making it worthwhile to compare
their capabilities.

Consequently, this thesis elaborated on the construct support study conducted in the
preliminary work not only by repeating the study with the newest versions of the transpilers,
but by adding SwiftKotlin to gain even more insight on the current state of the art. Like in
the preliminary work, this study was founded on construct-based experiments based on the
exemplary code snippets from the overview chapters of the Kotlin and Swift documentations,
namely “Basic syntax“ [Jet22a] and “A Swift Tour“ [App22c]. Those were transformed into
compilable test cases and manually translated to the respective other language for extending
the test case sample pool. All in all, 102 distinct constructs were tested for Kotlin and 104
distinct constructs for Swift. Only if the translation of a construct was compilable and passed
a corresponding unit test verifying its functionality, a construct was marked as supported
by the transpiler. If the transpiler output failed to meet those requirements, the construct
was marked as unsupported. In some cases, it seemed appropriate to test the transpiler on
a simplified version of that construct, since the overview chapters sometimes exemplified
a feature with a more complicated construct than necessary. Since the maintainability
and therefore readability of the output code is one of the central advantages of using a
transpiler as a cross-platform development tool, the compliance of the valid output code
w.r.t. generally accepted style guidelines of the target language was also assessed using both
manual evaluation and a linter. For Kotlin, the built-in Kotlin style guide from the IntelliJ
IDE was used [Jet22c] and for Swift, the output code was checked using SwiftLint [Rea22],
a third-party Xcode plug-in based on generally accepted Swift conventions.

Since the results from this study only yielded whether a construct was supported or

84

8.1. Summary

not, disregarding that some constructs are more frequently used than others by developers,
therefore making it more cumbersome to manually correct them in the output code if they
were unsupported, the study was extended to be more practice oriented by considering the
popularity of the unsupported constructs. While various works on language adoption existed
in the literature, even considering some constructs relevant to this thesis, no popularity met-
ric could be found for all the constructs unsupported by one or more of the transpilers. Still,
these related works provided insight on aspects like general developer experience, difficulties
when incorporating Java-Kotlin interoperability [OTE20], the adoption of features intro-
duced in Kotlin but not available in Java [MM20, Zay20], code smells in iOS applications
[RP20] or the challenges of adopting Swift features vastly differing from ObjectiveC like
Optionals and error handling mechanisms [RPE+16, CPCS18]. Nevertheless, this created
the need to conduct an own study on construct usage within Kotlin and Swift projects from
practice, which was conducted as a MSR study. As a basis for this study, it was necessary
to put together a statistically relevant sized sample pool of Kotlin and Swift projects. It
was assumable that an appropriate amount of open-source projects were residing on the
version control website GitHub [Git22b]. However, since the official GitHub API [Git22a]
did not offer the necessary means for filtering the results appropriately, GHS [DAB21] was
used for filtering the projects according to the primary language used and their last com-
mit. For Kotlin, a project had to have at least one commit after 29 October 2018, the
release of Kotlin 1.3, so all constructs from the test case pool could have theoretically been
implemented in the project. For Swift, 10 September 2019, the release of Swift 5.1, was
the corresponding equivalent. Since the considered transpilers primarily target app projects,
the sample pool was further reduced to Kotlin based Android and Swift based Apple OS
projects. These were identified by looking for the AndroidManifest.xml-file in Kotlin and
the Info.plist-file in Swift projects and by searching their code for statements signaling the
implementation of an UI. Ultimately, the Kotlin sample pool consisted of 7,417 projects with
a total of 640,231 files. Meanwhile, after excluding third-party dependencies located within
the projects, the Swift sample pool consisted of 7,483 projects and 429,512 files.

The occurrence of the considered constructs within those projects was counted by using
a tool specifically developed for this thesis, referred to as Construct Analyzer Tool (CAT).
Identifying constructs was achieved by recognizing them within the parse tree of the code
file. Generally speaking, a parse tree is a model representation of the directives from a
piece of code, created by a parser. The input of a parser is a token stream, created by
a lexer from the input file’s character stream. Those tokens, in addition to rules on how
they can be combined to form statements, are defined within the grammar of a language.
For the implementation of CAT, ANTLR [Par22, Par12] was used for generating Kotlin
and Swift lexers, parsers and various helper classes for traversing the parse tree. ANTLR
is a commonly utilized tool in the literature for tasks requiring language recognition, e.g.,
transpilers [Nie16, AMT18, SHK+19, MME+20, Sch21, Dem15, RLMW14, SS21] or studies
on source code analyzation [RBS13, AP21, SYCI18, LYB+19, APT20].

CAT was implemented as a CLI tool taking either a Kotlin or a Swift project as input and
producing a CSV-file listing the occurrences of each construct as output. Files that were not
parsable due to faulty syntax, unsupported input characters or grammar rules or due to an
over excessive lexical analysis or parsing time were listed in a separate file. The complexity

85

8. Summary and Future Work

of identifying a construct from the parse tree was divided into three tiers – while Tier I
constructs were identifiable by the existence of a node in the parse tree, Tier II constructs
required a look at the nodes in proximity to be surely recognized. Moreover, constructs
belonging to Tier III required consulting symbol tables, which were initially built with global
declarations before the analyzation process and then dynamically expanded as the parse tree
was traversed.

For gaining insight on CAT’s accuracy, 20 random files from different projects from each
the Kotlin and the Swift sample pools were manually analyzed, and the results were then
compared to CAT’s. Notably, an unsatisfactory accuracy regarding Tier III constructs was
detected for both Kotlin and Swift, largely due to the exclusion of declarations made in the
projects’ external dependencies. Nevertheless, a 100% accuracy for both Kotlin and Swift
was observed for Tier I constructs. For Tier II, 99.14% of the Kotlin constructs were found
and 94.18% of the Swift constructs. Nevertheless, no false positives could be found for
neither language.

Ultimately, three main restrictions became visible for CAT: Firstly, it was highly depen-
dent on the language grammar file used for generating the ANTLR classes, laying restrictions
upon the allowed input characters and grammar rules as well as influencing parsing perfor-
mance. Secondly, any comment related constructs had to be omitted from the analyzation,
since comments were omitted from the generated parse tree. Lastly, any declarations made
in external dependencies or Java-/ObjectiveC-files within the projects were excluded.

The final results on construct support unveiled that Gryphon and SequalsK (for both
directions of translation) can be classified as more mature, achieving good coverage of the
considered constructs. Meanwhile, SwiftKotlin showed only satisfactory results and Kotlift
merely sufficient. The evaluation of the valid output w.r.t. readability revealed that all
transpilers produced generally readable code, with Kotlift and SequalsK (for both directions
of translation) achieving very good results and Gryphon and SwiftKotlin achieving good
results regarding the compliance of style guidelines. The results of CAT used on the project
sample pool revealed the differences between the constructs in terms of their popularity
within the Kotlin and Swift sample pool projects. However, especially for Kotlin, Tier III
constructs were generally recognized more seldom than constructs from the other tiers. This
can likely be attributed to the exclusion of third-party dependencies from the analyzation
process, since a better overall recognition for Tier III constructs could be achieved for the
Swift projects including third-party dependencies from CacaoPods and Carthage. The impact
of an unsupported construct on a transpiler’s applicability was ultimately measured by its
average occurrence, which was calculated by setting the number of lines it was found on
within the project into relation with the total LLOC of the project. The average occurrence
of all constructs unsupported by a transpiler was used to calculate the score W , indicating
the required manual effort to correct any invalid translations of the considered constructs
within the transpiler’s output code.

