
Bachelorarbeit
Server-Dependent File Access Systems

Definition, Model Implementation, and Analysis

zur Erlangung des akademischen Grades

Bachelor of Science

vorgelegt dem
Fachbereich Mathematik, Naturwissenschaften und Informatik

der Technischen Hochschule Mittelhessen

Lars Schmitt

im Mai 2023

Referent: Prof. Dr. Ing. André Rein

Korreferent: Prof. Dr. Steffen Vaupel

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Arbeit selbstständig und unter ausschließlicher
Verwendung der angegebenen Literatur und Hilfsmittel erstellt zu haben.
Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde
vorgelegt und auch nicht veröffentlicht.

Gießen, den 1. Mai 2023

Acknowledgment

I want to thank Professor Rein and Professor Vaupel for supporting me, both during
my studies and in writing this thesis. Furthermore, I thank my friends and family for
their support. Last but not least, I thank Ján Mojžiš for providing me with access to
his helpful paper about memory dumping attacks against Microsoft’s SDFA clients [1].

Abstract

This work provides a clear, technical definition of Server-Dependent File Access (SDFA)
systems and compares it to the definitions of Enterprise Resource Management (ERM)
and Digital Rights Management (DRM) systems. Furthermore, a prototype implemen-
tation of a general-purpose model SDFA system written in Python 3 is provided to
underline the concepts and potentially help developers to implement production-ready
SDFA systems. Moreover, several different attack vectors against SDFA systems are
discussed. The author concludes that SDFA systems are a valuable tool against several
attack types and that the most effective attacks against SDFA systems can be performed
by malicious insiders, using both internal weaknesses and external devices.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Problem Description . 2
1.4 Research Questions . 2
1.5 Contributions . 3

2 Technical Background 5
2.1 CIA Triad . 5
2.2 Cryptography . 5

2.2.1 Symmetrical and Asymmetrical Cryptography 5
2.2.2 Hash Functions . 7
2.2.3 Certificates . 7
2.2.4 Cryptographic Block Modes . 8

2.3 Data Classification . 9
2.4 Microsoft Products . 9

2.4.1 Active Directory . 9
2.4.2 Azure . 9
2.4.3 Microsoft 365 . 10
2.4.4 Microsoft Rights Management Service 10

3 Server-Dependent File Access Systems 11
3.1 Related Definitions . 11

3.1.1 Digital Rights Management . 11
3.1.2 Enterprise Resource Management System 11
3.1.3 Rights Management Services . 12

3.2 Definition . 12
3.3 Use Cases . 15
3.4 Existing SDFA-Like Systems . 16

4 Model Implementation 19
4.1 Concept . 19

4.1.1 Purpose . 19
4.1.2 Derived Goals . 19
4.1.3 Terminology . 20

4.2 Implementation Process . 21
4.2.1 Methodology . 21
4.2.2 Code Conventions . 21
4.2.3 Used Software . 21
4.2.4 Used Technology Standards . 22
4.2.5 External Libraries . 23
4.2.6 Notable Python Features . 24

4.3 Result . 26
4.3.1 Structure . 26
4.3.2 Program Overview . 29
4.3.3 Program Flow . 31

i

Contents

4.3.4 File States . 32
4.3.5 Communication . 33
4.3.6 Server Database . 34
4.3.7 Encryption Layers . 34
4.3.8 Launch Instructions . 36

4.4 Evaluation . 37
4.4.1 Development Process Evaluation 37
4.4.2 Validation . 37
4.4.3 Result Evaluation . 37

4.5 Comparison With Microsoft RMS . 38
4.5.1 Context . 38
4.5.2 File Support . 38
4.5.3 Features . 38
4.5.4 Scale . 39
4.5.5 Performance . 39
4.5.6 Safety . 39
4.5.7 Security . 40

5 Threat Scenarios 43
5.1 Specific SDFA Security Concepts . 43

5.1.1 All-Or-Nothing Protection . 43
5.1.2 Service Entity Division . 43

5.2 External Attacks . 44
5.2.1 Denial of Service . 44
5.2.2 Man-In-The-Middle . 45
5.2.3 Cryptographic Attacks . 47

5.3 Internal Attacks . 47
5.3.1 Ripping Attack . 47
5.3.2 Memory Dumping Attacks . 48
5.3.3 Malicious Client . 49
5.3.4 Malicious Server . 49
5.3.5 Malicious Server With Insufficient Service Entity Division 50

5.4 Human-Error-Based Attacks . 51
5.4.1 Unintentional Misconfiguration (Availability) 51
5.4.2 Unintentional Data Leaks . 52

5.5 Future Challenges . 52
5.5.1 Cryptographic Durability . 52

6 Discussion 55
6.1 Strengths of SDFA Systems . 55
6.2 Weaknesses of SDFA Systems . 55
6.3 Impact on (Offline) Forensic Investigations 56
6.4 Research Questions Review . 56
6.5 Future Work . 57

7 Conclusion 59

Bibliography 61

Acronyms 67

List of Figures 73

ii

Contents

Appendix 73

A Code of the Model Implementation 75
A.1 client_backend.py . 75
A.2 client_certificates.py . 80
A.3 client_cli.py . 81
A.4 client_config_file_handler.py . 95
A.5 client_container_file.py . 97
A.6 client_server_handler.py . 100
A.7 file_handler.py . 103
A.8 file_handler_factory.py . 105
A.9 file_handler_generic.py . 107
A.10 file_handler_text.py . 108
A.11 package_certificates.py . 108
A.12 package_cryptography.py . 110
A.13 package_dataconversion.py . 115
A.14 package_debugging.py . 117
A.15 package_licenses.py . 118
A.16 server_app.py . 122
A.17 server_certificates.py . 128
A.18 server_database.py . 129
A.19 text_editor.py . 135
A.20 _burn.bat . 136
A.21 _burn_light.bat . 136
A.22 _burn.sh . 136
A.23 _burn_light.sh . 136
A.24 requirements.txt . 136

iii

1 Introduction

1.1 Background

Information security aims at the protection of information from external threats. If
information is stored digitally, the task of protecting the information from all kinds of
threats is carried from the physical to the digital realm. The properties of digitally-stored
information change the potential attack scenarios dramatically. Among other things,
electronic data can be transferred and replicated easily. This is a clear advantage for
regular use. However, it also opens up a wide variety of potential threats to information.
Subsequently, the main security goals of information security are summarized in the
so-called CIA Triad (see section 2.1), which consist of confidentiality, integrity, and
availability (CIA).

When it comes to threats affecting electronically-stored data, the loss of sensitive data
proposes a major risk to private people, but also companies and other organizations.
However, “data loss” is an ambiguous term as it can describe both the unavailability of
data (affecting the third CIA goal) as well as a breach of confidentiality (affecting the
first CIA goal), which in some literature [2,3] is also referred to as “data leakage” to
avoid confusion. Therefore, Data Loss/Leakage Prevention (DLP) refers to the specific
prevention of such a breach of confidentiality, even though it is often confused with
measures to protect the availability (like backup systems).

While in personal environments, the amount of data, the number of users, and the need
for secure data transmission to external parties is limited, corporate environments face
a multitude of problems accomplishing the CIA goals for all their data, both internally,
as well as externally. Many organizations use databases, email servers, and Enterprise
Resource Planning (ERP) systems for their everyday business. However, many also
try to improve their workflow using dedicated tools to manage and share files, roll-out
software to endpoint devices, improve their security posture or optimize their business
processes. This increases the complexity of their infrastructure.

1

1 Introduction

1.2 Motivation

The abstract introduction of data classification is a strategy to limit data access. It is
meant to improve information security by preventing members of an organization from
accessing and distributing data assets of increased value. However, the complexity of
modern companies’ digital infrastructure (as well as human error) can lead to sensitive
data being treated in a wrong way. Not long ago, the German train company Deutsche
Bahn was allegedly sabotaged with confidential information that was publicly available
on the internet, leading to train cancellations for several hours [4]. This basic example
underlines the importance of correct and consistent data classification, but also the
strong need to enforce restrictions tied to a sensitivity class.

One technical solution to solve several problems regarding information security are
systems that provide advanced controls and technical measures for sensitive files. De-
pending on the business application, such systems are commonly referred to as Enterprise
Resource Management (ERM) systems, Information Rights Management (IRM) sys-
tems, or Digital Rights Management (DRM) systems. Microsoft provides a particularly
interesting line of ERM services called Rights Management Service (RMS) that assures
confidentiality, even when an attacker copies or exports a sensitive file. This concept is
highly interesting and deserves closer inspection.

1.3 Problem Description

While there are several definitions to describe systems that can help with the protection
of data assets in company environments, there is no definition that concerns the exact
technical functionality in a descriptive way. Furthermore, while work exists on security
aspects of single systems, there is no work known to the author that focuses on such
systems in general regarding their security aspects, their effectivity, or how to construct
them from scratch. This makes it difficult to discuss the properties and abilities of such
systems in a general matter. At the same time, discussing their use cases, abilities, and
limits is highly relevant to potential users, organizations, and security professionals.

1.4 Research Questions

The goal of this work is to provide a definition and discussion of Server-Dependent File
Access (SDFA) systems. Furthermore, a basic yet functional (Python 3) prototype model
implementation of such a system will be provided and discussed. Moreover, the general
use case for such systems will be outlined from both the defensive and the offensive side.

2

1.5 Contributions

Different attack scenarios are to be applied theoretically to the idea of such systems
and the effectiveness in defense against these systems will be discussed. Subsequently,
different points of view (such as corporate employee, attacker, forensic specialist, ...)
are going to be implicitly considered. Finally, the strong suits and weaknesses of such
systems will be summarized and future work will be suggested. By that, the following
research questions will be answered:

1. How can an Server-Dependent File Access (SDFA) system be defined?

2. How does an SDFA system work and what security features does it use and
provide?

3. How does a simplified SDFA model compare against an existing productive system
like Microsoft’s RMS?

4. Against what forms of attack do SDFA systems provide an effective solution?

5. Against what scenarios do SDFA systems fail to provide a sufficient protection?

6. How can an organization treat sensitive data using an SDFA system?

7. How will the future availability of quantum computers with a significant amount
of qubits affect the security of SDFA systems?

1.5 Contributions

This work aims to contribute a definition of Server-Dependent File Access (SDFA)
systems. This definition will consider existing definitions of Rights Management Service
(RMS), Enterprise Resource Management (ERM) systems, as well as Digital Rights
Management (DRM) systems. Furthermore, a simplified prototype implementation of
an SDFA system, based on the concepts of Microsoft’s RMS will be provided. The
differences between the prototype implementation and Microsoft RMS will be outlined.
Subsequently, both the concept of SDFA systems and the model implementation (with
its features and limitations) will be analyzed and faced with different attack scenarios.
The future challenges, including cryptographic attacks towards the used cryptographic
systems as well as the potential danger of post-quantum cryptographic attacks, will be
considered.

3

2 Technical Background

2.1 CIA Triad

An asset in the context of IT security is something worth protecting. Assets can be
physical items like a computer or a secret blueprint, but they can also be digital (like
customer data or a piece of software) or abstract (like concepts or processes). For assets,
security goals can be defined. The CIA security goal triad (CIA Triad) is the industry
standard model for computer security and used in information security [5]. It consists of
the goals confidentiality, integrity, and availability. The goals are also referred to as CIA
goals. Different attacks and threats aim at different of these security goals. While some
attacks such as Denial of Service (DoS) attacks only affect one of the security goals (the
availability in this case), some attacks manage to overcome several or all security goals.
The CIA Triad is often extended by further security goals, depending on the context.
As an example, while in a web- and communication context, the goal of authenticity
is often added, the goal of non-repudiation is sometimes used in the domain of digital
forensics.

2.2 Cryptography

2.2.1 Symmetrical and Asymmetrical Cryptography

Cryptographic systems (also referred to as cryptosystems) aim at the obfuscation of
information in a way that a crucial amount of the information is transferred into a key.
The basic premise is that the key holds the information necessary to access the original
piece of information. Vice versa, following Kerckhoffs’s principle, without the key, the
information cannot be accessed, even if the cryptosystem itself and the obfuscated
information are known. In other words, access to the entire original information depends
solely on the key. The transformation from the original information (also called plaintext)
into the obfuscated version (also called ciphertext) is called encryption. The process of
restoring the plaintext using the ciphertext and the (correct) key is called decryption.

5

2 Technical Background

For symmetric cryptosystems, the key used for encrypting and decrypting information
is the very same. With the encryption function E and the decryption function D, for
symmetric encryption, the formula for any supported plaintext m and the key k is:

c = E(m, k)
m = D(c, k)

m = D(E(m, k), k)

However, for asymmetric encryption, two different keys are required to each encrypt
and decrypt a certain plaintext. These keys are mathematically connected, but not
the same. The key that is used for encryption is commonly referred to as public key
whereas the key used for decryption is called private key:

c = E(m, kpublic)
m = D(c, kprivate)

m = D(E(m, kpublic), kprivate)

While asymmetric encryption has many advantages in different use cases, it also has some
downsides. Asymmetric encryption is usually much slower than symmetric encryption.
Furthermore, the key generation process can cost many computing resources, and using
cryptographic block modes (see section 2.2.4) to extend the supported message size is
very uncommon. Therefore, when dealing with larger amounts of data in an asymmetric
cryptosystem, a layered approach is used to encrypt the randomly generated key of the
symmetric encryption with the asymmetric public key. For the encryption, this means:

ksymmetric | randomly generated
c1 = Esymmetric(m, ksymmetric)

c2 = Easymmetric(ksymmetric, kpublic)
c = (c1, c2)

For the decryption of m, the counter operations must be executed in reverse order:

c1, c2 = c

ksymmetric = Dasymmetric(c2, kprivate)
m = Dsymmetric(c1, ksymmetric)

This concept is implemented for the request communication in the later discussed model
implementation (see figure 4.5).

Symmetric cryptosystems are also referred to as private key cryptosystems (because
they only have a private key). Equally, asymmetric cryptosystems are also called public
key cryptosystems.

6

2.2 Cryptography

2.2.2 Hash Functions

While hash functions (also hashing functions) fall into the domain of cryptography,
they do not provide encryption or decryption functionality. Hash functions are one-
way-functions that are used to create unique, fixed-length hash values of data (of any
length). The resulting hash values are also called hashes or digests. These digests are
irreversible due to the nature of hash functions, and no key is required. For a message
m, the hash digest h can be calculated with the function H:

h = H(m)

Hash values are often used to verify the integrity of information as described in the
CIA goals. The uniqueness of hash values has a special role in this scenario. When two
different messages result in the same hash value, this is defined as a collision. Collisions
are hard to find for modern hash functions. However, finding a collision or a way to
generate them can result in significant problems for the cryptosystem using the hash
function. Depending on the use case, not only the integrity, but also the confidentiality
can be affected.

2.2.3 Certificates

A certificate is a construct that can be used to sign and verify data in addition to
encryption and decryption. For certificates of known actors, this provides the additional
goal of authenticity. Among other data, certificates contain an asymmetric cryptosystem
with a public and a private key. However, the process of signing or verifying information
works differently than the usual process of encryption or decryption in a public key
cryptosystem. In the case that an actor with a certificate wants to sign an information,
the information is (usually) hashed. The resulting hash is then encrypted with the
private key (instead of the public key). The receiving actor can then use the (known)
public key to decrypt the hash and check the integrity of the information by comparing
the decrypted hash value with a self-calculated hash value of the information. The
process of creating a signature s for the message m can be defined as:

h = H(m)
s = E(h, kprivate)

The process of verifying the information on the receiving end can be described as:

h = D(s, kpublic)
hcalculated = H(m)

7

2 Technical Background

If the calculated hash (hcalculated) is the same as the received one (h), the integrity of
the message m is considered verified. Note that the content of the message m is not
encrypted in this case, so if desired, confidentiality must be ensured by another layer
of encryption. It is also important to note that a matching signature only means the
message came from a trusted source when the public key itself is trusted; a signature
itself only provides information about the integrity of the message, not the identity
of the source. Therefore, a signature does not prevent an attacker from performing
a Man-in-the-Middle (MitM) attack during the retrieval of the public key. Only the
trusted identity of the certificate holder of the used public key can create authenticity as
well. One potential solution for this problem is the usage of a Public Key Infrastructure
(PKI) with certificates only issued by a trusted Certification Authority (CA).

2.2.4 Cryptographic Block Modes

Cryptosystems are divided into stream ciphers and block ciphers. Stream ciphers iterate
over single bits of the plaintext while block ciphers require a certain number of bits to
encrypt or decrypt at once. Therefore, to encrypt a plaintext with a block cipher, the
plaintext must be divided into blocks of a size supported by the cryptosystem. With
a block size of x bits, as long as the plaintext is longer than x, the first (or next) x

bits are taken as a block. When the remaining plaintext is shorter than x, a padding
scheme is applied to complete the last block. In case that a plaintext has length n and
n%x = 0, the text can be perfectly split into blocks in theory. However, in some cases,
a full block of the selected padding scheme is added to mark the end of the message. In
any case, the resulting data blocks (each with the length x) can be encrypted with the
block cipher.
When all the generated blocks are each simply encrypted with the cipher, this is called
the Electronic Code Book (ECB) mode. This is the most intuitive way of encrypting
data with a block cipher. However, it also raises major problems. When encrypting
the same block several times, the lacking level of information obfuscation achieved by
this mode is highly problematic. Furthermore, there is no way of detecting errors when
encrypting the blocks independently from each other. More complex modes like the
Cipher Block Chaining (CBC) mode use additional operations (like XOR) to solve both
problems. However, this also opens up the possibility for side side channel attacks, like
the CBC mode padding oracle attack that (for instance) can be observed in the domain
of SSL/TLS encryption [6]. Modern modes like the Galois/Counter mode (GCM) are
even more complex in their functionality, using several layers of operations, additional
data, and hashing functions. However, they also provide a greater set of features to
the one using them, like verifying additional unencrypted data. The latter is known as
Authenticated Encryption with Associated Data (AEAD) [7].

8

2.3 Data Classification

2.3 Data Classification

Data classification is a process of information security that assigns a class to certain
data. This can be done based on the sensitivity of the data (which is probably the most
common classification attribute), but it can also happen based on other factors (such
as availability requirements). As suggested by George Firican [8], for the scope of this
paper, the distinction between data categorization and data classification is defined
in the relationship between the category or class and the data. While a piece of data
can be a member of several categories, it can only belong to one class. This can be
represented by defining the category-data relationship as n-to-n, while the class-data
relationship can be defined as 1-to-n. Subsequently, categorized data can be seen as
an intermediate step between unclassified and classified data. In the field, categories
and classes are often represented as labels, which also associate the member data with
a set of rules that need to be followed. These can be both technical measures (such
as encryption or content marking) or behavioral rules (like limited access, disposal
regulations, or others).

2.4 Microsoft Products

2.4.1 Active Directory

Microsoft Active Directory (AD) is a directory management service that is widely used.
According to Nestori Syynimaa, in 2014, AD was used by about 95% of the so-called
fortune 500 companies [9]. AD provides a multitude of different authentication methods
and services and can be deployed on premise. It is integrated into different versions of
Microsoft’s Windows operating system (OS) since Windows 2000 and Windows Server
2003 [10], but is also increasingly supported by Linux distributions. AD is the basis for
many other services, including but not limited to Azure Active Directory (Azure AD)
and Microsoft Rights Management Service (RMS).

2.4.2 Azure

Microsoft Azure is a cloud service platform that can be used in many ways. Among
many other services and features, it also enables companies to host an instance of Active
Directory in the Azure cloud environment. This is referred to as Azure Active Directory
(Azure AD).

9

2 Technical Background

2.4.3 Microsoft 365

Microsoft 365 (M365) [11] is a Microsoft software product family for both private
and corporate customers. Depending on the version, different services are included,
the most important of them being the classic office applications like Microsoft Word,
Microsoft PowerPoint, and Microsoft Excel. Further services reach from Microsoft’s
communication platform Microsoft Teams to complex business and security services,
such as PowerBI or Azure Information Protection (AIP). It is notable that the term
Microsoft 365 is somewhat wide-spanning, especially since the assimilation of the former
Microsoft Office 365 (O365) product line into the namespace of Microsoft 365 that
happened in April 2020 [12].

2.4.4 Microsoft Rights Management Service

Microsoft Rights Management Service (RMS) is a family of Enterprise Resource Man-
agement systems (defined in section 3.1.2). In the context of Microsoft Azure, it is
part of Microsoft Azure Information Protection (AIP). It is both available on local
Active Directory instances (AD RMS) and instances of Azure Active Directory (Azure
RMS) [2]. The distinction between AD RMS and Azure RMS is significant when
analyzing potential security threats against the security goals of Enterprise Resource
Management (ERM) services (see section 5.1.2). However, Azure Rights Management
Service is a part of Azure Information Protection (AIP), which can be found in some
versions of Microsoft 365 subscriptions. A list of definitions and services included in the
namespace of AIP is provided by Microsoft [13].

10

3 Server-Dependent File Access Systems

3.1 Related Definitions

3.1.1 Digital Rights Management

Digital Rights Management (DRM) systems are systems that aim to provide limited
access to a piece of (physical or digital) media for a user, mostly a customer. They are
mostly used to prevent a user from replicating and distributing content that the user
is allowed to access for himself, but not to share with other users. Nowadays, DRM
systems are commonly used in streaming services such as Netflix, which uses its DRM
to prevent users from extracting (and potentially sharing) the movies and series played.
However, also local media such as DVDs are protected with DRM measures. DRM
systems are often used in the specific relationship between a customer and a service
provider, and often protect the service provider from copyright infringement. Depending
on the exact definition, DRM can include a variety of measures (like watermarking)
that are not necessarily associated with encryption [14].
The Amazon Kindle file access system (one of the systems mentioned by Grothe et
al. [15]) is one example of DRM protection. While both the cryptographic cipher and
the Kindle (SDFA) client have been broken in the past and are prone to the concept of
all-or-nothing protection [16] (which is discussed in section 5.1.1), Amazon is keen to
protect the copyright of the books provided to the customers using DRM.

3.1.2 Enterprise Resource Management System

Enterprise Resource Management (ERM) systems protect company data by encrypting
and digitally signing it [2]. One synonym for ERM systems, which is removing the term
from its necessarily corporate background and putting it into the context of Information
Protection, is Information Rights Management (IRM) systems [2].
One example of ERM systems is Microsoft Rights Management Service (RMS). Microsoft
RMS (not to confuse with Microsoft Dynamics Retail Management System) span
several products and licenses, covering ERM functionality across different scenarios and
configurations. In the Microsoft Azure context, RMS is part of the Azure Information

11

3 Server-Dependent File Access Systems

Protection (AIP) Suite. However, RMS services can also be used outside of the Azure
cloud in a different AD environment. Across hosting platforms, the ERM functionality
is based on labels. These labels can statically represent a sensitivity class, but they
can also be used to give the user ad-hoc control over which rights and limitations
are assigned to an object, depending on the label configuration. The labels are then
published in a policy and can then be applied to different data objects such as files,
Outlook emails, groups, or schematized data assets. When it comes to files, Microsoft’s
main focus lies on Microsoft’s native office file formats like “.docx”, “.pptx”, or “.xlsx”.
However, while some file formats like “.exe” are also purposefully excluded, more file
formats like “.pdf” and “.png” are supported as well [17].

3.1.3 Rights Management Services

Rights Management Service (RMS) is a term mostly defined by Microsoft to describe
their ERM services (see section 3.1.2).

3.2 Definition

Unfortunately, the terms listed above as well as their common synonyms are insufficient
to describe the specific kind of system this works aims to discuss. The relatively wide
array of measures that can be defined as part of a DRM system results in the term DRM
being somewhat unspecific from a technical point of view. Moreover, the previously
mentioned definitions of ERM/IRM and DRM systems focus on the context in which
they are applied. Nonetheless, judging by their functionality, ERM systems can be used
both for internal, as well as external users (both employees and customers), depending
on the exact use case. Furthermore, ERM systems are sometimes defined based on their
cryptographic functionality [2], but the term doesn’t provide a clear description of the
involved parties and their role in the system. To discuss the properties of Microsoft
RMS-like ERM systems without focusing too much on a certain product family, a more
general definition of such systems is required. Therefore, the following definition of
Server-Dependent File Access systems provides a more technical description of the
functionality of these kinds of system, independent of their precise business use case.

12

3.2 Definition

For the scope of this work, Server-Dependent File Access (SDFA) systems will be defined
as systems that:

• protect digital files from unauthorized access, even if the entire protected file is
obtained by an unauthorized party

• use a client-server architecture, in which only the server can grant access to a
protected file

• provide users with the ability to set specific access rights for entities like users
and groups

• ensure that the server never obtains the body of the protected files

Crucially important to this definition and the protective capabilities of SDFA systems is
that the SDFA server itself (or a different one of the same providing organization) never
stores or even sees the file content (not counting the restriction-representing metadata
in the container). Furthermore, what really distinguishes SDFA systems from other
definitions is that even if an attacker obtains the desired asset in its permanently stored
state (including encrypted body and access rights), the attacker still cannot use the
asset without server permission. On the disk, the body of the file only exists on the
client side in an encrypted format. Nevertheless, the server decides whether the client
has access to a file at all and what this access looks like for an authenticated user.
An abstract activity diagram over a data asset’s lifecycle in an SDFA environment is
provided in figure 3.1.

It can also be argued that other assets like database entries are also admissible targets
for SDFA systems since they are also stored in files. Also, additional server features
do not necessarily violate the definition of SDFA systems. Such features could include
file location tracking, access monitoring, or content-specific access denial. However, the
latter must be exercised with caution. However, the server is not supposed to have or
store any information about the unencrypted file content itself. For instance, while the
server-side storing of file content’s hash values would be “just” a potential attack vector,
further information about the content of the files would violate the SDFA client-server
data separation requirements.

13

3 Server-Dependent File Access Systems

Figure 3.1: Abstract activity diagram of the lifecycle of a data asset in an SDFA sys-
tem.

14

3.3 Use Cases

3.3 Use Cases

SDFA systems can be used in different environments with several users to technically
instantiate data classes. Use cases for this reach from very small companies not wanting
an intern to access certain sensitive documents to large organizations with a complex
system of authorized groups, users, compartments, and security levels. The following
steps could be taken by an organization that wants to use an SDFA system:

• Definition of Categories: In a first step, the organization has to think about
what kind of data it holds and which categories of data deserve protection.
Categories can be derived from both internal sensitivity (secrets, confidential
information, etc.) and from external factors such as laws regulating the security re-
quirements for certain categories of data (such as personal identifiable information,
credit card information, passwords, health information, and so on).

• Definition of Classes: From the list of categories, classes can be created. These
classes should have the type of data (respectively the categories) and information
attached to them, who (inside or outside the organization) should be able to access
certain information. As an example, a company could decide to only make their
department of human resources able to access contractual data.

• SDFA Implementation: The classes are technically instantiated in the selected
SDFA by creating templates for the defined classes and the attached behavior.
If supported, employees are assigned group memberships to represent extended
or limited rights over certain classes of files. Certain trusted users are assigned
extensive rights.

• SDFA Usage: During business operation, the templates are applied to the files
and other data assets. Restricted access for those assets is enforced throughout
the organization and to the outside world. Templates, group memberships, user
rights, and file permissions are changed dynamically.

The previous example covered the case of organizations and can be applied to any ERM
system. However, since the definition of SDFA systems in theory could also include
DRM systems that work in a similar way (and respect the four points of the definition),
it is important to point out that the same steps can also be used for much different
kinds of relationships. A streaming service for instance could design its categories based
on the products offered. A licensed piece of media could for instance be accessible to all
employees of the IT department, but also to customers that (internally) are members
of a group that represents access to this asset. This is also an example of the fact
that SDFA systems can be used for ERM and DRM functionality at the same time.
Overall, schools, foundations, governmental organizations (including but not limited

15

3 Server-Dependent File Access Systems

to military and intelligence organizations), online communities, online-class providers,
and a multitude of other institutions could benefit from the usage of SDFA systems. In
addition, SDFA systems can be useful on many types of devices. As an example, an
SDFA-driven access right revocation would be a quick, effective, and reversible first step
for a service that aims at data protection for lost devices.

While without a doubt the main advantages of SDFA systems lie in environments with
several users, in special cases, it can also be advantageous to use an SDFA system as
a single user. This is the result of the SDFA server being a Single Point of Failure
(SPOF). While this intuitively poses a risk to the availability of assets protected with an
SDFA system, it can also be an intended weakness, as access to any amount of protected
files can very easily be revoked. In this context, the usage of an SDFA system with
a “kill switch” for the server can even be seen as a potentially effective anti-forensic
measure concerning secret data [18]. However, even without the case of single user
access revocation to prevent external access, SDFA systems can be useful to prevent
the access of unauthorized third parties. An example would be a burglar (as attacker),
obtaining copies of sensitive files from a victim. If the victim protected the files with an
SDFA system (no matter the access rights for authorized users), the attacker would not
be able to access the files without a compatible SDFA client as well as the ability to
authenticate as an authorized user.

3.4 Existing SDFA-Like Systems

Many existing ERM solutions only focus on providing users and groups with granular
access to files and directories. They do not fall under the definition of SDFA systems
because if an attacker manages to obtain control over a file (for instance by copying it
to an external hard drive), the protection is null and void. However, on the other end of
the spectrum, DRM systems often fail to comply with the definition of SDFA systems
as they neither provide users with the ability to set the rights (by class-based labeling or
ad-hoc), nor a clean separation of hosting service and SDFA service. While the Amazon
Kindle DRM does not fulfill the requirements of an SDFA system, it arguably falls
under the definition of an SDFA-like DRM system. The reason the definition is not
fully fulfilled is that the user does not set the rights and there is no clean separation
between hosting service and SDFA service. However, as for any pure DRM system, the
risk of combining the file hosting service and the SDFA system is given in theory, but it
is not relevant since in cases of DRM protection, the confidentiality towards the hosting
service is not a desirable goal. Therefore, this aspect should not be considered when
discussing SDFA-like DRM systems as opposed to “real” SDFA systems with a strong

16

3.4 Existing SDFA-Like Systems

focus on ERM functionality.

On the other hand, Microsoft’s RMS (which in some versions can also be used for
DRM-like functionality) is the main and prime example of existing and productive
SDFA systems. While it is important to note that there are cases in which Microsoft is
in control of both the file hosting and the SDFA system - which in theory proposes a
severe security risk as explained in section 5.1.2 - the protection service environment
is among the most successful implementations of customer-oriented ERM systems as
of now. Micrsosoft’s RMS is the only example of a fully compliant SDFA system
known to the author if hosted on premise (AD RMS). Subsequently, it is also the
main orientation point for the following SDFA prototype implementation. As for the
functionality of Azure RMS, useful information is provided both by Microsoft [19] and
external sources [20,21].

17

4 Model Implementation

4.1 Concept

4.1.1 Purpose

The SDFA implementation discussed is meant to be a non-productive model imple-
mentation. For reasons outlined in section 4.5, the implementation is not meant to be
used in any form of productive environment. The sole purpose is to provide insight on
how such a system can be implemented as well as an easy-to-understand code example.
With the implementation, the concept of SDFA can be better understood, as well as
details regarding its behavior in different attack scenarios, discussed in section 5.

4.1.2 Derived Goals

The goals of the model implementation have been defined as follows:
The purpose of the implementation is to provide a general-purpose prototype of an
Server-Dependent File Access (SDFA) system (as defined in section 3.2). The used
definition of a prototype is defined in Mary Shaw’s 2003 paper on software development
papers [22]. The implementation should be easy to understand and extendable. The
project should have a working client application as well as a working server providing
main functionality and demonstrating the concept of SDFA. The implementation should
provide protection functionality for all types of files, as well as the operations view, edit,
protect, and decrypt. While not aiming to be a production ready implementation by
any means, basic safety and security practices should be applied. Common technology
standards and libraries should be used. The usage of non-Python code should be
minimized. Performance is almost entirely disregarded to improve simplicity and
readability. The project should follow the object-oriented paradigm.

19

4 Model Implementation

4.1.3 Terminology

The following terms have to be defined in order to understand the provided SDFA
implementation:

• Posting License: A Posting License (PL) is an object that defines the access
different users and groups have to a protected file. A PL contains the rights over
a file in an encrypted and signed format, as well as the body key to access it. The
PL in the prototype is the equivalent to Microsoft’s Publishing License.

• Server Certificate: The Server Certificate (SCert) is the asymmetric certificate
representing the server’s identity. It is responsible for encrypting the PLs and the
double-encrypted communication to the server. It is the equivalent of Microsoft’s
Server Licensor Certificate (SLC).

• Container: A container is a file that contains a file that is protected with the
prototype SDFA. In a container that is persistent on the disk, the original file is
only present in an encrypted state, as well as the key stored in the PL (status 4).
However, containers can be in less secure states (1-3) at runtime. Containers have
the standard file extension “.container” in addition to the original file name and
extension.

• User Certificate: The User Certificate (UCert) is the asymmetric certificate
representing the user device’s identity. It is responsible for encrypting the double-
encrypted communication from the server to the client. It combines the function-
ality of the Microsoft user certificates Secure Processor Certificate (SPC), Rights
Account Certificate (RAC), and Client Licensor Certificate (CLC).

• Content/Body Key: The content key (also body key) is a randomly generated
symmetrical key used to encrypt the body of protected files. The key itself is
stored in the PL. When a container is protected, the PL is encrypted itself with
the SCert.

• List of Rights: A List of Rights (LoR) is an entity-based list of permissions
that is compiled by the server to grant client access. It is encrypted with the
requesting user’s UCert, along with the content key, and sent back. Microsoft
calls this construct a Use License (UL).

20

4.2 Implementation Process

4.2 Implementation Process

4.2.1 Methodology

The following goals for the implementation process have been defined:
For the development, a prototype will be created, serving as a proof of concept and
providing the author with useful experience to develop the main project. After the
prototype has been finished, the actual model will be implemented. For the development
process, the waterfall model will be used. Agile approaches are rejected since the product
requirements are static. UML-like diagrams will be used to support the development
process.

4.2.2 Code Conventions

To achieve the goal of having an easily-understandable code, the code complies with
the pep-8 style guide for Python [23]. Furthermore, type annotations with the module
typing have been used, both to enhance the readability of the code, as well as to support
the debugging process (visually and with static code analysis).

4.2.3 Used Software

The following software has been used to implement this project:

• Python 3: Python [24] is a general-purpose programming language that is
defined by its focus on readability and outstanding support for external libraries
and modules. It supports object-oriented programming and provides optional
typing functionality. It works on all major operating systems and is sometimes
automatically included in Linux distributions such as Debian and Ubuntu. Also,
several dialects exist that can be run on compatible microcontrollers. Known
downsides of Python are its lacking speed (which was ignored in this project) and
the non-existing type safety (which was counteracted by using type annotations
throughout the project).

• pip: Pip [25] is the package manager of Python that can be used to download
and install external modules and packages.

• PyCharm Professional: PyCharm [26] is an Integrated Developing Environment
(IDE) by JetBrains. For this project, the professional version was used with a
student license.

21

4 Model Implementation

• VSCodium: VSCodium [27] is an IDE supporting several programming languages.
It is forked from Microsoft’s Visual Studio Code, removing tracking functionality.

• diagrams.net client: The diagrams.net client [28] is the offline version of the
web service, allowing one to create and export a wide variety of different diagrams.
It was used for the creation of diagrams supporting the development process, as
well as the diagrams used in this work. Diagrams.net is also known as draw.io.

• mypy: Mypy [29] is a type checking software for Python, compatible with the
typing annotations used in this project.

• DB Browser for SQLite: DB Browser for SQLite [30] is a cross-platform,
open-source manipulation tool for sqlite databases with a Graphical User Interface
(GUI).

• Wireshark: Wireshark [31] is a powerful network analyzer that has been used to
verify and debug the communication of the model implementation.

4.2.4 Used Technology Standards

The following technology standards have been used in the project:

• AES: The Advanced Encryption Standard (AES) is a definition of a symmetrical
block cipher encryption that can be used with several key lengths and modes of
operation. It is the successor of the Data Encryption Standard (DES) as well
as its variant Triple DES (3DES). The most common key lengths for AES are
128 and 256 bit. The latter will be used for this project. For file encryption,
the CBC mode of AES will be used. For the client-server-communication, the
Galois/Counter mode will be used, additionally wrapped by a layer of asymmetric
certificate encryption.

• RSA: Rivest-Shamir-Adleman (RSA) is an asymmetric encryption algorithm
named after its founders Ron Rivest, Adi Shamir, and Leonard Adleman, who
proposed it in 1978 [32]. It is one of the most widely used asymmetric encryption
systems today and can be used with several key lengths. While other key lengths
are possible, the most common ones are 1024, 2048, and 4096 bits. Its security is
based on the principle that it is relatively easy for a computer to multiply large
(prime) numbers, but it is not easy to reconstruct them from their multiplication
result. Nowadays, this premise is under attack by new approaches to factorize
numbers efficiently (see section 5.5.1). However, as of now, RSA is considered safe
and runs on many different device types.

22

4.2 Implementation Process

• HTTP: Hypertext Transfer Protocol (HTTP) is the most widely used protocol for
data exchange in the world wide web and is used in the model implementation for
the client-server communication. It is extended by Hypertext Transfer Protocol
Secure (HTTPS), a wrapper around HTTP that extends its encryption with
SSL/TLS certificates. However, this is not used in the model implementation.
Furthermore, HTTP supports a basic authentication scheme with username and
password [33] which in the model implementation is used to authenticate users at
the server.

• JSON: JavaScript Object Notation (JSON) is a data notation format which is
sometimes seen as a successor of Extensible Markup Language (XML) in the web
context. It is faster than XML [34] and supported in HTTP-requests for data
exchange. However, its main feature is that data objects can be easily represented
in a JSON format, allowing to easily export and import data objects in several
languages.

• JWT: JSON Web Token (JWT) is a standard defining web tokens that can be
used for authentication and authorization of clients on a server. It is defined in
rfc7519 [35] and implemented in libraries across several programming languages [36].
JWTs are generated and signed by a server, based on an internal private key. The
payload can not be modified by the user without breaking the integrity of the
signature. When used, JWTs are sent with HTTP-requests to ensure the user’s
identity and carry additional information that can be verified by the server, using
a range of different signing functions.

• Argon2: Argon2 is a modern password hashing algorithm that is recommended
since it won the Password Hashing Competition, running from 2013 to 2015 [37,38].