W.r.t. the Kotlin-to-Swift transpilers, SequalsK proved to be far more applicable than
Kotlift, scoring a value of 0.964 for W while Kotlift only achieved 0.013. Regarding the
Swift-to-Kotlin transpilers, Gryphon achieved a W score of 0.680 and SequalsK of 0.622,
while SwiftKotlin scored last with a value of 0.263 for W . Evidently, these results prove the
hypothesis that the impact different unsupported constructs have on the applicability of a

86

8.2. Future Work

transpiler varies indeed, since especially the Swift-to-Kotlin transpilers supported a similar
amount of constructs.

8.2 Future Work

All in all, the results of this thesis present only a record of the current situation regarding
Kotlin-to-Swift and Swift-to-Kotlin transpilers as well as the Kotlin and Swift programming
languages. The transpilers are still under development, so their support of language con-
structs may increase over time. At the same time, Kotlin and Swift are constantly receiving
new features – furthermore, constructs that were introduced recently might become more
popular over time.

Admittedly, the tool developed for automatically recognizing constructs within a project’s
source files, CAT, is also left with room for improvement. In its early development stages,
it was planned to include all constructs considered within the construct support study. Due
to the limited scope of this thesis, this was ultimately scrapped. However, implementing
the search for the supported constructs (and other constructs) would possibly provide more
insight on construct usage that would ultimately benefit the transpilers’ evaluation. Firstly,
the popularity of constructs supported by the transpiler and those that were unsupported
could be set into relation. Secondly, like proposed by Mateus and Martinez [MM20], certain
constructs could be used for normalization. E.g., determining how many class definitions in
Kotlin are Data Classes might put the importance of that construct in a different light than
simply calculating its occurrence in relation to the LLOC of a project. When examining the
tool’s accuracy, it became quickly apparent that the recognition of constructs dependent on
previously made declarations is unsatisfactory due to the exclusion of the project’s external
dependencies. At the same time, parsing is the most costly operation performed when
analyzing a project and including large libraries would likely require a considerable amount
of time. One possible solution for considering those dependencies, while still preventing
the need to parse them fully for every project they are included in, would be by parsing
frequently used libraries, like the android library, once and to save the resulting parse
tree and import it when necessary. Admittedly, this possibly still results in inaccuracies
due to different library versioning. Nevertheless, the existing implementations of construct
finders not achieving 100% accuracy might still be generally improvable, especially w.r.t.
finders not requiring symbol tables. Lastly, modifications to the used ANTLR grammars for
Kotlin and Swift could possibly enhance the overall accuracy as well as CAT’s performance.
Several code files had to be excluded from analyzation, not only due to containing faulty
syntax, but due to containing unaccepted input characters, grammar rules or simply taking
an unfeasible amount of lexical analysis or parsing time. Changes to the grammar possibly
fix those problems. Furthermore, CAT is currently not able to recognize different types of
comments or comments per se. Perhaps either the grammar files could be configured to
include those to the parse tree, or the cloc tool [Dan22] used to obtain the file number and
LLOC of a project could be customized in a way that it could differentiate between various
kinds of comments.

In addition to CAT, there are various ways how the study on transpiler constructs sup-

87

8. Summary and Future Work

port itself could be extended. The most obvious improvement would be to consider more
constructs. Although the constructs from the overview chapters of the Kotlin and Swift
documentations were chosen on purpose to attain insight on the transpilers’ support of
general language aspects, they neither represent the language fully nor illustrate all varying
ways that the features shown there can be implemented. While this study assessed the
readability of the output code both by manual evaluation and by using a linter, another way
of comparing it to human-written code would be by using BLEU [PRWZ02] or, more appro-
priately, an adapted version for programming code [RGL+20]. Furthermore, besides testing
the transpilers on isolated constructs, using the transpilers on the model and business logic
parts of Kotlin based Android and Swift based Apple OS applications would provide further
insight on the suitability of Gryphon, Kotlift, SequalsK and SwiftKotlin for cross-platform
development.

88

Appendix A

Project Sample Pool Metrics

� ����� ����� ����� ����� 	����
����

(a) Files per project.

� ���� ����� ����� ����� ����� ����� ����� �����
	
�������	

(b) Stargazers per project.

� ����� �����
���� ����� ������ ������
�����	�

(c) Commits per project.

�
� ��� �
� ��� �
� ���
���	����	��

(d) Contributors per project.

Figure A.1: Metrics for the Kotlin projects sample pool.

89

A. Project Sample Pool Metrics

� 	�� ���� �	�� ���� �	�� ���� �	�� ����
����

(a) Files per project.

� ���� ����� ����� ����� ����� ����� �����
�	�
����
�

(b) Stargazers per project.

� ����� ����� ����� ����� 	����
����
�������

(c) Commits per project.

�
� ��� �
� ��� �
� ���
���	����	��

(d) Contributors per project.

Figure A.2: Metrics for the Swift projects sample pool.

90

Appendix B

Contents of the Attached CD

1. Construct test case files and corresponding unit tests

2. CSV-files describing the Kotlin and Swift project sample pools

3. Source code of the Construct Analyzer Tool

4. Automation scripts

5. Online references

6. PDF-version of this thesis

91

Glossary

Apple OS Umbrella term for iOS and any of its variants used as operating systems for
Apple devices. E.g., Apple Watches use watchOS and Apple TV uses tvOS. 5, 8,
18–20, 22, 28, 29, 40, 43, 44, 46, 48, 49, 83–85, 88

construct Shorthand for programming language construct. A programming language fea-
ture is implemented by a construct. i, ii, 3–6, 10, 16, 17, 23–29, 31, 32, 34, 36–40,
42, 43, 47–49, 51–53, 56, 59, 60, 62–67, 69, 70, 72, 73, 78–81, 83–88

feature Shorthand for programming language feature. Programming languages consist of
various features, like different kind of loops or object-oriented features like classes. 3,
7, 8, 10, 22–27, 29, 31, 32, 34, 39, 41, 42, 53, 56, 84, 85, 87, 88

lexer Produces an output stream of tokens from an input stream of chars corresponding to
a given grammar. 10, 11, 14, 15, 17, 28, 29, 53, 57, 59, 63, 85

linter Program for statical code analysis that flags problems with the code, like seman-
tic/styntactical issues and stylistic violations. i, 36, 38, 84, 88

parse tree Tree structure representing the sentence of a given grammar. i, 5, 8, 11–17,
20–22, 27–29, 52, 53, 57, 59, 60, 63, 85–87

parser Produces a model, often a parse tree, from an input stream of tokens corresponding
to a given grammar. 8, 10–15, 17, 21, 28, 29, 51, 53, 57, 59, 60, 63, 85

parser generator Tool for automatically creating a parser from a given grammar. Some-
times also includes lexer generation. 5, 7, 14, 17, 29, 53

regular expression Form of algebraic description of regular languages, often used for pat-
tern matching strings. 10, 11, 14, 17, 22, 26

symbol table Data structure used by a language processor to note information relevant to
identifiers, like their location in the source code, typing, etc. 13, 14, 17, 52, 53, 56,
62, 63, 72, 78, 86, 87

token Basic lexical unit in programming language parsing. 8, 10–14, 17, 53, 85

93

Glossary

transpiler Program capable of translating source code from one high level programming
language to another. Also referred to as transcompiler or source-to-source compiler/-
translator. i, ii, 2–7, 15–24, 28, 29, 31, 32, 34, 36–39, 44, 51, 52, 63, 65–67, 70, 72,
79–81, 83–88

94

Acronyms

ANTLR ANother Tool for Language Recognition. 5, 7, 14, 15, 17, 19, 28, 29, 53, 57, 59,
63, 72, 78, 85–87

API application programming interface. 20–22, 25, 26, 40, 41, 45, 48, 85

BLEU Bilingual Evaluation Understudy. 21, 88

CAT Construct Analyzer Tool. i, ii, 6, 51–53, 56, 57, 59, 60, 62–65, 72, 73, 78, 81, 85–87,
91

CFG context-free grammar. 9, 10, 14, 17

CLI command line interface. 34, 47, 53, 63, 85

DFA determenistic finite automata. 10, 11, 13, 15, 17

GHS GitHub Search. 40–48, 85

IDE integrated development environment. 25, 36, 44, 84

LDA Latent Dirichlet Allocation. 25, 26

LLOC logical lines of code. ii, 65, 72, 73, 78, 79, 81, 86, 87

MSR mining software repository. 4, 40, 41, 44, 48, 51, 85

MVC model-view-controller. 2, 83

NFA non-determenistic finite automata. 10, 11

OS operating system. 1, 2, 29, 83

PDA pushdown automata. 13

RAM random-access memory. 57

95

Acronyms

REST representational state transfer. 40

SDK software development kit. 1, 62, 83

TCAIOSC Trans Compiler Android to IOS Conversion. 20, 21

UI user interface. 7, 8, 21, 25, 44, 45, 48, 85

96

Bibliography

[AGG+80] Paul F. Albrecht, Philip E. Garrison, Susan L. Graham, Robert H. Hyerle,
Patricia Ip, and Bernd Krieg-Brückner. Source-to-source translation: Ada to
Pascal and Pascal to Ada. ACM SIGPLAN Notices, 15(11):183–193, November
1980. ISSN 0362-1340. URL https://doi.org/10.1145/947783.948658.

[Aho07] Alfred V. Aho. Compilers : principles, techniques, tools. Boston [a.o.], 2nd
edition, 2007. ISBN 0321547985.

[Ale22] AlexAtUni. GitHub API Search code. https://github.community/t/git

hub-api-search-code/223992 (Accessed: 2022-05-25), 2022.

[AMT18] Kijin An, Na Meng, and Eli Tilevich. Automatic Inference of Java-to-Swift
Translation Rules for Porting Mobile Applications. In 2018 IEEE/ACM 5th
International Conference on Mobile Software Engineering and Systems (MO-
BILESoft), pages 180–190, 2018. URL https://doi.org/10.1145/319723

1.3197240.

[AP21] Sanjay B. Ankali and Latha Parthiban. Detection and Classification of Cross-
language Code Clone Types by Filtering the Nodes of ANTLR-generated Parse
Tree. International Journal of Intelligent Systems and Applications, 13(3):43–
65, 2021. ISSN 20749058. URL https://doi.org/10.5815/ijisa.2021.0

3.05.

[App16] Apple Inc. The Swift Programming Language (Swift 2.2): A Swift Tour.
https://web.archive.org/web/20160423163358/https://develope

r.apple.com/library/ios/documentation/Swift/Conceptual/Swift

_Programming_Language/GuidedTour.html (Accessed: 2022-05-25), April
2016.

[App22a] Apple Inc. Document Revision History — The Swift Programming Language
(Swift 5.6). https://docs.swift.org/swift-book/RevisionHistory/

RevisionHistory.html (Accessed: 2022-05-25), 2022.

[App22b] Apple Inc. Information Property List | Apple Developer Documentation. http
s://developer.apple.com/documentation/bundleresources/inform

ation_property_list (Accessed: 2022-05-25), 2022.

97

https://doi.org/10.1145/947783.948658
https://github.community/t/github-api-search-code/223992
https://github.community/t/github-api-search-code/223992
https://doi.org/10.1145/3197231.3197240
https://doi.org/10.1145/3197231.3197240
https://doi.org/10.5815/ijisa.2021.03.05
https://doi.org/10.5815/ijisa.2021.03.05
https://web.archive.org/web/20160423163358/https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/GuidedTour.html
https://web.archive.org/web/20160423163358/https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/GuidedTour.html
https://web.archive.org/web/20160423163358/https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/GuidedTour.html
https://docs.swift.org/swift-book/RevisionHistory/RevisionHistory.html
https://docs.swift.org/swift-book/RevisionHistory/RevisionHistory.html
https://developer.apple.com/documentation/bundleresources/information_property_list
https://developer.apple.com/documentation/bundleresources/information_property_list
https://developer.apple.com/documentation/bundleresources/information_property_list

Bibliography

[App22c] Apple Inc. A Swift Tour. https://docs.swift.org/swift-book/Guided

Tour/GuidedTour.html (Accessed: 2022-04-29), 2022.

[App22d] Apple Inc. Swift – Apple. https://www.apple.com/swift/ (Accessed:
2022-02-23), 2022.

[App22e] Apple, Inc. Swift.org. https://swift.org/about (Accessed: 2022-03-15),
2022.

[App22f] Apple Inc. Swift.org - Package Manager. https://swift.org/package-m

anager (Accessed: 2022-05-25), 2022.

[App22g] Apple Inc. SwiftUI Overview - Xcode - Apple Developer. https://develope
r.apple.com/xcode/swiftui/ (Accessed: 2022-05-25), 2022.

[App22h] Apple Inc. Xcode 13 Overview - Apple Developer. https://developer.ap

ple.com/xcode/ (Accessed: 2022-04-29), 2022.

[App22i] Apple Inc. XCTest. https://developer.apple.com/documentation/xc

test (Accessed: 2022-05-03), 2022.

[APT20] Giuseppe Antonio Pierro and Roberto Tonelli. PASO: A Web-Based Parser
for Solidity Language Analysis. In 2020 IEEE International Workshop on
Blockchain Oriented Software Engineering (IWBOSE), pages 16–21, 2020.
URL https://doi.org/10.1109/IWBOSE50093.2020.9050263.

[Bab22] Babel. Babel · The compiler for next generation JavaScript. https://babe

ljs.io/ (Accessed: 2022-03-14), 2022.

[Baz22] Mihai Bazon. UglifyJS 3. https://github.com/mishoo/UglifyJS (Ac-
cessed: 2022-03-14), 2022.

[BCT15] Antuan Byalik, Sanchit Chadha, and Eli Tilevich. Native-2-Native: Automated
Cross-Platform Code Synthesis from Web-Based Programming Resources. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Gener-
ative Programming: Concepts and Experiences, GPCE 2015, page 99–108.
Association for Computing Machinery, New York, NY, USA, 2015. ISBN
9781450336871. URL https://doi.org/10.1145/2814204.2814210.

[BHGG19] Andreas Biørn-Hansen, Tor-Morten Grønli, and G. Ghinea. A Survey and Tax-
onomy of Core Concepts and Research Challenges in Cross-Platform Mobile
Development. ACM Computing Surveys (CSUR), 51:1 – 34, 2019. URL
https://doi.org/10.1145/3241739.

[BHWS21] Daniel Barros, Flavio Horita, Igor Wiese, and Kanan Silva. A Mining Software
Repository Extended Cookbook: Lessons learned from a literature review. In
Brazilian Symposium on Software Engineering, pages 1–10, 2021. URL https:

//doi.org/10.1145/3474624.3474627.