• SHA 256/512: General-purpose hash algorithms of the Secure Hash Algorithm
(SHA) family are defined in the Secure Hashing Standard (SHS) FIPS 180-4 [39].
While SHA-1 and its predecessor MD5 should no longer be used [40], other hash
algorithms like SHA-512 and SHA-3 are recommended. The model implementation
uses several SHA-family algorithms like SHA-256 and SHA-512 for general-purpose
hashing; passwords are hashed with Argon2 instead.

4.2.5 External Libraries

The following external libraries have been used in the project:

• Flask: Flask [41] is a Python library for the creation of (mainly RESTful) web
servers and APIs. In this project, it is used as the base for the server application.

23

4 Model Implementation

The server itself is a Flask application, using the database package in object
format. Flask natively uses decorated functions for its route definitions.

• requests: Requests [42] is a Python library for sending HTTP-requests. The
client configuration file handler module binds the required requests into methods
that are used by the client backend while also dealing with the authentication
with web tokens, respectively credentials.

• Python-RSA: Python-RSA is a pure Python implementation of the RSA algo-
rithm [43] that is used to provide cryptographical functionality to the certificates,
including generation, encryption, decryption, signing, and verification.

• pyAesCrypt: PyAesCrypt [44] is a pure Python module that encrypts and
decrypts data with AES (256) in CBC mode. The resulting cipher texts are
compatible with the AES Crypt file format [44]. In the model implementation,
PyAesCrypt is used for the content encryption of files.

• PyCryptodome: PyCryptodome [45] is a Python package for several crypto-
graphic purposes. It includes several AES modes, Elliptic Curve Cryptography
(ECC), hashing algorithms, and cryptographically safe random number generators
(CSPRNGs). In the model implementation, it is used to encrypt and decrypt
request data with AES GCM.

• argon2-cffi: Argon2-cffi [46] is a Python library that implements Argon2, the
used password hashing algorithm on the server side.

• PyJWT: PyJWT [47] is a Python module that supports the generation and
verification of JSON Web Token (JWT), used for user authentication after the
initial authentication with credentials.

• psutil: Psutil [48] is a Python module for operating on operating system (OS)
processes. In the model implementation, it is used to determine the number of
threads the system CPU has, which is used for optimized RSA key generation.

• universal-startfile: The module universal-startfile [49] implements the func-
tionality of the os.startfile command for operating systems other than Windows
(Windows is supported as well). It is used to ensure cross-platform compatibility
in the generic file handler.

4.2.6 Notable Python Features

Python is a programming language with some remarkable syntactical shortcuts and
features. Two of them are particularly worth mentioning as they provide an easier

24

4.2 Implementation Process

understanding of how the project code works.
Context Managers help to ensure that when a certain context is left, post conditions
are fulfilled. The most commonly used case is the open context manager, which
guarantees that an opened file is closed, even if an error (inside the context) occurs:

1 with open("test.txt", "w") as opened_file:

2 opened_file.write("content")

3 raise Exception("artificially raised exception")

4 # the file is properly closed after the context, despite the exception

A custom context manager is defined in the server database handler. It ensures the
database file is in a usable state, even when a database error occurs. A code example
for the usage is:

1 def retrieve_id_from_name(self, name: str) -> str:

2 assert name

3 result: str

4 with DBCursor(self.database_file) as cursor:

5 cursor.execute(f"SELECT id FROM entities WHERE name=?", (name,))

6 result = cursor.fetchone()

7 return result[0] if result is not None else ""

Decorators are the second Python feature that proved to be especially useful in
the project and are commonly used by Flask [41]. They are based on the principal
that in Python, functions, methods, and lambda expressions are all objects of the
type callable. As such, they can be passed on as parameters. Decorators can make
use of this concept by treating a function as an object and extending (or otherwise
modifying) its functionality. The most notable usage of decorators in the project is
the “needs authentication”-decorator for server routes. The simplified implementation is:

1 def needs_authentication(function: Callable):

2 def wrapper(*args, **kwargs):

3 try:

4 user_id = verify_user_id(request.headers) # pseudo function

5 except Exception:

6 abort(403) # "forbidden"

7 try:

8 return function(user_id, *args, **kwargs)

9 except Exception:

10 abort(500) # "internal server error"

11 return wrapper

25

4 Model Implementation

If the user is authenticated, the verified user ID is provided to the function as an
additional parameter as seen in this example of a server route:

1 @app.get("/profile", endpoint=generate_endpoint())

2 @needs_authentication

3 def send_userid(user_id: str):

4 return respond(f"You are authenticated as {user_id}", user_id)

In early versions of the project, decorators were also used for debugging functionality
(runtime measurement, function stack tracking). In the project, they are mainly used
for exception management and the server routing functions.

4.3 Result

4.3.1 Structure

The file structure of the project is outlined in figure 4.1. The main components of the
project are Python packages (white), Python applications (black), Python packages used

Figure 4.1: File overview of the SDFA prototype implementation project.

26

4.3 Result

by both the client and the server (purple), installation files (blue), and development-
supporting scripts (yellow). The components of the projects are roughly discussed in
the bullet points below; the full Python code as well as the installation files and the
burn scripts can be found in the appendix.

• Client CLI: The client Command Line Interface (CLI) is an interactive frontend
prototype application, enabling the user to use the client to perform operations
on files. These files can be both plain or protected.

• Client Backend: The client backend bundles all functionality of the SDFA client
in a class that can be used by various backends. It is also able to perform the
client bootstrapping process, generating a client certificate, authenticating at the
server, and creating all necessary configuration files for operation.

• Client Config File Handler: The client configuration file handler file provides
a class to the backend that is used to handle the credentials and necessary
configuration data of the client. This includes their generation when the client is
being bootstrapped, but also the retrieval during normal operation.

• Client Container File: The client container file provides the definition of client
container files, which is crucial to the SDFA client functionality. The definitions
include the loading, generation, encryption, and decryption of container files
while checking preconditions and removing original plain files after protecting a
container.

• Client Certificates: The client certificate file uses the certificate package to
define server and client certificate functionality on the client side. While treating
the own certificate as full certificate with full cryptographic functionality, the
server certificate is treated as a public certificate with limited functionality due to
the unknown private key.

• Client Server Handler: The client server handler file provides a class for the
client backend that is able to communicate with the server. The main abilities of
the client server handler lie in its ability to send authenticated requests, either
using an existing JWT or obtaining one with authentication credentials.

• File Handler Factory: The file handler factory file contains a class that selects
the correct file handler based on a given container. It uses all available definitions
of file handlers.

• File Handler: The file handler file provides an abstract definition of a file
handler. File handlers are responsible for providing file-driven operations (view,
edit) to the user for the file type of the original file in a container.

27

4 Model Implementation

• File Handler Generic: The file handler generic file provides a default implemen-
tation of a file handler for all unknown file types. It uses the standard programs of
the operating system as well as the super class’ functionality to create unencrypted
temporary files for consumption and editing. However, this proposes an additional
security risk as mentioned in section 4.5.7.

• File Handler Text: The file handler text file provides an example for a specific
file handler for utf-8-compatible files. Editing a file is supported by the usage of a
GUI text editor while viewing the file results in a simple console output.

• Text Editor: A Tkinter-based text editor for text-like files (of which the content
is utf-8 compatible). The editor is roughly based on a forum post by martineau
and wolf [50].

• Server App: The server app is the main server application, bundling and
providing all functionality of the SDFA server. The first time it is called (or after
a reset), it also performs the server bootstrapping process, generating a server
certificate, a database with a standard admin, and all necessary configuration for
operation.

• Server Database: The server database file contains classes that provide the
server with database functionality. The most important class is the database
handler class. The model implementation uses sqlite for a simple database file in
which all permanent operational data are stored.

• Server Certificates: The server certificate file uses the certificate package to
define server and client certificate functionality on the server side. While treating
its certificate as full certificate with full cryptographic functionality, the client
certificates are treated as a public (half) certificates with limited functionality due
to the unknown private key.

• Package Data Conversion: The data conversion package is responsible for
converting different data formats into each other throughout the project as well
as a function with decorating capabilities to deep-copy data objects. The string
formats supported are base64, hexadecimal bytes, JSON, and utf-8. Furthermore,
plain bytes and dictionaries are supported.

• Package Cryptography: The cryptography package bundles all cryptographic
operations used in the project into classes. The most important definition is the
one of cryptosystems, which is inherited and extended by the different encryption
and decryption methods, namely AES (CBC and GCM) and RSA.

28

4.3 Result

• Package Certificates: The license package provides the class definitions for
full and half certificates. The “full” and “half” name refers to the cryptographic
abilities; while a half certificate is only able to perform operations with a given
public key, the full certificate can also perform operations with the private key.
Both types of certificates are further implemented in the client and server certificate
files.

• Package Licenses: The license package provides important classes for both
client and server. The classes include the definition of permission objects, rights
objects, Posting License (PL) objects, and a static permission merger.

• Package Debugging: The debugging package is used for debugging purposes
during development. It provides functionality in the form of function decorators
that provide information about the function call.

• Static Code Check: The static code script uses mypy to perform a static code
analysis of the project, which can help identify bugs and type inconsistencies
during development. It is not OS-independent.

• Burn: The scripts starting with the prefix “burn” remove all configuration files
and data associated to the client and or the server being bootstrapped on the
current system. Therefore, they can be used to “start over” the bootstrapping
processes; it could be said that the scripts “unbootstrap” the project. Unlike the
Python program(s) and text file(s), these scripts are no longer OS-independent.
The “burn”-scripts are provided in the appendix.

• Start: The scripts starting with the prefix “start” generate a process of one
or more applications of the project and are used for development. They might
include additional features by calling one of the burn scripts. Unlike the Python
program(s) and text file, these scripts are no longer OS-independent.

• Requirements: The requirements file is a pip-compatible text file listing all
external requirements that need to be installed in order to run the model SDFA
prototype. While there is no distinction between client and server requirements,
comments are used to describe the purpose of each requirement. The requirements
file is provided in the appendix.

4.3.2 Program Overview

An abstract overview of the provided SDFA system’s steps to prepare both server
and client for operation (bootstrapping), to protect files, and access protected files is
provided with figure 4.2. The general steps are as follows:

29

4 Model Implementation

1. Server Bootstrapping: The server creates or loads the database (see figure 4.6)
and the Server Certificate (SCert) (see figure 4.9).

2. Client Bootstrapping: The client creates or loads the User Certificate (UCert)
(see figure 4.9), authenticates at the server, fetches the public part of the SCert,
and registers the new UCert at the server.

3. Protection: The client loads an existing file. If the file is not a container,
internally, a container of status 3 is created (see figure 4.4). The client then verifies
that the user has the right to protect the file. If that is the case, the Posting
License (PL) is compiled, signed with the UCert, and encrypted with the SCert.

4. File Access: The client extracts the encrypted PL from the container, encrypt it,
and sends it to the server. The server decrypts and verifies the PL. After that,
the server evaluates the rights and compiles a List of Rights (LoR) that concerns
the user. If the user has any rights, the content key is added. If the user has the
rights to change the protection of the file, the unencrypted PL is added. After
selecting the right UCert (using user and device information), the server responds
with the respective rights. The client then interprets the response and applies
the rights and restrictions to the file, allowing or disallowing the file specific user
operations. These can be view, edit, protect, or decrypt.

Figure 4.2: Overview of the necessary steps of the bootstrapping process, protecting
containers, and accessing them.

30

4.3 Result

4.3.3 Program Flow

First of all, the server must be started. Upon first launch, the server generates a dummy
database with two test users and a few example groups, representing sensitivity classes.
Furthermore, the server certificate is generated and saved. After that, the HTTP-server
itself is launched on the local machine (localhost) on port 11235. Subsequently, the client
can be initialized by running the CLI on a machine for the first time, generating and
registering the client certificate at the server. This only works if the user already exists
on the server and can authenticate with valid credentials (user name and password).
By default, the client is set to run on the same machine as the server. However, the
server location can be defined by changing the standard configuration in the client
configuration file handler, respectively the server location in the client configuration file.
Also, to try out several users, the project main folder (in its uninitialized state) can be
copied and bootstrapped separately to simulate several users.
After bootstrapping, the CLI can be used by calling it with the parameter of the file
that should be operated on. The client determines the protection level of the file, fetches
information about the current users and groups from the server, and provides a list of
supported commands to the user (see figure 4.3), including the main commands info,
help, protect, decrypt, and exit as well as further commands enabled by local or server
permissions and executed by the respective file handler (view and edit). The command
protect opens up a sub-menu that allows the generation or modification of the Posting
License which contains all user and group rights on the file.
With this set of operations available, users known to the server can register on devices

Figure 4.3: Screenshot of the commands available in the provided command line inter-
face client.

31

4 Model Implementation

and protect files. The client certificates are local, but files created on different devices
can be accessed nevertheless as the verification step is executed by the server (who
knows all active public user certificates) and the body key is encrypted with the
respective user certificate during transmission. Launch instructions for testing the
model implementation are provided in section 4.3.8.

4.3.4 File States

The file format with which SDFA protection can be achieved is called container. A
container file has the extension “.container” in addition to its original file extension and
contains both the body of the file as well as the Posting License (PL), owner ID (no
effect on rights as of now), container version number, and the original file location. The
state of encryption for the body and the PL determines the file’s inner state, shown in
figure 4.4. State 1 represents a plain (non-container) file, state 2 is a container file with
unencrypted body and PL, state 3 represents a container with an encrypted body but a
plain PL, and state 4 is a fully protected container with encrypted body and encrypted
PL. The states 3 and 4 are the only desirable ones, so status 1 files are converted into
status 3 files internally. When a file is saved on the disk, it is either dumped into status
1 (unprotected plain file) or exported as status 4 (protected container). Status 5 and
further could be reserved for future container versions supporting extended features,

Figure 4.4: State machine diagram of the internal file states.

32

4.3 Result

such as a protection with several keys for preview thumbnails. However, this is not yet
included in the prototype implementation.

4.3.5 Communication

The project consists of a client-server structure. The server is a HTTP-server imple-
mented with Flask [41]. Since Flask works mainly with decorators and doesn’t naturally
support server classes, the project’s object orientation is lifted for the server application.
However, in the project context, the server application can be seen as a static class with
a static main method, using objects from other modules during runtime. While this
is not consistent for all requests and responses exchanged between client and server, a
double-encryption scheme is used to encrypt requests and responses concerned with the
evaluation of PLs, respectively granted access rights (see figure 4.5) and represents layer
2 in the overall encryption strategy (see figure 4.7).

ksymmetric | randomly generated
c1 = EAES(m, ksymmetric)

c2 = ERSA(ksymmetric, kcertificate_public_key)
c = (c1, c2)

Figure 4.5: Diagram of the double-encryption scheme used to encrypt the requests and
responses concerned with the evaluation of Posting Licenses.

33

4 Model Implementation

On the receiving end, the double-decryption can be performed as follows:

c1, c2 = c

ksymmetric = DRSA(c2, kcertificate_private_key)
m = DAES(c1, ksymmetric)

In general, this double encryption strategy allows it to encrypt plaintexts (indirectly)
using an RSA certificate, but avoiding the maximum plaintext length. This is done
by adding a layer of symmetric (AES) encryption and only encrypting the randomly
generated symmetric key with an asymmetric (RSA) cipher.

4.3.6 Server Database

The server database is implemented using Python’s native sqlite library. The structure
of the database follows a simple approach with three tables (see figure 4.6), treating
both users and groups as entities, defining group membership with a separate table,
and storing the public part of user certificates in the third. While this is not part of the
database, the identification of both groups and users that can have rights in the SDFA
environment is defined with the randomly chosen entity ID stored in the entities table.
Subsequently, a List of Rights (LoR) that is received by the user contains the entity ID
of the authorized user or group and the respective access rights.

4.3.7 Encryption Layers

The project implements several layers of encryption, best shown with the client’s main
asset, the Posting License (PL) (the equivalent to a Publishing License in Microsoft
RMS). The encryption layers of a PL are shown in figure 4.7. The first and most

Figure 4.6: Database layout of the model implementation.

34

4.3 Result

Figure 4.7: Encryption layers of Posting Licenses between client and server.

important protection layer is layer 1, consisting of the SCerts PL-encryption. With the
PL decrypted, the content of the file can be retrieved (based on the encrypted body
and decrypted body key) and all security goals are endangered. While being stored on
the client’s side, the layer 1 protection is sufficient to ensure the file’s confidentiality.
However, during data transmission, additional layers are necessary to protect the security
goals regarding both the PL and the user. To ensure confidentiality and integrity, the
data are encrypted in a two-stage cryptosystem, including a random AES key that is
used to encrypt the request data in GCM and the client certificate, signing the content
and encrypting the random AES key. For authentication, Argon2 and short-lived JSON
Web Tokens are used. The authentication process is managed by the client server
handler in the background. However, especially during the authentication, the user
credentials, respectively an active JWT, are still exposed in the HTTP-request in plain
text (see figure 4.8). Therefore, it is essential to add another layer of encryption on
the communication level to protect the user’s identity from Man-in-the-Middle (MitM)
attackers. Subsequently, the usage of the latest SSL/TLS encryption version for the
communication between client and server is crucial, even though this is not implemented
in the model.

35

4 Model Implementation

Figure 4.8: Wireshark capture of a HTTP login-request, exposing the login credentials
“YWRtaW46YWRtaW4=” (admin:admin) encoded in plain base64.

4.3.8 Launch Instructions

Please note that the author explicitly rejects any claims of liability for lost
data caused by any usage of the model implementation or its code. The code
is run at your own risk! The model implementation can be run on operating systems
with Python 3 installed and added to the OS path. Furthermore, the project code and
pip are required for the installation. Moreover, the Tkinter must be installed if it is not
automatically included in the Python installation. On systems supporting the package
manager aptitude, this can be done with the command apt install python3-tk.
The first step of the installation is to put the project files in their desired program
directory. To install the required external modules, the requirements.txt file can be used
with the command pip install -r requirements.txt to batch install the required
modules. The usage of a virtual Python environment is recommended. Note that it
might be necessary to use pip3 instead of pip in the command. After that, the server
can be started by running the server app with python server_app.py. The server will
perform the bootstrapping by generating a dummy database as well as its certificate
and then start its main functionality as web API server. After that, the client CLI can
be called by using the command python <path to client_cli.py> <path to file>.
Note that the command python might change, depending on the operating system
type, installing location, and whether a virtual environment is used. The client will
bootstrap itself by generating its certificate (UCert), its configuration file (config.json),
and authenticating at the server to receive the public part of the server certificate
(SCert). However, the username and password of the user must be entered during the
bootstrapping process. The test users admin (with the password admin) and the user
jondoe (with the password password) are included in the server’s default database. After

36

4.4 Evaluation

the bootstrapping process, the client CLI will provide its main functionality, consisting
of the commands available for the file that has been provided as an argument.

4.4 Evaluation

4.4.1 Development Process Evaluation

The goals for the implementation process defined in section 4.2 have been achieved. An
unpublished prototype has been developed, providing the author with useful experience
for the main implementation regarding many aspects, such as the database layout, the
Liskov Substitution Principle (LSP) regarding the cryptosystem classes, a variant of the
Singleton pattern for the client configuration file handler, object-reference issues, and the
usage of decorators. UML-like diagrams have been used throughout the development,
along with a waterfall-like approach. Static code checking has been used with mypy.
The pep-8 convention has been checked by the IDE PyCharm. Typing has been used
throughout the program. Common Python libraries have been used, such as Flask,
requests, or PyCryptoDome. The project is almost completely object-oriented with the
exception of the server application, which can be viewed as a static main class.