98

https://docs.swift.org/swift-book/GuidedTour/GuidedTour.html
https://docs.swift.org/swift-book/GuidedTour/GuidedTour.html
https://www.apple.com/swift/
https://swift.org/about
https://swift.org/package-manager
https://swift.org/package-manager
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.apple.com/documentation/xctest
https://developer.apple.com/documentation/xctest
https://doi.org/10.1109/IWBOSE50093.2020.9050263
https://babeljs.io/
https://babeljs.io/
https://github.com/mishoo/UglifyJS
https://doi.org/10.1145/2814204.2814210
https://doi.org/10.1145/3241739
https://doi.org/10.1145/3474624.3474627
https://doi.org/10.1145/3474624.3474627

Bibliography

[BNJ03] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allo-
cation. Journal of machine Learning research, 3(Jan):993–1022, 2003. URL
https://dl.acm.org/doi/10.5555/944919.944937.

[Cap22] Capacitor. Capacitor by Ionic - Cross-platform apps with web technology.
https://capacitorjs.com/ (Accessed: 2022-07-19), 2022.

[Car22] Carthage. Carthage. https://github.com/Carthage/Carthage (Accessed:
2022-05-25), 2022.

[CBTR17] Sanchit Chadha, Antuan Byalik, Eli Tilevich, and Alla Rozovskaya. Facilitating
the development of cross-platform software via automated code synthesis from
web-based programming resources. Computer Languages, Systems Structures,
48:3–19, 2017. ISSN 1477-8424. URL https://doi.org/10.1016/j.cl.2

016.08.005.

[Cho56] Noam Chomsky. Three models for the description of language. IRE Transac-
tions on information theory, 2(3):113–124, 1956. URL https://doi.org/10

.1109/TIT.1956.1056813.

[CLTC15] Zi-Yik Cheah, Yik-Shu Lee, Thong-Yun The, and Ji-Jian Chin. Simulation of
a pairing-based identity-based identification scheme in IOS. In 2015 IEEE In-
ternational Conference on Signal and Image Processing Applications (ICSIPA),
pages 298–303, 2015. URL https://doi.org/10.1109/ICSIPA.2015.74

12208.

[Coc22] CocoaPods. CocoaPods.org. https://cocoapods.org/ (Accessed: 2022-
05-25), 2022.

[CPCS18] Nathan Cassee, Gustavo Pinto, Fernando Castor, and Alexander Serebrenik.
How Swift Developers Handle Errors. In 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), pages 292–302. IEEE,
2018. URL https://doi.org/10.1145/3196398.3196428.

[DAB21] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling Projects in
GitHub for MSR Studies. In 18th IEEE/ACM International Conference on
Mining Software Repositories, MSR 2021, pages 560–564. IEEE, 2021. URL
https://doi.org/10.1109/MSR52588.2021.00074.

[Dan22] Albert Danial. cloc. https://github.com/AlDanial/cloc (Accessed:
2022-02-03), 2022.

[Dem15] Abdullah Onur Demir. MEPHISTO: A source to source transpiler from pure
data to faust. Master’s thesis, Enformatik Enstitüsü, 2015. URL https:

//hdl.handle.net/11511/24717.

99

https://dl.acm.org/doi/10.5555/944919.944937
https://capacitorjs.com/
https://github.com/Carthage/Carthage
https://doi.org/10.1016/j.cl.2016.08.005
https://doi.org/10.1016/j.cl.2016.08.005
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/ICSIPA.2015.7412208
https://doi.org/10.1109/ICSIPA.2015.7412208
https://cocoapods.org/
https://doi.org/10.1145/3196398.3196428
https://doi.org/10.1109/MSR52588.2021.00074
https://github.com/AlDanial/cloc
https://hdl.handle.net/11511/24717
https://hdl.handle.net/11511/24717

Bibliography

[dkh22] dkhamsing. Dkhamsing/open-source-IOS-apps: Collaborative List of open-
source IOS apps. https://github.com/dkhamsing/open-source-ios-a

pps (Accessed: 2022-04-15), 2022.

[Dow16] Eric Downey. Practical Swift. Springer, Berkeley, CA, 1st edition, 2016. ISBN
9781484222805.

[EKAYW17] Wafaa S. El-Kassas, Bassem A. Abdullah, Ahmed H. Yousef, and Ayman M.
Wahba. Taxonomy of cross-platform mobile applications development ap-
proaches. Ain Shams Engineering Journal, 8(2):163–190, 2017. URL https:

//doi.org/10.1016/j.asej.2015.08.004.

[EKSY21] Shaymaa Sayed El-Kaliouby, Sahar Selim, and Ahmed H Yousef. Native Mobile
Applications UI Code Conversion. In 2021 16th International Conference on
Computer Engineering and Systems (ICCES), pages 1–5. IEEE, 2021. URL
https://doi.org/10.1109/ICCES54031.2021.9686093.

[FG22] Brent Fulgham and Isaac Gouy. The Computer Language Benchmarks Game.
https://benchmarksgame-team.pages.debian.net/benchmarksgame/

(Accessed: 2022-07-19), 2022.

[FW16] Xiaochao Fan and Kenny Wong. Migrating User Interfaces in Native Mobile
Applications: Android to IOS. In Proceedings of the International Confer-
ence on Mobile Software Engineering and Systems, MOBILESoft ’16, page
210–213. Association for Computing Machinery, New York, NY, USA, 2016.
ISBN 9781450341783. URL https://doi.org/10.1145/2897073.2897101.

[Gai22] Jean-loup Gailly. zipgrep(1) - Linux man page. https://linux.die.net/ma
n/1/zipgrep (Accessed: 2022-05-25), 2022.

[Gal22] Andrew Gallant. Burntsushi/ripgrep. https://github.com/BurntSushi/ri
pgrep (Accessed: 2022-05-25), 2022.

[Git22a] GitHub, Inc. GitHub REST API. https://docs.github.com/en/rest

(Accessed: 2022-05-24), 2022.

[Git22b] GitHub, Inc. GitHub: Where the world builds software · GitHub. https:

//github.com/ (Accessed: 2022-05-25), 2022.

[Git22c] GitHub, Inc. Resources in the REST API. https://docs.github.com/en

/rest/overview/resources-in-the-rest-api (Accessed: 2022-05-25),
2022.

[Git22d] GitHub, Inc. Where open source communities live · GitHub. https://gith

ub.com/open-source (Accessed: 2022-07-19), 2022.

[Goo13] Google. objc2j. https://code.google.com/archive/p/objc2j/ (Ac-
cessed: 2022-07-19), 2013.

100

https://github.com/dkhamsing/open-source-ios-apps
https://github.com/dkhamsing/open-source-ios-apps
https://doi.org/10.1016/j.asej.2015.08.004
https://doi.org/10.1016/j.asej.2015.08.004
https://doi.org/10.1109/ICCES54031.2021.9686093
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://doi.org/10.1145/2897073.2897101
https://linux.die.net/man/1/zipgrep
https://linux.die.net/man/1/zipgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://docs.github.com/en/rest
https://github.com/
https://github.com/
https://docs.github.com/en/rest/overview/resources-in-the-rest-api
https://docs.github.com/en/rest/overview/resources-in-the-rest-api
https://github.com/open-source
https://github.com/open-source
https://code.google.com/archive/p/objc2j/

Bibliography

[Goo16] Google. J2ObjC. https://developers.google.com/j2objc/guides/wh

y-use-j2objc (Accessed: 2022-06-06), 2016.

[Goo21a] Google. Android’s Kotlin-first approach, 2021. URL https://developer.an

droid.com/kotlin/first (Accessed: 2022-03-15).

[Goo21b] Google. J2ObjC. https://github.com/google/j2objc (Accessed: 2022-
02-19), 2021.

[Goo22a] Google. android.widget — Android Developers. https://developer.an

droid.com/reference/android/widget/package-summary (Accessed:
2022-07-19), 2022.

[Goo22b] Google. Angular. https://angular.io/ (Accessed: 2022-07-19), 2022.

[Goo22c] Google. Closure Compiler. https://developers.google.com/closure/co
mpiler (Accessed: 2022-03-14), 2022.

[Goo22d] Google. Flutter - Build apps for any screen. https://flutter.dev/ (Ac-
cessed: 2022-07-19), 2022.

[Goo22e] Google. Jetpack Compose. https://developer.android.com/jetpack/

compose (Accessed: 2022-05-25), 2022.

[Gou13] Georgios Gousios. The GHTorrent dataset and tool suite. MSR ’13. IEEE
Press, Piscataway, NJ, USA, 2013. ISBN 9781467329361. 233–236 pp. URL
http://dl.acm.org/citation.cfm?id=2487085.2487132.

[Gra22] Gradle Inc. Gradle Build Tool. https://gradle.org/ (Accessed: 2022-05-
25), 2022.

[GSM21] GSM Association. The mobile economy 2021. Technical report, 2021. 8-9 pp.
URL https://www.gsma.com/mobileeconomy/wp-content/uploads/202

1/07/GSMA_MobileEconomy2021_3.pdf (Accessed: 2022-01-05).

[Hop11] John E. Hopcroft. Einführung in die Automatentheorie, formale Sprachen und
Berechenbarkeit, 2011. ISBN 9783868940824.

[HSKY19] Rameez B. Hamza, David I. Salama, Martina I. Kamel, and Ahmed H. Yousef.
TCAIOSC: Application Code Conversion. In 2019 Novel Intelligent and Leading
Emerging Sciences Conference (NILES), volume 1, pages 230–234, 2019. URL
https://doi.org/10.1109/NILES.2019.8909207.

[HvKPT87] R. D. Huijsman, J. van Katwijk, C. Pronk, and W. J. Toetenel. Translating
Algol 60 Programs into Ada. Ada Lett., VII(5):42–50, 1987. ISSN 1094-3641.
URL https://doi.org/10.1145/36077.36080.

[Int22] Internet Archive. Wayback Machine. https://web.archive.org/ (Accessed:
2022-05-25), 2022.

101

https://developers.google.com/j2objc/guides/why-use-j2objc
https://developers.google.com/j2objc/guides/why-use-j2objc
https://developer.android.com/kotlin/first
https://developer.android.com/kotlin/first
https://github.com/google/j2objc
https://developer.android.com/reference/android/widget/package-summary
https://developer.android.com/reference/android/widget/package-summary
https://angular.io/
https://developers.google.com/closure/compiler
https://developers.google.com/closure/compiler
https://flutter.dev/
https://developer.android.com/jetpack/compose
https://developer.android.com/jetpack/compose
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://gradle.org/
https://www.gsma.com/mobileeconomy/wp-content/uploads/2021/07/GSMA_MobileEconomy2021_3.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2021/07/GSMA_MobileEconomy2021_3.pdf
https://doi.org/10.1109/NILES.2019.8909207
https://doi.org/10.1145/36077.36080
https://web.archive.org/

Bibliography

[ISO15] Information technology – Vocabulary – language construct. Standard, Inter-
national Organization for Standardization, Geneva, Switzerland, 2015. URL
https://www.iso.org/standard/63598.html (Accessed: 2022-05-15).

[Jav22] JavaCC Community. JavaCC. https://javacc.github.io/javacc/

(Accessed: 2022-03-15), 2022.

[Jet21] JetBrains. Kotlin Programming - The State of Developer Ecosystem in 2020
Infographic. https://www.jetbrains.com/lp/devecosystem-2020/kotl
in/ (Accessed: 2022-03-15), 2021.

[Jet22a] JetBrains. Basic syntax. https://kotlinlang.org/docs/basic-syntax.
html (Accessed: 2022-04-29), 2022.

[Jet22b] JetBrains. History for docs/topics/basic-syntax.md - JetBrains/kotlin-web-
site. https://github.com/JetBrains/kotlin-web-site/commits/mast
er/docs/topics/basic-syntax.md (Accessed: 2022-05-25), 2022.

[Jet22c] JetBrains. IntelliJ IDEA: The Capable Ergonomic Java IDE by JetBrains.
https://www.jetbrains.com/idea/ (Accessed: 2022-04-29), 2022.

[Jet22d] JetBrains. Kotlin Programming Language. https://kotlinlang.org/

(Accessed: 2022-01-23), 2022.

[Jet22e] JetBrains. Kotlin Programming Language - Grammar. https://kotlinlang
.org/docs/reference/grammar.html (Accessed: 2022-07-19), 2022.

[Jet22f] JetBrains. kotlin-web-site/basic-syntax.md at master · JetBrains/kotlin-web-
site · GitHub. https://github.com/JetBrains/kotlin-web-site/blob

/master/docs/topics/basic-syntax.md?plain=1 (Accessed: 2022-05-
25), 2022.

[Jet22g] JetBrains. kotlin.test. https://kotlinlang.org/api/latest/kotlin.t

est/index.html (Accessed: 2022-05-03), 2022.

[Jet22h] JetBrains. Team Tools - The State of Developer Ecosystem in 2021 Infographic.
https://www.jetbrains.com/lp/devecosystem-2021/team-tools/

(Accessed: 2022-05-24), 2022.

[K+56] Stephen C Kleene et al. Representation of events in nerve nets and finite
automata. Automata studies, 34:3–41, 1956. URL https://doi.org/10.1

515/9781400882618-002.

[KCH15] Rohit Kulkarni, Aditi Chavan, and A Hardik. Transpiler and it’s Advantages.
International Journal of Computer Science and Information Technologies, 6(2):
1629–1631, 2015. ISSN 0975-9646. URL https://ijcsit.com/docs/Volu

me%206/vol6issue02/ijcsit20150602159.pdf.

102

https://www.iso.org/standard/63598.html
https://javacc.github.io/javacc/
https://www.jetbrains.com/lp/devecosystem-2020/kotlin/
https://www.jetbrains.com/lp/devecosystem-2020/kotlin/
https://kotlinlang.org/docs/basic-syntax.html
https://kotlinlang.org/docs/basic-syntax.html
https://github.com/JetBrains/kotlin-web-site/commits/master/docs/topics/basic-syntax.md
https://github.com/JetBrains/kotlin-web-site/commits/master/docs/topics/basic-syntax.md
https://www.jetbrains.com/idea/
https://kotlinlang.org/
https://kotlinlang.org/docs/reference/grammar.html
https://kotlinlang.org/docs/reference/grammar.html
https://github.com/JetBrains/kotlin-web-site/blob/master/docs/topics/basic-syntax.md?plain=1
https://github.com/JetBrains/kotlin-web-site/blob/master/docs/topics/basic-syntax.md?plain=1
https://kotlinlang.org/api/latest/kotlin.test/index.html
https://kotlinlang.org/api/latest/kotlin.test/index.html
https://www.jetbrains.com/lp/devecosystem-2021/team-tools/
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1515/9781400882618-002
https://ijcsit.com/docs/Volume%206/vol6issue02/ijcsit20150602159.pdf
https://ijcsit.com/docs/Volume%206/vol6issue02/ijcsit20150602159.pdf

Bibliography

[KCM07] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and
taxonomy of approaches for mining software repositories in the context of
software evolution. Journal of software maintenance and evolution: Research
and practice, 19(2):77–131, 2007. URL https://doi.org/10.1002/smr.34

4.