4.4.2 Validation

The prototype implementation has been successfully tested on Windows 10 as well as
(Linux) Ubuntu Desktop 22. The testing has confirmed that the installation process, the
bootstrapping process (for both client and server), the server operation, and the client
protection features work for the tested files. Furthermore, it has been confirmed that an
unauthorized user is not able to access a file due to client restrictions, respectively the
server’s denial to grant access with a LoR and the content key. Therefore, the prototype
can be considered functional and a working example [22] for an SDFA system.

4.4.3 Result Evaluation

The goals for the implementation outcome defined in section 4.1.2 have been achieved.
A working model implementation of a general-purpose SDFA system has been provided,
along with structural resources that might help programmers of future SDFA systems
to plan and implement their projects. The provided implementation can be considered
easily-understandable and is extendable in several ways. Potential ideas for further
development are (more) type-specific file handler implementations, an improved server
that supports CRUD-complete user management, or better frontend clients that support

37

4 Model Implementation

a larger number of features like a Graphical User Interface (GUI) or predefined sensitivity
classes. However, the model implementation can be used to explain the basic strengths
and weaknesses of SDFA systems. The implementation provides the file operations
view, edit, protect, and decrypt for all file types. It is once more important to note that
while this is intended, the model implementation should not be used to actually protect
sensitive data, as each safety and security of the implementation lack in many major
regards.

4.5 Comparison With Microsoft RMS

4.5.1 Context

While the Microsoft RMS applications and plugins aim to provide production-ready,
large-scale enterprise solutions, the provided implementation aims at being an easily-
understandable model which is specifically not intended for production use. While
Microsoft RMS and all related services are developed and maintained by Microsoft as
one of the largest technology companies in the world, the provided model was developed
in a relatively short amount of time, with different intentions in mind, and (apart from
the used external libraries and the cited code references) developed by only one person.
This is the context in which all of the following comparisons have to be seen.

4.5.2 File Support

With RMS, Microsoft primarily aims to support its own native family of office files.
Therefore, naturally, the support for Microsoft Word, Microsoft PowerPoint, Microsoft
Excel, and other Microsoft files has priority. Several other file formats are supported as
well as some types of data assets. However, some file formats are also explicitly excluded
from being supported by RMS.
On the other hand, the provided model implementation has some focus on specific file
types (like utf-8-compatible text-like files) with the file handler class structure, but it
is generally compatible with all file types. Also, files that end with the file extension
“.container” are interpreted as protected container files and therefore cannot be protected
again without changing the file extension.

4.5.3 Features

Compared to Microsoft RMS, the provided model implementation has a greatly reduced
feature set. While viewing, editing, protecting, and decrypting functions are provided

38

4.5 Comparison With Microsoft RMS

in both approaches, Microsoft RMS supports a larger range of permissions with finer
granularity [51]. These range from the general ability to copy content from an opened
file to very specific permissions, describing who can forward a protected email. More
notably, data classification is supported by having predefined labels with associated
protection functionality. Furthermore, in Microsoft RMS, more features are supported
concerning the nature of the file use licenses (such as access expiration or temporary
local licenses).

4.5.4 Scale

Azure RMS is part of the Microsoft Software-as-a-Service (SaaS) ecosystem that spans
many services in different domains. It is run on data centers in many different countries
while many local instances of AD and AD RMS exist. The scale and scope of Microsoft’s
RMS approach is almost not comparable to the provided model implementation. While
a largely improved version of the model implementation could, in theory, be used by a
small group of private users, it is most likely not capable to be a commercial product
on its own due to a number of different factors, including but not limited to the choice
of programming language, security issues, and lack of user-friendliness.

4.5.5 Performance

While the author conducted no speed comparison of RMS services and the model
implementation, the latter has no ambitions to be a fast or seamless application. Python
is commonly known as a relatively slow programming language, which is the price for
dynamic typing, being interpreted, and other amenities. While Python might not be
the best choice for a productive SDFA system implementation, it is known to be a good
choice for explaining all kinds of concepts and algorithms, which is much closer to the
goal of the model implementation.

4.5.6 Safety

While the provided model implementation follows some basic good practices regarding
safety, the model implementation in its current state is not safe to use for any data
that is not backed up. The author explicitly rejects any claims of liability for lost data
caused by the usage of the model implementation; the project code is used at own risk.

39

4 Model Implementation

4.5.7 Security

While the provided model implementation follows some basic good practices regarding
security (like the usage of injection-safe SQL statements), the model implementation
cannot be considered secure for many reasons. To name only a few:

• The model implementation was never intended to be used in a productive environ-
ment. The main abstract reason for the general insecurity of the implementation is
that simplicity and readability have been chosen over security on many occasions.
One outstanding example for the simplified approach followed by the model imple-
mentation compared to Microsoft RMS is the license structure as demonstrated
in figure 4.9. While the simplified version of the model implementation provides a
better understanding, in a real-world implementation, a finer and PKI-compatible
certificate structure is highly recommended.

• The model implementation has been developed by a single author over the course
of a few weeks. It has not been reviewed by other people.

• During development, no strategies have been followed to make the implementation
safe or secure in a provable matter.

• Several external libraries are used that - if compromised - would also undermine
the safety of the model implementation (inherited vulnerabilities).

• The author is not qualified to professionally assess the security of cryptographic
systems or code implementations, including the implementation and usage of the
libraries used in the project.

• As pointed out by the PyAesCrypt documentation, “there is no low-level memory
management in Python, hence it is not possible to wipe memory areas were
sensitive information was stored” [44].

• Unlike Microsoft RMS or other ERP solutions, the model implementation does
not provide the usage of advanced authentication methods like the one offered
by an AD environment, but only provides a relatively unsafe authentication with
HTTP (and short-lived JSON Web Tokens).

• Some security issues of the existing state of the implementation are known to the
author, such as:

– the openly exposed client configuration file which contains unencrypted user
credentials

– the potentially unsafe usage of binary files for object storage

40

4.5 Comparison With Microsoft RMS

– the unencrypted transmission of the user credentials with login requests

– the unencrypted transmission of the user ID and the device ID in requests
(no level 2 protection)

– the unencrypted temporary files created by the provided generic file handler

41

4 Model Implementation

Figure 4.9: Comparison of the used certificates and licenses in the provided model
implementation and Microsoft (Azure) RMS; based on Goldbergs’ article on Azure RMS
functionality [20].

42

5 Threat Scenarios

5.1 Specific SDFA Security Concepts

5.1.1 All-Or-Nothing Protection

One of the most remarkable conceptual weaknesses of SDFA systems derives from the
concept of all-or-nothing protection. In the context of DLP, it is assumed that an
organization has to deal with internal attackers who have access to sensitive resources.
The protection against these attackers is an important goal of information security.
However, on a conceptual level, an attacker can freely choose what to do with all
information available. For the concept of SDFA systems, if a client has the (means to
obtain the) body key of a file, there is nothing stopping an internal attacker from using
this key to act on the protected assets in a malicious way, and therefore ignoring existing
restrictions. Apart from the client’s implementation, further technical restrictions an
organization might have in place and the good will of people entrusted with sensitive
assets, there is nothing that stops an internal attacker from a privilege escalation by
abusing an obtained content key. In the current SDFA approaches (including the model
implementation presented, but also Microsoft RMS), the only real way to stop a yet
unidentified internal attacker from performing this kind of privilege escalation is to deny
all access. This means that no local access exists and the SDFA server refuses to provide
the client with the content key. To put the situation in a nutshell on a conceptual level,
the attacker either has any permission, resulting in a potential content key abuse and
all permissions during an attack, or no permissions, which results in the attacker not
having the means to perform a privilege escalation. This binary concept is defined as
all-or-nothing protection [2].

5.1.2 Service Entity Division

The security of an SDFA system hugely depends on the strict separation of the protected
assets and the means to access them. The SDFA server provides the unlocking mechanism,
turning the protecting metadata of an asset into the means to unlock the asset itself. The
server can also decide to instantly revoke or deny any future access rights (for reasons

43

5 Threat Scenarios

determined by the server), respectively the party controlling it. However, combining
control over both the asset and the ability to operate on it results in immediate loss
of all protective features provided by the SDFA system. While the availability can be
disturbed more easily, all CIA and related security goals collapse immediately, as the
entity controlling both asset and access can freely view and manipulate the content and
access rights of the asset. Therefore, it is crucial that the SDFA service and any kind
of hosting service are separated and are not combined in one entity (that could turn
malicious). While Microsoft promises to strictly separate the domains of file hosting
and SDFA functionality (RMS), there is no guarantee that in a no-trust scenario, an
entity or organization, combining both asset and access, could not turn malicious and
instantly overcome all security goals of an organization, leading to a devastating security
breach. Therefore, for the security of SDFA systems, it is crucial to achieve an absolute
separation of SDFA and hosting services. Therefore, the provided definition of SDFA
systems includes that the server never obtains the file’s content (see section 3.2).

5.2 External Attacks

5.2.1 Denial of Service

Denial of Service (DoS) attacks are attacks against the availability of a system, which is
mostly a server. A classic approach to DoS attacks is to flood a server with more requests
than the server can process, which leads to the unavailability of the server to users who
send legitimate requests with a legitimate interest for the service. While in most cases,
single attacking devices have to be significantly more powerful than the server to make
a DoS attack succeed, there are a few strategies that can increase the chance of success.
One of those strategies is to use a great number of clients instead of a single one that all
attack one target at the same time, increasing incoming data traffic for the target and
the chance of success. This is called a distributed denial of service Distributed Denial
of Service (DDoS) attack. Modern DDoS attacks use botnets with a Command and
Control (C&C) server to attack targets with huge amounts of data. However, other
techniques can further increase the amount of data that is directed at a target, such as
DNS-amplification attacks. While DoS attacks do not endanger the existence of assets,
they can deny the access (and therefore affect the availability) temporarily. While being
a very simple attack, it can have major consequences for the entity using an SDFA
system. If a company for instance decides to protect critical assets with an SDFA system,
the temporary unavailability caused by a DoS attack can greatly impair the entire
workflow of the respective organization. It is not unrealistic that well-timed DoS attacks
on the SDFA system can cause significant interruptions that disable the organization’s
functionality. That way, an attacker could cause great financial or reputational damage

44

5.2 External Attacks

to a company or government entity. From the defending perspective, one good aspect of
DoS attacks is that they are well-known, relatively simple, and not limited to a certain
kind of systems. Therefore, many systems, strategies, and providers exist to detect and
prevent DDoS attacks, such as the Cloudflare DDoS protection service or just a physical
firewall that implements an IP-address based DDoS detection.

5.2.2 Man-In-The-Middle

Man-in-the-Middle (MitM) attacks target the communication between two parties and
can affect all CIA goals. For a MitM attack, the attacker convinces both parties that the
attacker is their communication partner. That way, the attacker can read and potentially
manipulate all traffic between the legitimate communication partners. MitM attacks can
be passive or active. During a passive attack, the attacker listens to a communication
between two parties without manipulating it, in which case the confidentiality of the
communication is endangered. During an active attack, the attacker also manipulated
the communication, endangering availability and integrity as well. Often, MitM attacks
start out passively and then turn into active attacks in a second step. MitM attacks
propose a number of different threats to SDFA systems. Assuming that a passive MitM
attack is running, the following assets are endangered:

• User Credentials: Depending on the used encryption, the confidentiality of
the communication can be attacked. Assuming that for instance user credentials
are only protected by a layer of SSL/TLS encryption, the user credentials can
be extracted if this layer of encryption is stripped. In the case of the model
implementation, SSL/TLS encryption is not used at all, for which the credentials
are directly exposed (see figure 4.8). This is also true for temporary access tokens,
such as the issues JWTs, allowing the attacker to impersonate the client at least
temporarily.

• Program Flow Information: By observing the request-response exchange
between a client and a server, the attacker can gain information about how
access is requested and granted regarding a file. The attacker can derive different
information from the attributes of these messages, such as the lifetime of tokens,
the complexity of the rights associated with the requested source, or standard
denial messages. All of this might be useful information for further attacks.
Furthermore, if the attacker manages to observe the bootstrapping process, the
attacker could try to mimic this process in a further attack stage to register a
malicious client device.

• Usage Metadata: By observing the traffic, a MitM attacker might gain valuable
information about the usage of the SDFA service, even when cryptographic attacks

45

5 Threat Scenarios

are not attempted or successful. Among a plethora of other information about the
user, such as working hours, habits, and estimated importance, also information
about the server is revealed, such as response times, exact routes for different
services, token expiration time, and the general program flow. This can propose
valuable information for further attacks, including but not limited to active MitM
approaches.

Assuming that an active MitM attack is in progress, the following assets are endangered
in addition:

• Service Availability: With an active MitM attack, the attacker can actively stall
the communication between the client and the server, in one or both directions.

• Server Integrity: Apart from just denying communication, an attacker could also
redirect the traffic to an internal or external malicious server. With a malicious
SDFA server (or a dummy) in place, the attacker could obtain a wide variety of
information, such as the user’s credentials, the files that are about to be accessed.
Depending on the information known to the attacker, the malicious server could
perfectly mimic the actions of the legitimate server and therefore be used, giving
the attacker the sole control over the files “protected.” This would for instance
allow the attacker to have exclusive access to the allegedly protected files and for
instance ask for a ransom to decrypt the files with the malicious server certificate.

• User Integrity: While the attacker can pretend to be the server for the user,
the attacker can also pretend to be the user for the server. Depending on the
level of encryption used and available to the attacker, the attacker could pretend
to register a new device for the user at the server and therefore gain theoretical
access rights to all protected documents. However, to make use of this right, the
attacker would also have to obtain a copy of the protected file, for instance by
capturing an email containing the file or by extracting it from a file upload to
a cloud service. While this is not a part of the level of Posting Licenses, the
attacker can cause a much greater amount of damage if the user credentials are
also obtained. The most devastating consequences would arise when the same user
login state was also used for services able to obtain the encrypted file, such as a
related cloud service. In this case, the attacker could use the obtained credentials
(user name and password or a temporary token) to log into the cloud service and
obtain the required copy, which the attacker could unlock subsequently with the
stolen SDFA identity.

• Rights: While PLs and the rights are encrypted with at least one layer of
asymmetric encryption (see figure 4.7) including integrity verification, the data
in motion could theoretically be modified by an attacker. Most likely, this would

46

5.3 Internal Attacks

lead back to a service interruption as both server and client would have to verify
the integrity and authenticity of each other’s message using their public certificate.
However, if for instance the MitM attacker managed to inject his own malicious
certificate into the communication or break one of the real ones, the rights over
a file could also be manipulated more subtly (in both directions), depending on
which certificate was compromised.

It is important to note that through the sole usage of an SDFA system, the file content
is not endangered or exposed by a MitM attack at any point in time.

5.2.3 Cryptographic Attacks

The cryptographic methods used in the model implementation, namely RSA, AES,
SHA-256, and Argon2 are all considered safe at this point in time. However, there
are many potential attack vectors that arise from the usage of cryptosytems. While
attacking a cryptosystem, every known piece of information can be useful to the
attacker. One example is the padding oracle attack in which the sole (side-channel)
information of whether a certain ciphertext has valid padding (or not) is enough to
break the entire encryption efficiently [52]. A different example are known-plaintext
attacks where knowledge over the corresponding plaintext of a given ciphertext can be
used to reconstruct its encryption and decryption process. A third example includes
timing attacks, where a bad implementation of the cryptosystem can result in usable
information about the key by measuring the time for a series of decryption attempts.
Other attack types concern not the encryption, but the hashing process. A primary
attribute of a safe hash function is that no collisions can be created. When collisions
can be found or even crafted, the integrity and authenticity of hashes and signatures
are severely endangered. This can lead to identity theft, integrity breaches for protected
data, or the general collapse of non-repudiation, which is hard to detect and highly
relevant in forensic contexts.

5.3 Internal Attacks

5.3.1 Ripping Attack

Ripping is the process of circumventing existing protections by viewing and recording a
protected piece of media [2]. Classically, ripping refers to programs on a system that
“rip” the contents of storage device like DVDs. However, for the scope of this paper,
ripping attacks also include the usage of external devices to create unauthorized copies of
protected documents. The most obvious and intuitive way to breach the confidentiality

47

5 Threat Scenarios

of a protected document is to access (view) a document with minimal rights and then
“rip” its content. This is probably the most effective attack against the confidentiality
of SDFA-protected assets and a good example of the all-or-nothing protection principle.

5.3.2 Memory Dumping Attacks

When a program is executed, the necessary data must be loaded into the main memory,
also referred to as Random Access Memory (RAM). When a program loads a file from
a hard drive to process its contents for instance, the program reads the data from the
hard drive (respectively the API provided by the OS) and stores the contents into
the main memory where it can be accessed by the program itself. This is a crucial
point when discussing the security of protected content in several ways. At some point,
data that must be processed or even presented in an unencrypted format must be
decrypted. When a user has access to an encrypted file stored on a hard drive and
wants to view the file, somewhere in between the hard drive and the displaying device,
the file must be decrypted. The same is true for any other operation requiring the
data in a plain format, such as editing or re-encrypting. In most cases, this results in
the data being decrypted in the main memory. Therefore, it is likely to find a fully
unencrypted version of a file in the main memory. While main memory is volatile and
therefore automatically deleted when the device loses power, for the time of using the
data, the data are stored in the main memory in an unencrypted format. If an attacker
(both internal or external) obtains a snapshot of the current main memory contents, the
unencrypted data can be extracted and stripped from their protection. This proposes a
major threat to any protected data, yet is a very common problem. In 2020, Ján Mojžiš
and Štefan Balogh demonstrated that the SDFA client Microsoft Azure Information
Protection Viewer, a program used to view content protected with Azure Information
Protection, was prone to such attacks [1]. While suggesting several methods to obfuscate
the unencrypted file content in the main memory (like hiding file headers), they noted
that it was “disturbing [...] how easy such an attack can be realized” and that they
“cannot give a final recommendation as to how to avoid such an attack” [1]. However,
the potential consequences of memory attacks can reach even further. To use encryption
and decryption functionality of the used certificates for instance, the necessary keys
must also be loaded into the main memory. Subsequently, when obtaining a memory
dump, not only the contents of an opened file could be exposed, but also the secret
keys used to protect and access content. One of the examples mentioned by Mojžiš is
the extraction of TrueCrypt keys while the encrypted container files are mounted [53].
Transferring the same concept to SDFA systems, the user certificate’s private key and
other secret information crucial to the user can be exposed in memory dumps. When a
user’s certificate secrets are obtained by an attacker, this results in a complete loss of

48

5.3 Internal Attacks

confidentiality and authenticity for the user, as the attacker can most likely imitate the
user perfectly.

5.3.3 Malicious Client

When a user is granted rights over a file, the SDFA server sends the body decryption
key to the client. It is the SDFA client’s responsibility to interpret the rights granted
and allow or disallow certain user operations. Attempts to perform operations that are
not allowed should be left unrequited. However, from a technical point of view, the
client is not bound to realize any of the restrictions that are requested by the server.
Subsequently, even with minimum rights assigned (for instance view rights), the body
key is provided by the server either in a direct way, or by sending the unencrypted
PL for modification and re-encryption, which contains the body key. This results in a
binary (all-or-nothing) protection scheme that can be abused by the client ignoring all
intermediate states as discussed in section 5.1.1. Grothe et al. demonstrated in 2016,
that this all-or-nothing situation, arising from the client being responsible for the correct
interpretation of granted rights, can be broken for both AD RMS as well as Azure
RMS and its integration into the customer line of Microsoft 365 [2] (formally known as
Microsoft Office 365). Furthermore, they showed that not only the confidentiality can
be broken as suggested, but also the integrity of a file can be broken by manipulating
its contents in a subtle way. The only case where these kinds of malicious client attack
are not possible is when the client is not entitled to any rights regarding a file and has
no self-signed local access rights (a feature supported by RMS).