[Kil19] KillerAllKillerAll. ANTLR4 - how to stop the parser when it takes too long.
https://stackoverflow.com/questions/56761502/antlr4-how-t

o-stop-the-parser-when-it-takes-too-long (Accessed: 2022-07-19),
2019.

[Kri11] Paul Krill. JetBrains readies JVM-based language. InfoWorld, 2011. URL
https://www.infoworld.com/article/2622405/jetbrains-readies-j

vm-based-language.html (Accessed: 2022-03-15).

[KVE94] Peter Knauber, Stefan Vorwieger, and Reinhard Eppler. Terminologie des
Übersetzerbaus. Technical Report 255, Fachbereich Informatik, 1994. URL
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-49764.

[Lee17] Kent D. Lee. Foundations of Programming Languages. Springer, 2017. ISBN
9783319707907. URL https://doi.org/10.1007/978-3-319-70790-7.

[Les06] Lesk, M. and Schmidt, E. Lex. http://dinosaur.compilertools.net/

(Accessed: 2022-03-06), 2006.

[LYB+19] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra.
Aroma: Code Recommendation via Structural Code Search. Proc. ACM Pro-
gram. Lang., 3(OOPSLA), 2019. URL https://doi.org/10.1145/3360578.

[Mec17] Gautier Mechling. Swift is like Kotlin. http://nilhcem.com/swift-is-l

ike-kotlin/ (Accessed: 2022-03-21), 2017.

[Met22a] Meta Platforms, Inc. React Native · Learn once, write anywhere. https:

//reactnative.dev/ (Accessed: 2022-07-19), 2022.

[Met22b] Meta Platforms, Inc. React – a JavaScript library for building user interfaces.
https://reactjs.org/ (Accessed: 2022-07-19), 2022.

[Mic22a] Microsoft. .NET | Free. Cross-platform. Open Source. https://dotnet.mic
rosoft.com/en-us/ (Accessed: 2022-03-14), 2022.

[Mic22b] Microsoft. TypeScript: JavaScript With Syntax For Types. https://www.ty
pescriptlang.org/ (Accessed: 2022-03-14), 2022.

[MKCN17] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Cu-
rating GitHub for Engineered Software Projects. Empirical Software Engineer-
ing, 22(6):3219–3253, 2017. URL https://doi.org/10.1007/s10664-017

-9512-6.

103

https://doi.org/10.1002/smr.344
https://doi.org/10.1002/smr.344
https://stackoverflow.com/questions/56761502/antlr4-how-to-stop-the-parser-when-it-takes-too-long
https://stackoverflow.com/questions/56761502/antlr4-how-to-stop-the-parser-when-it-takes-too-long
https://www.infoworld.com/article/2622405/jetbrains-readies-jvm-based-language.html
https://www.infoworld.com/article/2622405/jetbrains-readies-jvm-based-language.html
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-49764
https://doi.org/10.1007/978-3-319-70790-7
http://dinosaur.compilertools.net/
https://doi.org/10.1145/3360578
http://nilhcem.com/swift-is-like-kotlin/
http://nilhcem.com/swift-is-like-kotlin/
https://reactnative.dev/
https://reactnative.dev/
https://reactjs.org/
https://dotnet.microsoft.com/en-us/
https://dotnet.microsoft.com/en-us/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1007/s10664-017-9512-6

Bibliography

[MLL+18] Y. Ma, X. Liu, Y. Liu, Y. Liu, and G. Huang. A Tale of Two Fashions:
An Empirical Study on the Performance of Native Apps and Web Apps on
Android. IEEE Transactions on Mobile Computing, 17:990–1003, 2018. ISSN
1558-0660. URL https://doi.org/10.1109/TMC.2017.2756633.

[MM19] Bruno Góis Mateus and Matias Martinez. An empirical study on quality of An-
droid applications written in Kotlin language. Empirical Software Engineering,
24:3356 – 3393, 2019. URL https://doi.org/10.1007/s10664-019-097

27-4.

[MM20] Bruno Gois Mateus and Matias Martinez. On the adoption, usage and evo-
lution of Kotlin features in Android development. Proceedings of the 14th
ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2020. URL https://doi.org/10.48550/arXiv.1

907.09003.

[MME+20] Ahmad A. Muhammad, Amira T. Mahmoud, Shaymaa S. Elkalyouby,
Rameez B. Hamza, and Ahmed H. Yousef. Trans-Compiler based Mobile Ap-
plications code converter: swift to java. In 2020 2nd Novel Intelligent and
Leading Emerging Sciences Conference (NILES), pages 247–252, 2020. URL
https://doi.org/10.1109/NILES50944.2020.9257928.

[Moz22] Mozilla Foundation. Making PWAs work offline with Service workers. https:
//developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/

Offline_Service_workers (Accessed: 2022-07-19), 2022.

[MSSY21] Ahmad Ahmad Muhammad, Abdelrahman Mohamed Soliman, Sahar Se-
lim, and Ahmed H Yousef. Generic Library Mapping Approach for Trans-
Compilation. In 2021 International Mobile, Intelligent, and Ubiquitous Com-
puting Conference (MIUCC), pages 62–68. IEEE, 2021. URL https://doi.

org/10.1109/MIUCC52538.2021.9447641.

[Nie16] Pat Niemeyer. Patniemeyer/J2SWIFT: Basic java to swift syntax converter.
https://github.com/patniemeyer/j2swift (Accessed: 2022-07-19),
2016.

[Oll16] Angel G. Olloqui. Swift vs Kotlin for real iOS/Android apps. https://ange
lolloqui.github.io/blog/38-Swift-vs-Kotlin-for-real-iOS-Andro

id-apps (Accessed: 2022-07-19), 2016.

[Oll20] Angel G. Olloqui. SwiftKotlin. https://github.com/angelolloqui/Swif

tKotlin (Accessed: 2022-03-21), 2020.

[O’R16] Gerard O’Regan. Introduction to the history of computing: a computing history
primer. Springer, 2016. ISBN 9783319331386. URL https://doi.org/10.1

007/978-3-319-33138-6.

104

https://doi.org/10.1109/TMC.2017.2756633
https://doi.org/10.1007/s10664-019-09727-4
https://doi.org/10.1007/s10664-019-09727-4
https://doi.org/10.48550/arXiv.1907.09003
https://doi.org/10.48550/arXiv.1907.09003
https://doi.org/10.1109/NILES50944.2020.9257928
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Offline_Service_workers
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Offline_Service_workers
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Offline_Service_workers
https://doi.org/10.1109/MIUCC52538.2021.9447641
https://doi.org/10.1109/MIUCC52538.2021.9447641
https://github.com/patniemeyer/j2swift
https://angelolloqui.github.io/blog/38-Swift-vs-Kotlin-for-real-iOS-Android-apps
https://angelolloqui.github.io/blog/38-Swift-vs-Kotlin-for-real-iOS-Android-apps
https://angelolloqui.github.io/blog/38-Swift-vs-Kotlin-for-real-iOS-Android-apps
https://github.com/angelolloqui/SwiftKotlin
https://github.com/angelolloqui/SwiftKotlin
https://doi.org/10.1007/978-3-319-33138-6
https://doi.org/10.1007/978-3-319-33138-6

Bibliography

[Ore12] Ann Oreshnikova. Kotlin Goes Open Source! | The Kotlin Blog. The JetBrains
Blog, 2012. URL https://blog.jetbrains.com/kotlin/2012/02/kotl

in-goes-open-source-2/ (Accessed: 2022-03-15).

[OTE20] Victor Oliveira, Leopoldo Teixeira, and Felipe Ebert. On the Adoption of
Kotlin on Android Development: A Triangulation Study. 2020 IEEE 27th
International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 206–216, 2020. URL https://doi.org/10.1109/SANER4

8275.2020.9054859.

[Par12] Terence Parr. The definitive ANTLR4 reference. The Pragmatic programmers.
Dallas, Tex. [a.o.], 2012. ISBN 1934356999.

[Par22] Terence Parr. ANTLR. https://www.antlr.org/ (Accessed: 2022-03-19),
2022.

[PHF14] Terence Parr, Sam Harwell, and Kathleen Fisher. Adaptive LL (*) parsing: the
power of dynamic analysis. ACM SIGPLAN Notices, 49(10):579–598, 2014.
URL https://doi.org/10.1145/2714064.2660202.

[PRWZ02] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics, pages
311–318, 2002. URL https://doi.org/10.3115/1073083.1073135.

[QGZ16] P. Que, X. Guo, and M. Zhu. A Comprehensive Comparison between Hybrid
and Native App Paradigms. In 2016 8th International Conference on Com-
putational Intelligence and Communication Networks (CICN), pages 611–614,
2016. ISSN 2472-7555. URL https://doi.org/10.1109/CICN.2016.125.

[RBS13] Gordana Rakić, Zoran Budimac, and Miloš Savić. Language Independent
Framework for Static Code Analysis. BCI ’13, page 236–243. Association
for Computing Machinery, New York, NY, USA, 2013. ISBN 9781450318518.
URL https://doi.org/10.1145/2490257.2490273.

[Rea22] Realm. SwiftLint. https://github.com/realm/SwiftLint (Accessed:
2022-04-28), 2022.

[RGL+20] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel
Sundaresan, Ming Zhou, Ambrosio Blanco, and Shuai Ma. CodeBLEU: a
Method for Automatic Evaluation of Code Synthesis. CoRR, abs/2009.10297,
2020. URL https://doi.org/10.48550/arXiv.2009.10297.

[RLMW14] Julian Rith, Philipp S Lehmayr, and Klaus Meyer-Wegener. Speaking in
tongues: SQL access to NoSQL systems. In Proceedings of the 29th An-
nual ACM Symposium on Applied Computing, pages 855–857, 2014. URL
https://doi.org/10.1145/2554850.2555099.

105

https://blog.jetbrains.com/kotlin/2012/02/kotlin-goes-open-source-2/
https://blog.jetbrains.com/kotlin/2012/02/kotlin-goes-open-source-2/
https://doi.org/10.1109/SANER48275.2020.9054859
https://doi.org/10.1109/SANER48275.2020.9054859
https://www.antlr.org/
https://doi.org/10.1145/2714064.2660202
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/CICN.2016.125
https://doi.org/10.1145/2490257.2490273
https://github.com/realm/SwiftLint
https://doi.org/10.48550/arXiv.2009.10297
https://doi.org/10.1145/2554850.2555099

Bibliography

[RP20] Kristiina Rahkema and Dietmar Pfahl. Empirical study on code smells in iOS
applications. In Proceedings of the IEEE/ACM 7th International Conference on
Mobile Software Engineering and Systems, pages 61–65, 2020. URL https:

//doi.org/10.1145/3387905.3388597.

[RPE+16] Marcel Rebouças, Gustavo Pinto, Felipe Ebert, Weslley Torres, Alexander Sere-
brenik, and Fernando Castor. An Empirical Study on the Usage of the Swift
Programming Language. In 2016 IEEE 23rd international conference on soft-
ware analysis, evolution, and reengineering (SANER), volume 1, pages 634–
638. IEEE, 2016. URL https://doi.org/10.1109/SANER.2016.66.

[RS59] Michael O. Rabin and Dana Scott. Finite automata and their decision problems.
IBM journal of research and development, 3(2):114–125, 1959. URL https:

//doi.org/10.1147/rd.32.0114.

[RS12] C. P. Rahul Raj and Seshu Babu Tolety. A study on approaches to build cross-
platform mobile applications and criteria to select appropriate approach. In
2012 Annual IEEE India Conference (INDICON), pages 625–629, 2012. ISSN
2325-9418. URL https://doi.org/10.1109/INDCON.2012.6420693.

[Sas22] Sass Team. Sass: Syntactically Awesome Style Sheets. https://sass-lan

g.com/ (Accessed: 2022-03-14), 2022.

[Sch21] Dominik Schultes. SequalsK—A Bidirectional Swift-Kotlin-Transpiler. 2021
IEEE/ACM 8th International Conference on Mobile Software Engineering and
Systems (MobileSoft), pages 73–83, 2021. URL https://doi.org/10.110

9/MobileSoft52590.2021.00017.

[Sch22] Dominik Schultes. SequalsK. https://transpile.iem.thm.de/ (Accessed:
2022-03-21), 2022.

[Sen21] Sensor Tower. Combined global Apple App Store and Google Play app down-
loads from 1st quarter 2015 to 3rd quarter 2021 (in billions). https:

//www.statista.com/statistics/604343/number-of-apple-app-s

tore-and-google-play-app-downloads-worldwide/ (Accessed: 2022-
01-05), 2021.

[SHK+19] David I. Salama, Rameez B. Hamza, Martina I. Kamel, Ahmad A. Muham-
mad, and Ahmed H. Yousef. TCAIOSC: Trans-Compiler Based Android to iOS
Converter. In International Conference on Advanced Intelligent Systems and
Informatics, pages 842–851. Springer, 2019. URL https://doi.org/10.100

7/978-3-030-31129-2_77.

[SM16] Stephen Schaub and Brian A. Malloy. The Design and Evaluation of an In-
teroperable Translation System for Object-Oriented Software Reuse. J. Object
Technol., 15(4):1:1–33, 2016. URL https://doi.org/10.5381/jot.2016

.15.4.a1.

106

https://doi.org/10.1145/3387905.3388597
https://doi.org/10.1145/3387905.3388597
https://doi.org/10.1109/SANER.2016.66
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1109/INDCON.2012.6420693
https://sass-lang.com/
https://sass-lang.com/
https://doi.org/10.1109/MobileSoft52590.2021.00017
https://doi.org/10.1109/MobileSoft52590.2021.00017
https://transpile.iem.thm.de/
https://www.statista.com/statistics/604343/number-of-apple-app-store-and-google-play-app-downloads-worldwide/
https://www.statista.com/statistics/604343/number-of-apple-app-store-and-google-play-app-downloads-worldwide/
https://www.statista.com/statistics/604343/number-of-apple-app-store-and-google-play-app-downloads-worldwide/
https://doi.org/10.1007/978-3-030-31129-2_77
https://doi.org/10.1007/978-3-030-31129-2_77
https://doi.org/10.5381/jot.2016.15.4.a1
https://doi.org/10.5381/jot.2016.15.4.a1

Bibliography

[SS21] Markus Schnappinger and Jonathan Streit. Efficient Platform Migration of a
Mainframe Legacy System Using Custom Transpilation. In 2021 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), pages
545–554, 2021. URL https://doi.org/10.1109/ICSME52107.2021.0005

5.