5.3.4 Malicious Server

When an attacker obtains control over a server, this proposes a major threat to the
SDFA system. By design, the service (the server and the connection to it) is a Single
Point of Failure (SPOF) as it is the only entity controlling access and rights to files
for the users. This is true even though the users technically have the file content (and
permission information) stored on their local device. By refusing service to clients, the
server can actively and effectively attack the availability of the entire system. Moreover,
this also happens when the server - for any reason - goes down or refuses services.
Possible reasons for that are human error, programming mistakes, maintenance breaks,
but also reasons that are not related to the server itself, like an interrupted internet
connection between client and server. This leads to immediate and severe problems,
especially if clients have no local temporary access rights (a feature implemented in
M365 but for instance not the model implementation). To prevent service downtime,
redundant clusters, backups, 24/7/365 support, and alternative routes can be used to

49

5 Threat Scenarios

ensure the availability of the server functionality at all times. Nevertheless, the server is
the most critical SDFA asset. The ways in which a server can impact the availability are
plenty, and can be permanent. Deleting its certificate’s private key (without backups)
results in immediate and permanent loss of access to all files that have been protected
with the SDFA system. The only way to retrieve their contents would be unprotected
backups, locally saved permissions (allowing access with the body key), or breaking
the server certificate’s RSA cryptosystem (by trying to restore the private key from
its public key with cryptoanalytic attacks). Single files could also be decrypted by
breaking the AES encryption of the body key. Breaking the RSA system would be
preferable as it would allow the decryption of all protected AES content keys, not just
a single one. However, the confidentiality and integrity of all server assets is also at risk,
which includes the user certificates, server certificates, user credentials and data, group
memberships, and log data. As an example, an attacker could easily create a user that
is used to decrypt protected data assets in further stages of the attack. The only asset
that is not directly endangered by a malicious server is the confidentiality of protected
containers unknown to the attacker and server.

5.3.5 Malicious Server With Insufficient Service Entity Division

Modern enterprises often use cloud solutions to store their data if there are economic or
other reasons not to host them on-premise. Combined solutions like Microsoft Azure
offer both storage space on remote servers and Rights Management Services. However,
not dividing these two domains clearly can propose enormous risks to the confidentiality
of the data (as discussed in section 5.1.2). While the services might be independent from
each other in theory, it is possible for a vendor of both the cloud and the SDFA service
to combine the data and have full control over the data and overthrow all security
goals of the data owner. Grothe et al. [15] presented in a 2016 paper that Microsoft
(as the vendor of Azure Rights Management Service) and Tresorit (as the vendor of
Tresorit RMS) could easily obtain full control over all data managed by their services
as malicious attackers.
To obtain full access over a file protected with an SDFA system, the only asset required
is the private key of the SDFA service. An attack breaking all goals of the CIA Triad
could follow these steps:

1. The Posting License (PL) of the file is received, encrypted with the SDFA server’s
public key.

2. The malicious SDFA server decrypts the PL, obtaining the content key. The
verification step is optional as the rights in the PL are irrelevant for the attack.
The availability can be broken by simply refusing service to the client. Also, the
integrity can be partially broken by changing the rights of the returned rights.

50

5.4 Human-Error-Based Attacks

3. The SDFA fetches the encrypted file body from the related service, such as a cloud
storage.

4. The content key is used to decrypt the body. The confidentiality is broken by
viewing or exporting the decrypted content. Moreover, the integrity can be fully
broken by manipulating the content and/or rights and arbitrarily granting or
refusing access permissions.

5.4 Human-Error-Based Attacks

5.4.1 Unintentional Misconfiguration (Availability)

When an attacker attacks a system, the weakest link is the one most commonly exploited.
Oftentimes, the weakest link in a security system is human, which results in social
engineering attacks being so effective. However, apart from intentional attacks that
include manipulating humans to act as an attacker, humans can also be unintentional
attackers by simple mistake. The following example demonstrates a scenario in which
human error results in the loss of availability on a file:

1. An employee creates a file containing the latest secrets blueprints, crucial to the
company.

2. The employee classifies the file as highly confidential and uses an SDFA system to
protect the file.

3. The employee wants the maximum security level for the file and therefore disables
all the rights for all employees and groups.

4. The SDFA system allows the employee to create a policy in which no one (including
the employee) has any rights on the file anymore.

5. The file is protected and no local license is created.

6. Subsequently, the access to the file is lost and the availability is greatly impaired.

This example shows that mistakes and the non-consideration of such scenarios by the
developer of an SDFA system can be dangerous to the availability. To retrieve the file
in the presented scenario, there has to be a way to overwrite the non-existing rights in
the policy with at least minimal rights on the server side for a specific user. However,
this option opens up another attack vector on the option of granting more rights than
defined in the Posting License, respectively the user with these special privileges.

51

5 Threat Scenarios

5.4.2 Unintentional Data Leaks

However, not only the availability can be impaired by unintentional (or intentional)
misconfiguration. One of the major threats SDFA systems are supposed to prevent are
mistakes that threaten the confidentiality. Correctly classified and configured documents
can - in theory - be distributed to unauthorized users, and these users will not be able to
access the file. This can especially be tempting in a scenario where shared directories are
used. However, combining access and an incomplete or falsely configured configuration
can have severe consequences for the confidentiality of documents. The severity of this
increases with further attacks that can be performed with minimal rights (as discussed
in section 5.3.3). Another dangerous situation arises from the false assumption that a
file is already protected according to its classification and then transferred or published
(without double-checking that the correct protection is in place). This can also affect
emails or other supported message formats themselves.

5.5 Future Challenges

5.5.1 Cryptographic Durability

Cryptosystems lose their cryptographic abilities over time, and eventually become
obsolete. After this happens to a cryptosystem, it is dangerous to use that cryptosystem
in a project as they open up new and potentially severe attack vectors. However, the
way and time interval in which cryptographic systems become obsolete can differ. The
main three causes of cryptographic strength degeneration discussed are advances in
computing power, newly discovered attack vectors, and new technological approaches.

Advances in Computing Power

Moore’s Law is generally known as the rule of thumb, that the number of transistors
on a chip will double every one or two years [54]. This results in a theoretical general
computational linear speed up. While Moore’s Law is now faced with its physical
limits (after holding up for several decades), the trend towards increasing computational
performance continues [55]. While being a strong block cipher, in the early 1990s, the
Data Encryption Standard (DES) was cracked in about 3.5 hours, and in 1998 again
with a computer costing less than $250,000 at that time [56]. This resulted in Triple
DES (3DES) being invented; a cryptosystem that uses the DES in three operational
stages with an increased key length. This had the advantage of not having to come up
with a completely new block cipher until the Advanced Encryption Standard (AES)

52

5.5 Future Challenges

was eventually standardized [57]. However, with increasing computational power, even
strong cryptographic systems are subject to attacks like brute force, endangering their
security in the long run. It is up for speculation whether this, over time, leads to
developments like Triple AES until a stronger algorithm is standardized. In any case,
advances in computational power endanger all cryptosystems in the long run. This also
concerns hashing methods. The search for collisions is ongoing and mathematically
supported by the so-called Birthday Problem or Birthday Paradox [58]. This model
shows that forging collisions of a specific hash is a task much more complex than
finding any hash collision. However, finding any hash collision is enough to deem a
hash algorithm broken. The still very popular hash algorithm MD5 is broken since
several collisions have been found. However, one of its popular successors, Secure Hash
Algorithm 1 (SHA-1), is also compromised by now [40]. This shows the evolutionary
degeneration of both cryptosystems and hashing algorithms. It is to assume that in
some years or decades, the currently used cryptosystems will be broken one by one, and
that the breach of a cryptosystem will open up a multitude of attacks against systems
using them, including but not limited to SDFA systems.

Newly Discovered Attack Vectors

New attacks on systems can be found at any time. One of the most popular targets
are not the concepts of the systems, but its implementations. Conceptual or semantic
mistakes in implementations can result both in side-channel attacks, like the padding
oracle attack [6], but also direct or inherited vulnerabilities. While a large community of
developers and high usage increases the chance that vulnerabilities are discovered, many
severe vulnerabilities remain unknown to the public for several years. “Heartbleed” for
instance, a vulnerability in OpenSSL that has been described as “catastrophic” [59]
in scientific literature, remained undiscovered for about two years [60]. This shows
that dangerous vulnerabilities can remain undiscovered for several years until they
take the owner or manufacturer of a system by surprise. But also, new ways to break
cryptographic algorithms can be found at any time. In 2022, Wouter Castryck and
Thomas Decru presented a paper [61] demonstrating a successful and efficient attack on
the Supersingular Isogeny Key Exchange (SIKE) algorithm, a fourth-round candidate of
an effort by the National Institute of Standards and Technology (NIST) to standardize
quantum-safe cryptographic algorithms.

New Technological Approaches

Quantum Computers are programmable machines that solve computational tasks by
using quanta (and their quantum effects) as so-called qubits (also qbits or q-bits), bits

53

5 Threat Scenarios

with non-digital and complex intermediate states. While the field of quantum computers
is fairly new and many use cases are still about to be discovered, one particularly
interesting one is the potential ability to solve specific problems faster than classical
digital computers. One of these very interesting new capabilities is the ability to factor
numbers. In the late 1990s, Peter Shor implied that factorization could be performed
faster by (a specific kind of) quantum computers and that it “could even make breaking
RSA on a quantum computer asymptotically faster than encrypting with RSA on a
classical computer” [62]. Since then, much research has been conducted, both on the
matter, and the algorithm suggested by Shore. While access to quantum computers is
now available to the general public using remote access, modern research on the topic is
generally limited by the number of (stable) qubits available [63]. Nevertheless, many are
convinced that with quantum computers “it will be possible to break an RSA key in a
reasonable amount of time when combined with a supercomputer” [64]. A recent paper
estimated the number of required noisy qubits to break RSA-2048 with 20 million [65].
This is not only a danger to the safety of SDFA systems, but all systems that (as of
now) rely on RSA. In fact, in a recent summary of post-quantum cryptography [66],
Bavdekar et al. wrote that “quantum algorithms exist for cracking all the major public
key cryptosystems. It is only a matter of time before they are broken completely.” The
matter also concerns hashing functions as quantum computers “allow [a] faster search
for collisions for most of the existing algorithms” [67]. This threat on the horizon,
the search for quantum-safe cryptographic algorithms is currently ongoing. However,
even though the algorithm McEliece currently seems to be a promising candidate for
replacing RSA as the main asymmetric cryptosystem in the post-quantum age [68],
the search for quantum safe algorithms remains a complicated matter as shown by the
previously mentioned example of the recently broken SIKE algorithm.

54

6 Discussion

6.1 Strengths of SDFA Systems

Server-Dependent File Access (SDFA) systems can greatly support an entity’s efforts to
restrict file access to certain users or groups and can provide a number of useful features
that exceed the ones presented in the model implementation. Furthermore, a granular
and unified access system can be implemented. This can both include expressing real-
world classes in a technical form (such as a group representing all members that have
signed an NDA) as well as directing certain rights dynamically to single users (such
as providing access to project resources to external employees or granting a streaming
service customer a 7-day access to a video stream). When applied consistently, SDFA
systems help to defend against internal attacks and can provide some level of protection
against external attacks on different ways of communication, such as file transfer via
email attachment. SDFA systems can greatly support DLP as the usage of such a
system can make accidental leakage of unencrypted data much more unlikely. In general,
the usage of an SDFA system can result in major improvements for the confidentiality
of sensitive data.

6.2 Weaknesses of SDFA Systems

However, the security of SDFA systems heavily depends on the compliance and good
will of the environment’s members, respectively on the consistent use of further technical
measures to limit potential attacker’s options. While well-designed and implemented
SDFA systems can be assumed to be effective against several internal and external
attacks, a major threat is proposed by internal attackers, especially ones with malicious
intent. The problem of all-or-nothing protection and ripping attacks are major threats
to the confidentiality of the data assets an SDFA system is supposed to protect. On
any SDFA systems’s level of abstraction, there is no protection against attacks with
external recording devices that capture the content of a file, such as cameras or mobile
phones. Furthermore, the SDFA server (or the server-representing cluster) and an SDFA
client’s connection to it are SPOFs that can make the system deny access to protected
assets. When a company decides to protect its most valuable data with an SDFA

55

6 Discussion

system, a malicious or otherwise incapable server can have devastating consequences
for the company. In case of a non-recoverable data loss (in the sense of permanent
unavailability), the company’s survival itself is at stake. Therefore, using an SDFA
system also opens up new attack vectors that have to be defended against with measures.
These measures must not rely on the functionality of the SDFA system. Examples for
these measures would be external backups or technical restrictions to the client’s ability
to execute foreign software, such as malicious SDFA client or other malware.

6.3 Impact on (Offline) Forensic Investigations

When looking at a classically encrypted file, investigators cannot look into a file’s content
unless they obtain the key or find a copy of the content in metadata [18]. With SDFA
systems, the situation is a more interesting one since in theory, the decryption key for
the file content is already stored on the device. During a live acquisition, if a file is
currently used and a memory dump is created, the content and body key can most
likely be extracted (as shown in section 5.3.2). However, assuming that no offline data
of the decrypted content key or the content itself exists, the only way for an investigator
to obtain the content in a static acquisition is to decrypt the content key. While it
may be possible to break the used cryptosystem (in this case RSA), the easiest way is
to obtain the certificate private key of the server. However, depending on how many
Posting Licenses are encrypted with the server certificate, this endangers not only the
confidentiality of one, but of all files protected with the server certificate. Nevertheless,
an organization could be forced to reveal the private key to state investigators, leading
to a security risk for all files encrypted with the same certificate. Therefore it makes
sense to think about layered certificates when implementing an SDFA system so that
revealing the private key of a sub-certificate is not a universal threat to the SDFA
hosting institution and all the assets it protects. Switching perspective, for suspects of
an investigation who use an SDFA system, a “panic button” or “kill switch” implemented
to instantly revoke all access to sensitive files could be a powerful anti-forensic measure,
as file encryption can greatly disrupt forensic investigations [18].

6.4 Research Questions Review

At the beginning of this work, research questions have been defined in section 1.4. The
answers to them have been provided as follows:

1. A definition of Server-Dependent File Access (SDFA) systems has been provided
in section 3.2.

56

6.5 Future Work

2. The general matter of SDFA systems has been discussed in chapter 3. Furthermore,
a prototype model implementation has been provided and discussed in chapter 4.

3. A comparison of the provided model and Microsoft RMS has been drawn in section
4.5.

4. Strengths of SDFA systems have been discussed in section 6.1.

5. Weaknesses of SDFA systems have been discussed in section 6.2.

6. The general use case of SDFA systems has been discussed in section 3.3. Potential
dangers of doing so have been discussed in chapter 5.

7. The emerging threat of quantum computers has been discussed in section 5.5.1.

6.5 Future Work

Alongside the answer to the research questions asked in section 1.4, this work provided
a model implementation of an SDFA system. However, even though the model imple-
mentation works, it cannot yet be considered complete. The model implementation
succeeds in demonstrating the general functionality and implementation concepts of
a general-purpose SDFA. However, the implementation lacks completeness in regards
to documentation, RESTful CRUD functionality, non-ad-hoc classification features,
backup functionality, guaranteed handling of raised exceptions, specific file handler
implementations (for several file types), an interactive Graphical User Interface (GUI)
for users, a non-interactive Command Line Interface (CLI) or developer API, support
for a PKI, and fixes for known issues (like the ones pointed out in section 4.5.7). Based
on this, future work is suggested to provide an improved version of the existing imple-
mentation. This would not only provide a better user experience, but also improved
stability, safety, security, and feature support.
Apart from technical improvements regarding the presented prototype implementation,
there are also different aspects yet to be covered. Although in this work, the general-
purpose and use cases of SDFA systems have been discussed from a hypothetical point of
view, it would also be interesting to conduct research on sociological and psychological
matters. For instance, further research could include studies on the general acceptance
and usage of SDFA systems in business environments, the development of intuitive
employee training programs, user experience research, the phenomena of over- and
under-classification, and the occurrence and prevention of bad practices.

57

7 Conclusion

This work provided a definition of Server-Dependent File Access (SDFA) systems. Fur-
thermore, a prototype model implementation of a general-purpose SDFA system has
been provided. The implementation, its features, its implementation, as well as its
limitations have been discussed. Different threat scenarios have been applied to SDFA
systems and were partially simulated using the model implementation. Potential attack
vectors have been shown and discussed. Furthermore, the threat of quantum computer
driven factorization for asymmetric cryptosystems has been considered. Further re-
search and technical improvements to the presented implementation have been suggested.

The author concludes that the biggest threat to the security goals SDFA systems are
trying to achieve are internal attackers with malicious intent. While it is assumed that
well-implemented SDFA systems offer relatively good protection against unintentional
data leakage and outside threats - in part due to the clean separation of asset and access
control - it is easy to circumvent client-controlled partial protections. This can be done
by either extracting key information that can be used to lift the remaining restrictions, or
by leaving the realm of computing and using external devices to break the confidentiality.
The author concludes that SDFA systems for multiple users are most effective when
paired up with other security measures that restrict the user’s possible actions, like
(malicious) program execution on a client device, accessing SDFA-protected resources
outside the company, or bringing external devices with cameras. Furthermore, SDFA
systems can also be useful to single users in certain situations to perform anti-forensic or
protective functionality. Another interesting finding is that all security goals are greatly
endangered by an entity controlling both the SDFA system and the storage service of
the SDFA-concerning data.

59

Bibliography

[1] J. Mojžiš and Š. Balogh, “Breaking microsoft azure information protection viewer us-
ing memory dump,” in Software Engineering Perspectives in Intelligent Systems.
Springer International Publishing, 2020, pp. 913–920.

[2] M. Grothe, C. Mainka, P. Rösler, and J. Schwenk, “How to break microsoft rights
management services.” in WOOT, 2016.

[3] K. Kaur, I. Gupta, and A. K. Singh, “A comparative study of the approach provided
for preventing the data leakage,” International Journal of Network Security &
Its Applications, vol. 9, no. 5, pp. 21–33, 2017.

[4] J. Mahn, “Sabotage bei der bahn: Viele vertrauliche infos sind offen
zugänglich,” Oct. 2022, https://www.heise.de/news/Sabotage-bei-der-Bahn-
Viele-vertrauliche-Infos-sind-offen-zugaenglich-7307277.html. [Online]. Available:
https://web.archive.org/web/20230315095929/https://www.heise.de/news/
Sabotage-bei-der-Bahn-Viele-vertrauliche-Infos-sind-offen-zugaenglich-7307277.
html

[5] M. E. Whitman and H. J. Mattord, Principles of information security. Cengage
learning, 2021.

[6] R. Merget, J. Somorovsky, N. Aviram, C. Young, J. Fliegenschmidt, J. Schwenk,
and Y. Shavitt, “Scalable scanning and automatic classification of tls padding
oracle vulnerabilities.” in USENIX Security Symposium, 2019, pp. 1029–1046.

[7] P. Rogaway, “Evaluation of some blockcipher modes of operation,” Cryptography
Research and Evaluation Committees (CRYPTREC) for the Government of
Japan, vol. 630, 2011.

[8] G. Firican, “What is the difference between data classification and
data categorization?” Aug. 2021. [Online]. Available: https:
//web.archive.org/web/20230305114252/https://www.lightsondata.com/
what-is-the-difference-between-data-classification-and-data-categorization/

[9] N. Syynimaa, “Exploring azure active directory attack surface: Enumerating
authentication methods with open-source intelligence tools.” in ICEIS (2), 2022,
pp. 142–147.

[10] R. Allen and A. Lowe-Norris, Active directory. " O’Reilly Media, Inc.", 2003.
[11] Microsoft, “Office is now microsoft 365,” 2023. [Online]. Avail-

able: https://web.archive.org/web/20230301193852/https://www.microsoft.
com/en-us/microsoft-365

61

https://web.archive.org/web/20230315095929/https://www.heise.de/news/Sabotage-bei-der-Bahn-Viele-vertrauliche-Infos-sind-offen-zugaenglich-7307277.html
https://web.archive.org/web/20230315095929/https://www.heise.de/news/Sabotage-bei-der-Bahn-Viele-vertrauliche-Infos-sind-offen-zugaenglich-7307277.html
https://web.archive.org/web/20230315095929/https://www.heise.de/news/Sabotage-bei-der-Bahn-Viele-vertrauliche-Infos-sind-offen-zugaenglich-7307277.html
https://web.archive.org/web/20230305114252/https://www.lightsondata.com/what-is-the-difference-between-data-classification-and-data-categorization/
https://web.archive.org/web/20230305114252/https://www.lightsondata.com/what-is-the-difference-between-data-classification-and-data-categorization/
https://web.archive.org/web/20230305114252/https://www.lightsondata.com/what-is-the-difference-between-data-classification-and-data-categorization/
https://web.archive.org/web/20230301193852/https://www.microsoft.com/en-us/microsoft-365
https://web.archive.org/web/20230301193852/https://www.microsoft.com/en-us/microsoft-365

Bibliography

[12] ——, “Looking back at 10 years of microsoft 365 mak-
ing history,” Jan. 2023. [Online]. Available: https:
//web.archive.org/web/20230314095245/http://www.microsoft.com/en-us/
microsoft-365-life-hacks/stories/looking-back-ten-years-microsoft-365

[13] ——, “Azure information protection - also known as ...” Feb. 2022.
[Online]. Available: https://web.archive.org/web/20230408151614/https:
//learn.microsoft.com/en-us/azure/information-protection/aka

[14] M. Kratzenberg, “Drm – was ist das eigentlich?” GIGA, Apr. 2022.
[15] M. Grothe, C. Mainka, P. Rösler, J. Jupke, J. Kaiser, and J. Schwenk, “Your

cloud in my company: Modern rights management services revisited,” in 2016
11th International Conference on Availability, Reliability and Security (ARES).
IEEE, 2016, pp. 217–222.

[16] A. Biryukov, G. Leurent, and A. Roy, “Cryptanalysis of the “kindle” cipher,” in Se-
lected Areas in Cryptography: 19th International Conference, SAC 2012, Wind-
sor, ON, Canada, August 15-16, 2012, Revised Selected Papers 19. Springer,
2013, pp. 86–103.

[17] Microsoft, “File types supported by the azure information protection
(aip) unified labeling client,” Mar. 2023. [Online]. Available: https:
//web.archive.org/web/20230405075232/https://learn.microsoft.com/en-us/
azure/information-protection/rms-client/clientv2-admin-guide-file-types

[18] L. Schmitt and G. Kul, “Anti forensic measures and their impact on forensic
investigations,” 2023.

[19] Microsoft, “How does azure rms work? under the hood,” 2023.
[Online]. Available: https://web.archive.org/web/20230314095704/https:
//learn.microsoft.com/en-us/azure/information-protection/how-does-it-work

[20] A. Goldbergs, “Azure rms under the hood,” article on medium.com, Mar.
2019. [Online]. Available: https://web.archive.org/web/20230314100315/https:
//medium.com/@agoldbergs/azure-rms-under-the-hood-7ea736135d95

[21] K. Jendrian and C. Schäfer, “Verschlüsseln in der cloud: Visualisiert am beispiel
von microsoft azure rms,” Datenschutz und Datensicherheit-DuD, vol. 39, no. 8,
pp. 548–552, 2015.

[22] M. Shaw, “Writing good software engineering research papers,” in 25th International
Conference on Software Engineering, 2003. Proceedings. IEEE, 2003, pp. 726–
736.

[23] G. Van Rossum, B. Warsaw, and N. Coghlan, “Pep 8–style guide for python code,”
Python. org, vol. 1565, p. 28, 2001.

[24] “Python programming language,” https://www.python.org. [Online]. Available:
https://web.archive.org/web/20230306184755/https://www.python.org/

[25] “pip,” https://pip.pypa.io/en/stable. [Online]. Available: https://web.archive.org/
web/20230306184732/https://pip.pypa.io/en/stable/

62

https://web.archive.org/web/20230314095245/http://www.microsoft.com/en-us/microsoft-365-life-hacks/stories/looking-back-ten-years-microsoft-365
https://web.archive.org/web/20230314095245/http://www.microsoft.com/en-us/microsoft-365-life-hacks/stories/looking-back-ten-years-microsoft-365
https://web.archive.org/web/20230314095245/http://www.microsoft.com/en-us/microsoft-365-life-hacks/stories/looking-back-ten-years-microsoft-365
https://web.archive.org/web/20230408151614/https://learn.microsoft.com/en-us/azure/information-protection/aka
https://web.archive.org/web/20230408151614/https://learn.microsoft.com/en-us/azure/information-protection/aka
https://web.archive.org/web/20230405075232/https://learn.microsoft.com/en-us/azure/information-protection/rms-client/clientv2-admin-guide-file-types
https://web.archive.org/web/20230405075232/https://learn.microsoft.com/en-us/azure/information-protection/rms-client/clientv2-admin-guide-file-types
https://web.archive.org/web/20230405075232/https://learn.microsoft.com/en-us/azure/information-protection/rms-client/clientv2-admin-guide-file-types
https://web.archive.org/web/20230314095704/https://learn.microsoft.com/en-us/azure/information-protection/how-does-it-work
https://web.archive.org/web/20230314095704/https://learn.microsoft.com/en-us/azure/information-protection/how-does-it-work
https://web.archive.org/web/20230314100315/https://medium.com/@agoldbergs/azure-rms-under-the-hood-7ea736135d95
https://web.archive.org/web/20230314100315/https://medium.com/@agoldbergs/azure-rms-under-the-hood-7ea736135d95
https://web.archive.org/web/20230306184755/https://www.python.org/
https://web.archive.org/web/20230306184732/https://pip.pypa.io/en/stable/
https://web.archive.org/web/20230306184732/https://pip.pypa.io/en/stable/

Bibliography

[26] JetBrains, “Pycharm,” https://www.jetbrains.com/pycharm. [Online]. Avail-
able: https://web.archive.org/web/20230306184759/https://www.jetbrains.
com/pycharm/

[27] “Vscodium,” https://vscodium.com/. [Online]. Available: https://web.archive.org/
web/20230308135311/https://vscodium.com/

[28] “diagrams.net,” https://github.com/jgraph/drawio-desktop. [Online]. Avail-
able: https://web.archive.org/web/20230306184716/https://github.com/
jgraph/drawio-desktop

[29] “mypy,” https://mypy-lang.org. [Online]. Available: https://web.archive.org/web/
20230306184718/https://mypy-lang.org/

[30] “Db browser for sqlite,” https://sqlitebrowser.org/. [Online]. Available:
https://web.archive.org/web/20230308150959/https://sqlitebrowser.org/

[31] “Wireshark,” https://www.wireshark.org/. [Online]. Available: https://web.archive.
org/web/20230308115156/https://www.wireshark.org/

[32] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp.
120–126, 1978.

[33] R. T. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1):
Authentication,” RFC 7235, Jun. 2014. [Online]. Available: https:
//www.rfc-editor.org/info/rfc7235

[34] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison of json and
xml data interchange formats: a case study.” Caine, vol. 9, pp. 157–162, 2009.

[35] M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt). rfc 7519,” Internet
Engineering Task Force, 2015.

[36] jwt.io, “Libraries for token signing/verification,” 2023. [Online]. Available:
https://web.archive.org/web/20230306000949/https://jwt.io/libraries

[37] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: new generation of memory-
hard functions for password hashing and other applications,” in 2016 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2016, pp.
292–302.

[38] “Password hashing competitionand our recommendation for hashing passwords: Ar-
gon2,” 2019. [Online]. Available: https://web.archive.org/web/20230312114650/
https://www.password-hashing.net/

[39] Secure Hash Standard (SHS), Federal Information Processing Standards publication,
U.S. Department of Commerce Std. 180-4.

[40] S. D. Almotiri, “Forensic hash value guidelines: Why md5 and sha1 should no
longer be used and a recommendation for their replacement.” Mar. 2022.

[41] “Flask,” https://flask.palletsprojects.com. [Online]. Available: https://web.archive.
org/web/20230303154526/https://flask.palletsprojects.com/en/2.2.x/

[42] “requests,” https://requests.readthedocs.io. [Online]. Available: https://web.
archive.org/web/20230306184818/https://requests.readthedocs.io/en/latest/

63

https://web.archive.org/web/20230306184759/https://www.jetbrains.com/pycharm/
https://web.archive.org/web/20230306184759/https://www.jetbrains.com/pycharm/
https://web.archive.org/web/20230308135311/https://vscodium.com/
https://web.archive.org/web/20230308135311/https://vscodium.com/
https://web.archive.org/web/20230306184716/https://github.com/jgraph/drawio-desktop
https://web.archive.org/web/20230306184716/https://github.com/jgraph/drawio-desktop
https://web.archive.org/web/20230306184718/https://mypy-lang.org/
https://web.archive.org/web/20230306184718/https://mypy-lang.org/
https://web.archive.org/web/20230308150959/https://sqlitebrowser.org/
https://web.archive.org/web/20230308115156/https://www.wireshark.org/
https://web.archive.org/web/20230308115156/https://www.wireshark.org/
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://web.archive.org/web/20230306000949/https://jwt.io/libraries
https://web.archive.org/web/20230312114650/https://www.password-hashing.net/
https://web.archive.org/web/20230312114650/https://www.password-hashing.net/
https://web.archive.org/web/20230303154526/https://flask.palletsprojects.com/en/2.2.x/
https://web.archive.org/web/20230303154526/https://flask.palletsprojects.com/en/2.2.x/
https://web.archive.org/web/20230306184818/https://requests.readthedocs.io/en/latest/
https://web.archive.org/web/20230306184818/https://requests.readthedocs.io/en/latest/

Bibliography

[43] “Python-rsa,” https://stuvel.eu/software/rsa/. [Online]. Available: https:
//web.archive.org/web/20230306184820/https://stuvel.eu/software/rsa/

[44] “pyaescrypt,” https://github.com/marcobellaccini/pyAesCrypt. [Online]. Avail-
able: https://web.archive.org/web/20230306184750/https://github.com/
marcobellaccini/pyAesCrypt

[45] “Pycryptodome,” https://www.pycryptodome.org. [Online]. Available: https:
//web.archive.org/web/20230306184800/https://www.pycryptodome.org/

[46] “argon2-cffi,” https://github.com/hynek/argon2-cffi. [Online]. Available: https://
web.archive.org/web/20230306184457/https://github.com/hynek/argon2-cffi

[47] “Pyjwt,” https://github.com/jpadilla/pyjwt. [Online]. Available: https://web.
archive.org/web/20230306184753/https://github.com/jpadilla/pyjwt

[48] “psutil,” https://github.com/giampaolo/psutil. [Online]. Available: https:
//web.archive.org/web/20230306184733/https://github.com/giampaolo/psutil

[49] “universal-startfile,” https://github.com/jacebrowning/universal-startfile. [On-
line]. Available: web.archive.org/web/20230412084936/https://github.com/
jacebrowning/universal-startfile

[50] martineau and wolf, “Answer to "how to get the text out of a scrolledtext widget?",”
stackoverflow, Dec. 2018, stackoverflow.com/a/53938684. [Online]. Available:
web.archive.org/web/20230306141620/https://stackoverflow.com/questions/
53937400/how-to-get-the-text-out-of-a-scrolledtext-widget/53938684

[51] Microsoft, “Configure usage rights for azure information protection,” Sep. 2022.
[Online]. Available: https://web.archive.org/web/20230327112201/https://learn.
microsoft.com/en-us/azure/information-protection/configure-usage-rights

[52] J. Rizzo and T. Duong, “Practical padding oracle attacks.” in WOOT, 2010.
[53] Š. Balogh and M. Pondelik, “Capturing encryption keys for digital analysis,”

in Proceedings of the 6th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems, vol. 2. IEEE, 2011, pp. 759–763.

[54] E. Mollick, “Establishing moore’s law,” IEEE Annals of the History of Computing,
vol. 28, no. 3, pp. 62–75, 2006.

[55] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson,
D. Sanchez, and T. B. Schardl, “There’s plenty of room at the top: What will
drive computer performance after moore’s law?” Science, vol. 368, no. 6495, p.
eaam9744, 2020.

[56] S. Landau, “Standing the test of time: The data encryption standard,” Notices of
the AMS, vol. 47, no. 3, pp. 341–349, 2000.

[57] P. Patil, P. Narayankar, D. Narayan, and S. M. Meena, “A comprehensive evalua-
tion of cryptographic algorithms: Des, 3des, aes, rsa and blowfish,” Procedia
Computer Science, vol. 78, pp. 617–624, 2016.

[58] E. Thompson, “Md5 collisions and the impact on computer forensics,” Digital
investigation, vol. 2, no. 1, pp. 36–40, 2005.

64

https://web.archive.org/web/20230306184820/https://stuvel.eu/software/rsa/
https://web.archive.org/web/20230306184820/https://stuvel.eu/software/rsa/
https://web.archive.org/web/20230306184750/https://github.com/marcobellaccini/pyAesCrypt
https://web.archive.org/web/20230306184750/https://github.com/marcobellaccini/pyAesCrypt
https://web.archive.org/web/20230306184800/https://www.pycryptodome.org/
https://web.archive.org/web/20230306184800/https://www.pycryptodome.org/
https://web.archive.org/web/20230306184457/https://github.com/hynek/argon2-cffi
https://web.archive.org/web/20230306184457/https://github.com/hynek/argon2-cffi
https://web.archive.org/web/20230306184753/https://github.com/jpadilla/pyjwt
https://web.archive.org/web/20230306184753/https://github.com/jpadilla/pyjwt
https://web.archive.org/web/20230306184733/https://github.com/giampaolo/psutil
https://web.archive.org/web/20230306184733/https://github.com/giampaolo/psutil
web.archive.org/web/20230412084936/https://github.com/jacebrowning/universal-startfile
web.archive.org/web/20230412084936/https://github.com/jacebrowning/universal-startfile
web.archive.org/web/20230306141620/https://stackoverflow.com/questions/53937400/how-to-get-the-text-out-of-a-scrolledtext-widget/53938684
web.archive.org/web/20230306141620/https://stackoverflow.com/questions/53937400/how-to-get-the-text-out-of-a-scrolledtext-widget/53938684
https://web.archive.org/web/20230327112201/https://learn.microsoft.com/en-us/azure/information-protection/configure-usage-rights
https://web.archive.org/web/20230327112201/https://learn.microsoft.com/en-us/azure/information-protection/configure-usage-rights

Bibliography

[59] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,
D. Adrian, V. Paxson, M. Bailey et al., “The matter of heartbleed,” in Pro-
ceedings of the 2014 conference on internet measurement conference, 2014, pp.
475–488.

[60] M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler, “Heartbleed 101,” IEEE
security & privacy, vol. 12, no. 4, pp. 63–67, 2014.

[61] W. Castryck and T. Decru, “An efficient key recovery attack on sidh (preliminary
version),” Cryptology ePrint Archive, 2022.

[62] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332,
1999.

[63] A. Joshi, R. Kumbhar, A. Mehta, V. Kosamkar, and H. Shetty, “Breaking rsa
encryption using quantum computer,” 2022.

[64] A. Albuainain, J. Alansari, S. Alrashidi, W. Alqahtani, J. Alshaya, and N. Nagy,
“Experimental implementation of shor’s quantum algorithm to break rsa,” in
2022 14th International Conference on Computational Intelligence and Com-
munication Networks (CICN). IEEE, 2022, pp. 748–752.

[65] C. Gidney and M. Ekerå, “How to factor 2048 bit rsa integers in 8 hours using 20
million noisy qubits,” Quantum, vol. 5, p. 433, 2021.

[66] R. Bavdekar, E. J. Chopde, A. Agrawal, A. Bhatia, and K. Tiwari, “Post quantum
cryptography: A review of techniques, challenges and standardizations,” in
2023 International Conference on Information Networking (ICOIN). IEEE,
2023, pp. 146–151.

[67] O. Safaryan, L. Cherckesova, N. Lyashenko, P. Razumov, V. Chumakov, B. Akishin,
and A. Lobodenko, “Modern hash collision cyberattacks and methods of their
detection and neutralization,” in Journal of Physics: Conference Series, vol.
2131, no. 2. IOP Publishing, 2021, p. 022099.

[68] I. P. A. E. Pratama and I. G. N. A. K. Adhitya, “Post quantum cryptography:
Comparison between rsa and mceliece,” in 2022 International Conference on
ICT for Smart Society (ICISS). IEEE, 2022, pp. 01–05.