[SS22] Larissa Schneider and Dominik Schultes. Evaluating Swift-to-Kotlin and Kotlin-
to-Swift Transpilers. In 2022 IEEE/ACM 9th International Conference on Mo-
bile Software Engineering and Systems (MobileSoft), pages 102–106, 2022.
URL https://doi.org/10.1145/3524613.3527811.

[Sta22a] Stack Exchange Inc. Stack Overflow - Where Developers Learn, Share, & Build
Careers. https://stackoverflow.com/ (Accessed: 2022-02-03), 2022.

[Sta22b] StatCounter. Mobile operating system market share worldwide. https://

gs.statcounter.com/os-market-share/mobile/worldwide (Accessed:
2022-07-19), 2022.

[Stu20] Studo. Kotlift. https://github.com/studo-app/Kotlift (Accessed:
2022-03-21), 2020.

[SYCI18] Yuichi Semura, Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue. Multilin-
gual Detection of Code Clones Using ANTLR Grammar Definitions. In 2018
25th Asia-Pacific Software Engineering Conference (APSEC), pages 673–677,
2018. URL https://doi.org/10.1109/APSEC.2018.00088.

[The20] The Editors of Encyclopedia Britannica. Grammar. https://www.britanni
ca.com/topic/grammar (Accessed: 2022-07-19), 2020.

[The21] The Apache Software Foundation. Commons csv – home. https://common

s.apache.org/proper/commons-csv/ (Accessed: 2022-07-19), 2021.

[The22a] The Apache Software Foundation. Apache Cordova. https://cordova.ap

ache.org/ (Accessed: 2022-07-19), 2022.

[The22b] The Apache Software Foundation. Maven – Welcome to Apache Maven. ht

tps://maven.apache.org/ (Accessed: 2022-05-25), 2022.

[TY21] Bernal Tarazona and Steven Yeisson. ANTLR 4 grammar of the Swift 5 pro-
graming language. Universidad de los Andes, 2021. URL http://hdl.hand

le.net/1992/53289.

[TYM21] Bernal Tarazona, Steven Yeisson, and Martin Mirchev. Grammars-
V4/swift/SWIFT5 at master · ANTLR/grammars-V4. https://github.c

om/antlr/grammars-v4/tree/master/swift/swift5 (Accessed: 2022-
07-19), 2021.

107

https://doi.org/10.1109/ICSME52107.2021.00055
https://doi.org/10.1109/ICSME52107.2021.00055
https://doi.org/10.1145/3524613.3527811
https://stackoverflow.com/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://github.com/studo-app/Kotlift
https://doi.org/10.1109/APSEC.2018.00088
https://www.britannica.com/topic/grammar
https://www.britannica.com/topic/grammar
https://commons.apache.org/proper/commons-csv/
https://commons.apache.org/proper/commons-csv/
https://cordova.apache.org/
https://cordova.apache.org/
https://maven.apache.org/
https://maven.apache.org/
http://hdl.handle.net/1992/53289
http://hdl.handle.net/1992/53289
https://github.com/antlr/grammars-v4/tree/master/swift/swift5
https://github.com/antlr/grammars-v4/tree/master/swift/swift5

Bibliography

[Ven22a] Vińıcius Jorge Vendramini. Gryphon. https://vinivendra.github.io/G

ryphon/ (Accessed: 2022-03-21), 2022.

[Ven22b] Vińıcius Jorge Vendramini. Gryphon. https://github.com/vinivendra/

Gryphon (Accessed: 2022-03-21), 2022.

[VGM20] Vińıcius Jorge Vendramini, A. Goldman, and G. Mounié. Improving mobile
app development using transpilers with maintainable outputs. Proceedings of
the 34th Brazilian Symposium on Software Engineering, 2020. URL https:

//doi.org/10.1145/3422392.3422426.

[yan19] yanagiba. Swift Abstract Syntax Tree. https://github.com/yanagiba/sw
ift-ast (Accessed: 2022-02-03), 2019.

[Yel88] Daniel M. Yellin. Translating between programming languages. In Attribute
Grammar Inversion and Source-to-source Translation, Lecture Notes in Com-
puter Science, pages 118–143. Springer, Berlin, Heidelberg, 1988. ISBN 978-
3-540-39079-4. URL https://doi.org/10.1007/3-540-19072-4_6.

[Zay20] Hussein Zayat. Kotlin and Android applications: diffusion and adoption of
characteristic constructs. Master’s thesis, Politecnico di Torino, 2020. URL
http://webthesis.biblio.polito.it/id/eprint/14526.

108

https://vinivendra.github.io/Gryphon/
https://vinivendra.github.io/Gryphon/
https://github.com/vinivendra/Gryphon
https://github.com/vinivendra/Gryphon
https://doi.org/10.1145/3422392.3422426
https://doi.org/10.1145/3422392.3422426
https://github.com/yanagiba/swift-ast
https://github.com/yanagiba/swift-ast
https://doi.org/10.1007/3-540-19072-4_6
http://webthesis.biblio.polito.it/id/eprint/14526

	Abstract
	Acknowledgements
	Selbstständigkeitserklärung
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Definition
	Objectives
	Repeating the Experiments on Construct Support
	Mining for Kotlin/Swift App Projects
	Automatic Analysis of Code Structures
	Evaluating Transpilers Considering the Popularity of Their Unsupported Constructs

	Outline

	Theoretical Background
	Kotlin
	Swift
	Programming Language Parsing
	Grammar
	Lexical Analysis
	Syntax Analysis
	Semantic Analysis
	Lexer/Parser Generators

	Transpilers
	Summary

	State of the Art
	Native Source-to-Source Translation in the Context of Android and Apple OS Cross-Platform Development
	Java-to-ObjectiveC and ObjectiveC-to-Java
	Java-to-Swift and Swift-to-Java
	Kotlin-to-Swift and Swift-to-Kotlin

	Translatability between Kotlin and Swift
	Studies on the Language Adoption of Kotlin
	Studies on the Language Adoption of Swift
	Works with ANTLR
	Summary

	Testing Transpiler Construct Support
	Description of the Test Case Pool
	Experiments
	Environment
	Summary

	Mining Open-Source Applications
	Finding Relevant Kotlin and Swift Repositories
	The GitHub REST API
	GitHub Search
	Filtering for Relevant Kotlin and Swift Projects

	Identifying App Projects
	Criteria for Android App Projects
	Criteria for Apple OS App Projects
	Filtering the GHS Results for App Projects

	Removing Dependencies
	Extracting General Metrics With cloc
	Summary

	Automatic Construct Recognition
	Concept
	Accepting of Both Swift and Kotlin Projects
	Automatic Recognition of a Predefined Set of Constructs
	Result Output as CSV-File
	Form

	Implementation
	Parsers
	Language Models
	Construct Analyzer

	Tool Validation
	Summary

	Results
	Construct Support
	Kotlin-to-Swift Construct Support
	Swift-to-Kotlin Construct Support

	Construct Popularity
	Kotlin
	Swift

	Transpiler Evaluation
	Kotlin-to-Swift Transpilers
	Swift-to-Kotlin Transpilers

	Summary

	Summary and Future Work
	Summary
	Future Work

	Project Sample Pool Metrics
	Contents of the Attached CD
	Glossary
	Acronyms
	Bibliography