65

Acronyms

3DES

Triple DES

AD

Active Directory

AD RMS

Active Directory Rights Management Service

AEAD

Authenticated Encryption with Associated Data

AES

Advanced Encryption Standard

AIP

Azure Information Protection

API

Application Programming Interface

Azure AD

Azure Active Directory

Azure RMS

Azure Rights Management Service

67

Acronyms

C&C

Command and Control

CA

Certification Authority

CBC

Cipher Block Chaining

CIA

confidentiality, integrity, and availability

CIA Triad

CIA security goal triad

CLC

Client Licensor Certificate

CLI

Command Line Interface

CPU

Central Processing Unit

CRUD

create, read, update, and delete

CSPRNGs

cryptographically safe random number generators

DDoS

Distributed Denial of Service

DES

Data Encryption Standard

68

Acronyms

DLP

Data Loss/Leakage Prevention

DNS

Domain Name System

DoS

Denial of Service

DRM

Digital Rights Management

ECB

Electronic Code Book

ECC

Elliptic Curve Cryptography

ERM

Enterprise Resource Management

ERP

Enterprise Resource Planning

GCM

Galois/Counter mode

GUI

Graphical User Interface

HTTP

Hypertext Transfer Protocol

HTTPS

Hypertext Transfer Protocol Secure

69

Acronyms

IDE

Integrated Developing Environment

IRM

Information Rights Management

JSON

JavaScript Object Notation

JWT

JSON Web Token

LoR

List of Rights

LSP

Liskov Substitution Principle

M365

Microsoft 365

MitM

Man-in-the-Middle

NDA

Non-Disclosure Agreement

NIST

National Institute of Standards and Technology

O365

Microsoft Office 365

70

Acronyms

OS

operating system

PKI

Public Key Infrastructure

PL

Posting License

RAC

Rights Account Certificate

RAM

Random Access Memory

REST

Representational State Transfer

RMS

Rights Management Service

RSA

Rivest-Shamir-Adleman

SaaS

Software-as-a-Service

SCert

Server Certificate

SDFA

Server-Dependent File Access

SHA

Secure Hash Algorithm

71

Acronyms

SHS

Secure Hashing Standard

SIKE

Supersingular Isogeny Key Exchange

SLC

Server Licensor Certificate

SPC

Secure Processor Certificate

SPOF

Single Point of Failure

SQL

Structured Query Language

SSL/TLS

Secure Socket Layer / Transport Layer Security

UCert

User Certificate

UL

Use License

UML

Unified Modeling Language

XML

Extensible Markup Language

72

List of Figures

3.1 Abstract activity diagram of the lifecycle of a data asset in an SDFA
system. 14

4.1 File overview of the SDFA prototype implementation project. 26
4.2 Overview of the necessary steps of the bootstrapping process, protecting

containers, and accessing them. 30
4.3 Screenshot of the commands available in the provided command line

interface client. 31
4.4 State machine diagram of the internal file states. 32
4.5 Diagram of the double-encryption scheme used to encrypt the requests

and responses concerned with the evaluation of Posting Licenses. 33
4.6 Database layout of the model implementation. 34
4.7 Encryption layers of Posting Licenses between client and server. 35
4.8 Wireshark capture of a HTTP login-request, exposing the login credentials

“YWRtaW46YWRtaW4=” (admin:admin) encoded in plain base64. . . 36
4.9 Comparison of the used certificates and licenses in the provided model

implementation and Microsoft (Azure) RMS; based on Goldbergs’ article
on Azure RMS functionality [20]. 42

73

A Code of the Model Implementation

A.1 client_backend.py

1 # typing imports

2 from typing import Tuple, Optional

3 # standard library imports

4 import sys

5 import os

6 import secrets

7 import pickle

8 from datetime import datetime as dt

9 # external imports

10 import requests # requests

11 # project level imports

12 from package_dataconversion import *
13 from client_config_file_handler import ClientConfigFileHandler

14 from client_server_handler import ClientServerHandler

15 from client_certificates import ClientCertificate, ServerCertificateCopy

16 from package_cryptography import CryptoSystemAESGCM

17 from package_licenses import PostingLicenseUnencrypted,

PostingLicenseEncrypted, PermissionObject

18 from client_container_file import ContainerFile

19

20

21 class ClientBackendException(Exception):

22 pass

23

24

25 def client_backend_exception(function: Callable) -> Callable:

26 def wrapper(*args, **kwargs):

27 try:

28 return function(*args, **kwargs)

29 except: # noqa

30 raise ClientBackendException(f"ERROR IN CLIENT BACKEND! ({

function.__name__})")

31 return wrapper

32

33

34 class ClientBackend:

35 program_path: str

36 cch: ClientConfigFileHandler

75

A Code of the Model Implementation

37 csh: ClientServerHandler

38 client_certificate: ClientCertificate

39 server_certificate: ServerCertificateCopy

40

41 def __init__(self, with_bootstrapping: bool = True, username: str =

Optional[str], password: Optional[str] = ""):

42 self.program_path = os.path.dirname(os.path.abspath(sys.argv[0]))

43 self.cch = ClientConfigFileHandler(self.program_path, "config.

json", True)

44 self.csh = ClientServerHandler()

45 if with_bootstrapping:

46 self.cch.enter("userid", self.csh.get_user_id())

47 self.bootstrapping(username, password)

48 else:

49 self.csh.uname = self.cch.get("username")

50 self.csh.password = self.cch.get("password")

51

52 @client_backend_exception

53 def bootstrapping(self, username: str, password: str) -> bool: #

raises error if bootstrapping is not possible

54 pickle_configuration_object: Callable = lambda something: pickle.

dumps(something).hex()

55 if not self.is_bootstrapped():

56 self.client_certificate = ClientCertificate()

57 self.csh.uname = username

58 self.csh.password = password

59 self.cch.generate_user_configuration(self.csh.uname, self.csh

.password)

60 self.cch.enter("userid", self.csh.get_user_id())

61 self.client_certificate.user_name = self.cch.get("username")

62 self.client_certificate.user_id = self.cch.get("userid")

63 self.client_certificate.device_id = self.cch.get("deviceid")

64 self.cch.enter("certificate", pickle_configuration_object(

self.client_certificate))

65 server_public_key: Dict = json.loads(self.csh.

get_public_server_key())

66 self.server_certificate = ServerCertificateCopy(

server_public_key)

67 self.cch.enter("servercertificate",

pickle_configuration_object(self.server_certificate))

68 encrypted_user_certificate, encrypted_symmetric_key = self.

encrypt_own_public_certificate()

69 if self.csh.register_client_certificate(

encrypted_user_certificate, encrypted_symmetric_key):

70 self.cch.enter("bootstrapped", str(int(dt.utcnow().

timestamp())))

71 return True

72 else:

73 raise ClientBackendException("BOOTSTRAPPING FAILED.")

74 return False

76

A.1 client_backend.py

75

76 @client_backend_exception

77 def load_user_configuration(self) -> None:

78 unpickle_configuration_object: Callable = lambda key: pickle.

loads(bytes.fromhex(self.cch.get(key)))

79 self.client_certificate = unpickle_configuration_object("

certificate")

80 self.server_certificate = unpickle_configuration_object("

servercertificate")

81

82 @client_backend_exception

83 def is_bootstrapped(self) -> bool:

84 if not self.cch:

85 return False

86 return self.cch.is_bootstrapped()

87

88 @client_backend_exception

89 def encrypt_own_public_certificate(self) -> Tuple[str, str]:

90 assert self.server_certificate

91 plain_user_certificate: str = self.client_certificate.

get_compiled_json_version()

92 plain_message: bytes = con_utf_bytes(plain_user_certificate)

93 ciphertext, plain_symmetric_key = self.

encrypt_data_randomly_symmetrically(plain_message)

94 encrypted_symmetric_key: bytes = self.server_certificate.encrypt(

con_utf_bytes(plain_symmetric_key))

95 return ciphertext, con_bytes_hex(encrypted_symmetric_key)

96

97 @client_backend_exception

98 def encrypt_data_randomly_symmetrically(self, data: bytes) -> Tuple[

str, str]: # noqa

99 crypto_system: CryptoSystemAESGCM = CryptoSystemAESGCM()

100 crypto_system.generate_random_key()

101 ciphertext: str = con_bytes_hex(crypto_system.encrypt(data))

102 plain_symmetric_key: str = con_dict_json(crypto_system.

export_full_private_key())

103 return ciphertext, plain_symmetric_key

104

105 @client_backend_exception

106 def decrypt_data_symmetrically(self, data: str, key: str) -> bytes:

noqa

107 crypto_system: CryptoSystemAESGCM = CryptoSystemAESGCM()

108 crypto_system.import_full_private_key(con_json_dict(key))

109 restored_plaintext = crypto_system.decrypt(con_hex_bytes(data))

110 return restored_plaintext

111

112 @client_backend_exception

113 def double_decryption(self, double_encrypted_data: str, encrypted_key

: str) -> bytes:

114 assert double_encrypted_data and encrypted_key

77

A Code of the Model Implementation

115 assert self.client_certificate

116 decrypted_key: bytes = self.client_certificate.decrypt(

con_hex_bytes(encrypted_key))

117 restored_aes_key: Dict = con_json_dict(con_bytes_utf(

decrypted_key))

118 return self.decrypt_data_symmetrically(double_encrypted_data,

con_dict_json(restored_aes_key))

119

120 @client_backend_exception

121 def double_encryption(self, plain_data: bytes) -> Tuple[str, str]:

122 assert self.server_certificate

123 ciphertext, plain_aes_key = self.

encrypt_data_randomly_symmetrically(plain_data)

124 encrypted_aes_key: str = con_bytes_hex(self.server_certificate.

encrypt(con_utf_bytes(plain_aes_key)))

125 return ciphertext, encrypted_aes_key

126

127 @client_backend_exception

128 def check_certificate_functionality(self) -> bool:

129 solution: bytes = secrets.token_bytes(500_000)

130 ciphertext, encrypted_aes_key = self.double_encryption(solution)

131 payload: Dict = {"challenge": ciphertext, "key":

encrypted_aes_key, "deviceid": self.cch.get("deviceid")}

132 response: requests.Response = self.csh.authenticated_post("/

testcertificates", con_dict_json(payload), 10)

133 response_data: Dict = response.json()

134 encrypted_challenge: str = response_data["data"]

135 server_encrypted_aes_key: str = response_data["key"]

136 restored_plaintext: bytes = self.double_decryption(

encrypted_challenge, server_encrypted_aes_key)

137 return restored_plaintext == solution

138

139 @client_backend_exception

140 def retrieve_group_information(self) -> Dict:

141 payload: Dict = {"deviceid": self.cch.get("deviceid")}

142 response_data: Dict = self.csh.authenticated_get("/groups", 10,

con_dict_json(payload))

143 encrypted_information: str = response_data["data"]

144 server_encrypted_aes_key: str = response_data["key"]

145 restored_plaintext: bytes = self.double_decryption(

encrypted_information, server_encrypted_aes_key)

146 groups: Dict = con_json_dict(con_bytes_utf(restored_plaintext))

147 return deepcopy(groups)

148

149 @client_backend_exception

150 def retrieve_user_information(self) -> Dict:

151 payload: Dict = {"deviceid": self.cch.get("deviceid")}

152 response_data: Dict = self.csh.authenticated_get("/users", 10,

con_dict_json(payload))

153 encrypted_information: str = response_data["data"]

78

A.1 client_backend.py

154 server_encrypted_aes_key: str = response_data["key"]

155 restored_plaintext: bytes = self.double_decryption(

encrypted_information, server_encrypted_aes_key)

156 users: Dict = con_json_dict(con_bytes_utf(restored_plaintext))

157 return deepcopy(users)

158

159 @client_backend_exception

160 def encrypt_and_sign_posting_license(self, posting_license:

PostingLicenseUnencrypted) -> PostingLicenseEncrypted:

161 assert not posting_license.encrypted

162 assert posting_license.version

163 assert posting_license.content_key

164 assert posting_license.rights

165 byte_representation: bytes = con_utf_bytes(posting_license.

json_version()) # json to bytes

166 encrypted_license_text, encrypted_key = self.double_encryption(

byte_representation) # double encryption

167 signature: str = con_bytes_hex(self.client_certificate.sign(

byte_representation)) # signs unencrypted

168 new_license: PostingLicenseEncrypted = PostingLicenseEncrypted(

encrypted_license_text, encrypted_key, signature)

169 return deepcopy(new_license)

170

171 @client_backend_exception

172 def lock_container_posting_license(self, container: ContainerFile) ->

ContainerFile:

173 assert container.version and container.owner_id and \

174 container.container_file_path and container.

container_file_extension \

175 and container.full_original_file_path and container.body

and container.posting_license

176 assert container.body_is_encrypted

177 assert not container.posting_license.encrypted

178 assert container.posting_license.content_key # noqa

179 temporary_casted_license: PostingLicenseUnencrypted = container.

posting_license # noqa

180 container.posting_license = self.encrypt_and_sign_posting_license

(temporary_casted_license)

181 return deepcopy(container)

182

183 @client_backend_exception

184 def get_protected_file_rights(self, protected_file: ContainerFile) ->

\

185 Tuple[PermissionObject, str, PostingLicenseUnencrypted]:

186 assert protected_file.posting_license.encrypted

187 payload: Dict = con_json_dict(protected_file.posting_license.

json_version())

188 payload["deviceid"] = con_bytes_utf(con_bytes_b64(con_utf_bytes(

self.cch.get("deviceid"))))

79

A Code of the Model Implementation

189 response: requests.Response = self.csh.authenticated_put("/

evaluate", payload)

190 response_data: Dict = response.json()

191 decrypted_text: str = con_bytes_utf(self.double_decryption(

response_data["data"], response_data["key"]))

192 decrypted_payload: Dict = con_json_dict(decrypted_text)

193 permissions: PermissionObject = PermissionObject(

decrypted_payload["permissions"])

194 body_key: str = ""

195 recast_posting_license: Optional[PostingLicenseUnencrypted] =

None

196 if permissions.anything():

197 body_key = decrypted_payload["bodykey"]

198 if permissions.owner or permissions.repost:

199 full_posting_license: str = decrypted_payload["fulllicense"]

200 recast_posting_license = PostingLicenseUnencrypted(

full_posting_license)

201 return permissions, body_key, recast_posting_license

202

203 @client_backend_exception

204 def load_file(self, file_path: str) -> ContainerFile:

205 assert os.path.isfile(file_path)

206 assert self.cch

207 return ContainerFile(file_path, self.cch.get("userid"))

A.2 client_certificates.py

1 # typing imports

2 # standard library imports

3 # external imports

4 # project level imports

5 from package_certificates import FullCertificate, HalfCertificate

6 from package_dataconversion import *
7

8

9 class ClientCertificate(FullCertificate):

10 user_id: str

11 user_name: str

12 device_id: str

13

14 def __init__(self):

15 super().__init__(2048)

16 self.generate_keys()

17

18 def get_compiled_json_version(self) -> str:

19 assert self.user_name and self.user_id and self.device_id

20 assert self.export_public_key()

21 payload: Dict = {

80

A.3 client_cli.py

22 "username": self.user_name,

23 "userid": self.user_id,

24 "deviceid": self.device_id,

25 "publickey": con_dict_json(self.export_public_key())

26 }

27 return json.dumps(payload)

28

29

30 class ServerCertificateCopy(HalfCertificate):

31 pass

A.3 client_cli.py

1 # typing imports

2 # standard library imports

3 # external imports

4 # project level imports

5 import client_config_file_handler # required to stick to client config

handler singleton pattern when restarting

6 from client_backend import *
7 from client_container_file import ContainerFileException

8 from file_handler import *
9 from file_handler_factory import FileHandlerFactory

10 from package_licenses import PostingLicense, RightsObject

11

12

13 class InsufficientPermissionsException(Exception):

14 pass

15

16

17 class PolicyIntegrityException(Exception):

18 pass

19

20

21 class CommandLineInterface:

22 backend: ClientBackend # backend performing operations

23 current_file: str # path to container

24 current_container: ContainerFile # container object

25 informational_prints: bool # information printing flag

26 file_handler: FileHandler # file handler based on file type

27 file_handler_name: str # name of the used file handler

28 file_status: int = 0

29 permission_cache: Tuple[PermissionObject, Optional[str], Optional[

PostingLicenseUnencrypted]]

30 group_cache: Dict

31 user_cache: Dict

32

81

A Code of the Model Implementation

33 def __init__(self, target_file: str, informational_prints: bool =

True):

34 self.informational_prints = informational_prints

35 self.determine_current_file(target_file)

36 self.info("FRONTEND STARTING...")

37 self.startup()

38 self.info("LOADING FILE...")

39 self.load_argument_file()

40 self.info("FRONTEND READY!")

41 self.run()

42

43 def restart(self, target_file: str) -> None:

44 self.info("destroying objects...")

45 del self.backend.cch

46 client_config_file_handler.CONFIG_FILE_HANDLER_INSTANCES -= 1

47 del self.backend

48 del self.current_container

49 del self.file_handler

50 del self.permission_cache

51 del self.group_cache

52 del self.user_cache

53 self.println("")

54 self.println("#")

55 self.determine_current_file(target_file)

56 self.info("RESTARTING FRONTEND...")

57 self.startup()

58 self.info("LOADING FILE...")

59 self.load_argument_file()

60 self.info("FRONTEND READY!")

61 self.run()

62

63 def startup(self) -> None:

64 self.info("resetting permission cache...")

65 self.permission_cache = (None, "", None) # noqa

66 self.info("resetting group cache...")

67 self.group_cache = {}

68 self.user_cache = {}

69 self.info("loading backend...")

70 self.backend = ClientBackend(False)

71 self.info("loading client configuration...")

72 try:

73 if self.backend.is_bootstrapped():

74 self.info("user is already bootstrapped")

75 self.info("loading configuration...")

76 self.backend.load_user_configuration()

77 else:

78 self.info("attempting to bootstrap user...")

79 username: str = self.input_request("ENTER USERNAME > ",

False)

82

A.3 client_cli.py

80 password: str = self.input_request("ENTER PASSWORD > ",

True)

81 if self.backend.bootstrapping(username, password):

82 self.info("bootstrapping complete")

83 else:

84 raise ClientBackendException("bootstrapping failed

for unknown reason")

85 except ClientBackendException:

86 self.error("error occurred during bootstrapping")

87 self.info("make sure you have an internet connection and

entered the credentials correctly")

88 self.critical("BOOTSTRAPPING COULD NOT BE COMPLETED!")

89 self.update_user_and_group_cache()

90

91 def update_user_and_group_cache(self, silent: Optional[bool] = False)

-> bool:

92 success: bool = True

93 if not silent:

94 self.info("fetching group information from server...")

95 try:

96 self.group_cache = self.backend.retrieve_group_information()

97 if not silent:

98 self.info("user groups received.")

99 except ClientBackendException:

100 success = False

101 if not silent:

102 self.error("user groups could not be fetched!")

103 if not silent:

104 self.info("fetching user information from server...")

105 try:

106 self.user_cache = self.backend.retrieve_user_information()

107 if not silent:

108 self.info("users received.")

109 except ClientBackendException:

110 success = False

111 if not silent:

112 self.error("users could not be fetched!")

113 return success

114

115 def determine_current_file(self, target_file: str) -> None:

116 self.info("checking target file...")

117 if not os.path.exists(target_file):

118 self.error(f"TARGET FILE DOES NOT EXIST! ({target_file})")

119 if target_file.endswith(".container"):

120 self.info("trying to find matching plain file...")

121 target_file = target_file[:-10]

122 else:

123 self.info("trying to find matching container...")

124 target_file += ".container"

125 if not os.path.exists(target_file):

83

A Code of the Model Implementation

126 self.error("TARGET FILE NOT FOUND!")

127 else:

128 self.info("corresponding file found.")

129 raw_content: bytes

130 with open(target_file, "rb") as opened_file:

131 raw_content = opened_file.read()

132 if not raw_content:

133 self.critical("FILE APPEARS TO BE EMPTY!")

134 self.current_file = os.path.abspath(target_file)

135

136 def load_argument_file(self) -> None:

137 self.info("loading file handler factory...")

138 handler_factory = FileHandlerFactory()

139 self.info("loading file...")

140 self.load_file()

141 self.info("loading file permissions...")

142 self.__reconstruct_permission_cache()

143 permissions, _, _ = self.permission_cache

144 self.info("creating file handler...")

145 self.file_handler, matching_file_handler = handler_factory.create

(self.current_container, permissions)

146 self.file_handler_name = str(type(self.file_handler).__name__)

147 original_file_type: str = self.current_container.

full_original_file_path.strip().split(".")[-1].lower()

148 self.info(f"original file extension identified as {

original_file_type}")

149 annotation: str = "(considering upgrade)" if not

matching_file_handler else ""

150 self.info(f"using file handler {self.file_handler_name} {

annotation}.")

151 if self.__cached_body_key():

152 self.info("injecting key into file handler...")

153 self.file_handler.secret_key = self.__cached_body_key()

154 if not matching_file_handler:

155 self.info("checking file handler upgrade...")

156 alternative_file_handler, success = \

157 handler_factory.create(self.current_container,

permissions, self.file_handler.secret_key)

158 if success:

159 self.file_handler = alternative_file_handler

160 self.file_handler_name = str(type(self.file_handler).

__name__)

161 self.info(f"file handler has been upgraded to {self.

file_handler_name}")

162 else:

163 alternative_handler_name = str(type(

alternative_file_handler).__name__)

164 self.info(f"no better file handler identified,

alternative was {alternative_handler_name}")

165 self.file_status = self.get_file_status()

84

A.3 client_cli.py

166

167 def info(self, *args, **kwargs) -> None:

168 if self.informational_prints:

169 print("info: ", *args, **kwargs)

170

171 @staticmethod

172 def input_request(text: str, hidden_input: bool = "False") -> str:

173 result: str

174 print("request: " + text, end="", flush=True)

175 if hidden_input:

176 result = getpass.getpass("")

177 else:

178 result = input("")

179 return result

180

181 @staticmethod

182 def error(*args, **kwargs) -> None:

183 print("\nerror: ", *args, **kwargs)

184

185 @staticmethod

186 def critical(*args, **kwargs) -> None:

187 print("critical: ", *args, **kwargs)

188 exit(1)

189

190 @staticmethod

191 def println(character: str = "-", length: int = 64) -> None:

192 print(character * length)

193

194 def run(self) -> None:

195 try:

196 self.println()

197 self.command_info()

198 except Exception as e:

199 print(e)

200 self.error("serious problem in information displaying...")

201 try:

202 self.commands_available()

203 except Exception as e:

204 print(e)

205 self.error("serious problem in displaying available commands

...")

206 while True:

207 command = input("\n> ")

208 command = command.strip().lower()

209 try:

210 if command == "":

211 continue

212 elif command == "info":

213 self.command_info()

214 elif command == "help":

85

A Code of the Model Implementation

215 self.command_help()

216 elif command == "view":

217 self.command_view()

218 elif command == "edit":

219 self.command_edit()

220 elif command == "protect":

221 self.command_protect()

222 elif command == "decrypt":

223 self.command_decrypt()

224 elif command == "backendtest":

225 self.command_test_backend()

226 elif command == "exit":

227 exit(0)

228 else:

229 self.commands_available()

230 except Exception as e:

231 print(e)

232 self.error("serious problem during command loop execution

...")

233 self.info(f"execution of command {command} aborted.")

234

235 def commands_available(self) -> None:

236 print(f"\nAVAILABLE COMMANDS: info, help, {self.file_handler.

get_supported_command_text()}, exit")

237 self.println()

238

239 def command_help(self) -> None:

240 buffer: str = ""

241 buffer += f"\nCOMMANDS:\n"

242 buffer += f"info: shows information on file and login

status\n"

243 buffer += f"help: shows this help page\n"

244 buffer += f"protect: locks the container or new file*\n"

245 buffer += f"decrypt: permanently decrypts container*\n"

246 buffer += f"view: shows the file content*\n"

247 buffer += f"edit: opens and editor*\n"

248 buffer += f"exit: exits this program\n\n"

249 buffer += f"*only works when permitted\n\n"

250 buffer += f"note: Not all operations are supported for all file

types.\n"

251 print(buffer)

252 self.println()

253

254 def command_info(self) -> None:

255 if not (self.group_cache and self.user_cache):

256 self.update_user_and_group_cache(True)

257 get: Callable = lambda key: self.backend.cch.get(key)

258 protection_status: str = 'unprotected' if not self.is_protected()

else 'protected'

259 self.println("")

86

A.3 client_cli.py

260 print(f"FILE: {os.path.split(self.current_file)[1]} ({

protection_status}, status {self.file_status})")

261 print(f"FILE HANDLER: {self.file_handler_name}")

262 self.println("")

263 print(f"USER: {get('username')}@{get('serverdomain')}")

264 print(f"USER ID: {get('userid')}")

265 print(f"DEVICE ID: {get('deviceid')}")

266 print(f"PERMISSIONS: ", end="")

267 permissions = self.__cached_personal_permissions()

268 inverted: List[str] = [key for key in permissions.keys if

permissions.get(key)]

269 print(", ".join(inverted))

270 self.println("")

271 print(f"SERVER GROUPS: ", end="")

272 groups = self.group_cache

273 group_text = "\n ".join([f"{key} ({groups.get(key)

})" for key in groups.keys()])

274 print(group_text)

275 self.println("")

276 print(f"SERVER USERS: ", end="")

277 users = self.user_cache

278 users_text = "\n ".join([f"{key} ({users.get(key)

})" for key in users.keys()])

279 print(users_text)

280

281 def __reconstruct_permission_cache(self) -> None:

282 try:

283 del self.permission_cache

284 except NameError:

285 pass

286 cc = self.current_container

287 personal_permissions: PermissionObject = None # noqa

288 body_key: str

289 full_posting_license: PostingLicenseUnencrypted

290 file_status: int = self.get_file_status()

291 if file_status <= 2:

292 personal_permissions = PermissionObject()

293 personal_permissions.set_all()

294 body_key = ""

295 full_posting_license = None # noqa

296 elif file_status == 4:

297 personal_permissions, body_key, full_posting_license =

deepcopy(self.backend.get_protected_file_rights(cc))

298 else: # status 3

299 casted_version: PostingLicenseUnencrypted = cc.

posting_license # noqa

300 own_id: str = self.backend.cch.get("userid")

301 for right in casted_version.rights:

302 if right.subject == own_id:

303 personal_permissions = deepcopy(right.permissions)

87

A Code of the Model Implementation

304 body_key = casted_version.content_key

305 full_posting_license = deepcopy(casted_version)

306 self.permission_cache = personal_permissions, body_key,

full_posting_license

307

308 def __cached_personal_permissions(self) -> PermissionObject:

309 permissions, _, _ = self.permission_cache

310 return permissions

311

312 def __cached_body_key(self) -> str:

313 _, key, _ = self.permission_cache

314 return key

315

316 def __cached_posting_license(self) -> PostingLicenseUnencrypted:

317 _, _, posting_license = self.permission_cache

318 return posting_license

319

320 def posting_license_editor(self, pre_existing_license: PostingLicense

, key: str = "") \

321 -> Optional[PostingLicenseUnencrypted]:

322 assert self.backend.cch.get("userid")

323 new_license: PostingLicenseUnencrypted

324 if isinstance(pre_existing_license, PostingLicenseUnencrypted):

325 assert pre_existing_license.content_key

326 new_license = deepcopy(pre_existing_license)

327 else:

328 if not key:

329 raise Exception("no key received for new posting license!

")

330 new_license = PostingLicenseUnencrypted()

331 new_license.content_key = key

332 self.command_editor_show(new_license)

333 self.command_editor_help()

334 while True:

335 command = input("\n> ")

336 command = command.strip().lower()

337 if command == "show":

338 self.command_editor_show(new_license)

339 elif command == "users":

340 self.command_editor_users()

341 elif command == "groups":

342 self.command_editor_groups()

343 elif command == "add":

344 new_license = self.command_editor_add(new_license)

345 elif command == "remove":

346 new_license = self.command_editor_remove(new_license)

347 elif command == "abort":

348 return None

349 elif command == "done":

350 try:

88

A.3 client_cli.py

351 new_license = self.editor_integrity_check(new_license

)

352 except PolicyIntegrityException:

353 self.error("the newly configured permission was not

allowed")

354 return None

355 break

356 else:

357 self.command_editor_help()

358 return new_license

359

360 def command_editor_help(self) -> None:

361 buffer: str = ""

362 buffer += f"\nCOMMANDS:\n"

363 buffer += f"help: shows this help page\n"

364 buffer += f"show: shows the currently set permissions\n

"

365 buffer += f"groups: shows the groups\n"

366 buffer += f"users: shows the groups\n"

367 buffer += f"add: adds a group/user to whitelist\n"

368 buffer += f"remove: removes a group/user from whitelist\n

"

369 buffer += f"abort: discards changes and exits the editor

\n"

370 buffer += f"done: saves changes and exits the editor"

371 print(buffer)

372 self.println("")

373

374 @staticmethod

375 def restore_key(dictionary: Dict, value: Any) -> str:

376 for key in dictionary:

377 if dictionary.get(key, "") == value:

378 return key

379 return ""

380

381 def command_editor_show(self, current_license:

PostingLicenseUnencrypted) -> None:

382 print(f"CURRENT LICENSE:")

383 for ro in current_license.rights:

384 subject_id: str = ro.subject

385 subject_name: str = self.restore_key(self.group_cache,

subject_id)

386 if not subject_name:

387 subject_name: str = self.restore_key(self.user_cache,

subject_id)

388 print(f"{subject_name} --> {ro.permissions}")

389

390 def get_id_from_cache(self, name: str) -> str:

391 entity_id = self.group_cache.get(name, "")

392 if not entity_id:

89

A Code of the Model Implementation

393 entity_id = self.user_cache.get(name, "")

394 return entity_id

395

396 def command_editor_add(self, current_license:

PostingLicenseUnencrypted) -> PostingLicenseUnencrypted:

397 name: str = input("enter name of subject (user/group) to add > ")

398 entity_id = self.get_id_from_cache(name)

399 if not entity_id:

400 self.error("subject name not found")

401 return current_license

402 for rights_object in current_license.rights:

403 if rights_object.subject == entity_id:

404 self.error("subject already in license!")

405 return current_license

406 new_rights = RightsObject()

407 new_rights.subject = entity_id

408 possible_permissions: List[str] = new_rights.permissions.keys

409 not_okay: bool = True

410 while not_okay:

411 print("POSSIBLE PERMISSIONS:\n" + ", ".join(

possible_permissions))

412 numbers: str = input("please enter a 1 (yes) or 0 (no) for

every permission > ")

413 if len(numbers) != len(possible_permissions):

414 continue

415 emptiness: str = numbers.strip().replace("0", "").replace("1"

, "")

416 if emptiness:

417 continue

418 for i, permission in enumerate(possible_permissions):

419 new_rights.permissions.set(permission, (False if numbers[

i] == '0' else True))

420 not_okay = False

421 current_license.rights.append(deepcopy(new_rights))

422 self.command_editor_show(current_license)

423 return current_license

424

425 def command_editor_remove(self, current_license:

PostingLicenseUnencrypted) -> PostingLicenseUnencrypted:

426 while True:

427 subject_ids: List[str] = current_license.get_subjects()

428 subject_names: List[str] = [self.restore_key(self.user_cache,

entity) for entity in subject_ids]

429 subject_names += [self.restore_key(self.group_cache, entity)

for entity in subject_ids]

430 subject_names = [x for x in subject_names if x]

431 print(f"the following entities have rights: {', '.join(

subject_names)}")

432 name: str = input("enter name of subject (user/group) to

delete > ")

90

A.3 client_cli.py

433 if not name:

434 break

435 entity_id = self.get_id_from_cache(name)

436 skip: bool = False

437 for rights_object in current_license.rights:

438 if rights_object.subject == entity_id:

439 current_license.rights.remove(rights_object)

440 skip = True

441 break

442 if not skip:

443 print(f"{name} was not found in license")

444 return deepcopy(current_license)

445

446 def editor_integrity_check(self, current_license:

PostingLicenseUnencrypted) -> PostingLicenseUnencrypted:

447 # checking if own user will (still) have reposting rights

448 updated_subjects: List[str] = current_license.get_subjects()

449 own_id: str = self.backend.cch.get("userid")

450 if own_id not in updated_subjects:

451 self.error("own id not found in policy!")

452 self.info("adding reposting rights...")

453 emergency_rights = RightsObject()

454 emergency_rights.subject = own_id

455 emergency_permission = PermissionObject()

456 emergency_permission.set("repost", True)

457 emergency_rights.permissions = emergency_permission

458 current_license.rights.append(emergency_rights)

459 at_least_one_entity_has_reposting_rights: bool = False

460 # checking if anyone can overwrite (/repost/protect) the file's

permissions

461 for rights_object in current_license.rights:

462 if rights_object.permissions.get("owner") or rights_object.

permissions.repost:

463 at_least_one_entity_has_reposting_rights = True

464 if not at_least_one_entity_has_reposting_rights:

465 self.error("NO ENTITY CAN CHANGE THE RIGHTS ANYMORE IN THIS

CONFIGURATION!")

466 raise PolicyIntegrityException()

467 return deepcopy(current_license)

468

469 def command_editor_groups(self) -> None:

470 print(f"SERVER GROUPS: ", end="")

471 groups = self.group_cache

472 group_text = "\n ".join([f"{key} ({groups.get(key)

})" for key in groups.keys()])

473 print(group_text)

474

475 def command_editor_users(self) -> None:

476 print(f"SERVER USERS: ", end="")

477 users = self.user_cache

91

A Code of the Model Implementation

478 users_text = "\n ".join([f"{key} ({users.get(key)

})" for key in users.keys()])

479 print(users_text)

480

481 def full_server_updates(self) -> None:

482 self.info("updating server-provided information...")

483 self.info("reconstructing permission cache...")

484 self.__reconstruct_permission_cache()

485 self.info("updating group information...")

486 self.group_cache = self.backend.retrieve_group_information()

487 self.info("updating user information...")

488 self.user_cache = self.backend.retrieve_user_information()

489

490 def command_protect(self) -> None:

491 try:

492 self.full_server_updates()

493 permissions = self.file_handler.permissions

494 posting_license: PostingLicenseUnencrypted

495 try:

496 assert permissions.owner or permissions.repost

497 except AssertionError:

498 raise InsufficientPermissionsException

499 bypass_key: str # necessary if file status is 2 (unencrypted

container) or 4 (protected container)

500 if not self.current_container.body_is_encrypted:

501 assert self.file_status <= 2

502 self.info(f"file body is not encrypted (status {self.

get_file_status()})")

503 bypass_key = self.current_container.encrypt_body()

504 posting_license = self.posting_license_editor(self.

current_container.posting_license,

505 bypass_key)

#

None,

key

506 elif self.get_file_status() >= 4:

507 self.info("file is already protected, asserting

permission change.")

508 existing_license: PostingLicenseUnencrypted = self.

__cached_posting_license()

509 posting_license = self.posting_license_editor(

existing_license, self.__cached_body_key())

510 else: # status 3

511 self.info("file is not protected yet.")

512 self.println("")

513 posting_license = self.posting_license_editor(self.

current_container.posting_license)

514 self.println("")

515 if posting_license: # if editor was successful

516 self.current_container.posting_license = posting_license

92

A.3 client_cli.py

517 self.current_container = self.backend.

lock_container_posting_license(

518 self.current_container) # expects status 3

519 self.info("posting license published")

520 self.current_container.save_container_file()

521 self.info("container saved")

522 if os.path.isfile(self.current_container.

full_original_file_path):

523 try:

524 self.current_container.delete_original_file()

525 self.info("original file removed")

526 except ContainerFileException:

527 self.error("original file could not be removed...

")

528 self.info("closing session")

529 self.restart(self.current_container.container_file_path)

530 else:

531 self.error("posting license editing was aborted.")

532 self.commands_available()

533 except InsufficientPermissionsException:

534 self.error("you are not allowed to protect this file")

535

536 def command_decrypt(self) -> None:

537 if self.get_file_status() < 4:

538 self.error("file is not protected")

539 raise Exception("file is not protected")

540 try:

541 permissions = self.file_handler.permissions

542 try:

543 assert permissions.owner or permissions.decrypt

544 except AssertionError:

545 raise InsufficientPermissionsException

546 file_path: str = deepcopy(self.current_container.

container_file_path)

547 if file_path.endswith(self.current_container.

container_file_extension):

548 file_path = file_path[:-len(self.current_container.

container_file_extension)] # removes extension

549 if os.path.isfile(file_path):

550 self.error("TARGET FILE ALREADY EXISTS!")

551 raise Exception("TARGET FILE ALREADY EXISTS!")

552 with open(file_path, "wb") as opened_file:

553 opened_file.write(self.file_handler._get_decrypted_body()

) # noqa

554 os.remove(os.path.join(file_path + self.current_container.

container_file_extension))

555 self.info("file decrypted")

556 self.info("closing session")

557 self.restart(file_path)

558 except InsufficientPermissionsException:

93

A Code of the Model Implementation

559 self.error("you are not allowed to decrypt this file")

560

561 def command_view(self) -> None:

562 try:

563 self.file_handler.view()

564 except FileHandlerPermissionException:

565 self.error("you are not allowed to view this file")

566 except FileHandlerSupportException:

567 self.error("viewing this file type is not supported at this

point")

568

569 def command_edit(self) -> None:

570 preserved_file_status: int = self.get_file_status()

571 assert preserved_file_status > 2

572 preserved_content_key: str

573 if preserved_file_status < 4: # file status 3

574 preserved_content_key = self.current_container.

posting_license.content_key # noqa

575 else: # file status 4

576 preserved_content_key = self.__cached_body_key()

577 assert self.file_handler.secret_key == preserved_content_key

578 try:

579 self.current_container = self.file_handler.edit()

580 if preserved_file_status < 4: # status 3 --> export into

status 1 permanent file

581 assert preserved_content_key == self.current_container.

posting_license.content_key # noqa

582 with open(self.current_container.full_original_file_path,

"wb") as opened_file:

583 temp_license: PostingLicenseUnencrypted = self.

current_container.posting_license # noqa

584 opened_file.write(self.current_container.

get_decrypted_body(temp_license.content_key))

585 else: # status 4 --> body and PL are encrypted already

586 self.current_container.save_container_file()

587 except FileHandlerPermissionException:

588 self.error("you are not allowed to edit this file")

589 except FileHandlerSupportException:

590 self.error("editing this file type is not supported at this

point")

591

592 def command_test_backend(self) -> bool:

593 result = False

594 self.info("testing backend certificates with random payload...")

595 try:

596 result: bool = self.backend.check_certificate_functionality()

597 except ClientBackendException as e:

598 self.error(e)

599 if result:

600 self.info("backend roundtrip certificate test successful")

94

A.4 client_config_file_handler.py

601 else:

602 self.error("backend roundtrip certificate test failed")

603 return result

604

605 def is_protected(self) -> bool:

606 return self.get_file_status() >= 4

607

608 def is_encrypted(self) -> bool:

609 return self.get_file_status() >= 3

610

611 def get_file_status(self) -> int:

612 status: int

613 if self.current_container.posting_license is None:

614 status = 1

615 else:

616 if not self.current_container.posting_license.encrypted:

617 if not self.current_container.body_is_encrypted:

618 status = 2

619 else:

620 status = 3

621 else:

622 status = 4

623 assert 5 > status > 0

624 self.file_status = status

625 return self.file_status

626

627 def load_file(self) -> None:

628 self.current_container = self.backend.load_file(self.current_file

)

629

630

631 if __name__ == "__main__":

632 if not len(sys.argv) > 1:

633 print(f"CRITICAL: NO FILE PATH HAS BEEN SUPPLIED AS ARGUMENT!")

634 exit(1)

635 cli: CommandLineInterface = CommandLineInterface(sys.argv[1].strip())

A.4 client_config_file_handler.py

1 # typing imports

2 from typing import Callable, List, Dict

3 # standard library imports

4 import os

5 import json

6 import platform

7 from hashlib import sha512

8 # external imports

9 # project level imports

95

A Code of the Model Implementation

10 from package_dataconversion import deepcopy, con_utf_bytes

11

12

13 class ClientConfigFileException(Exception):

14 pass

15

16

17 def client_config_file_exception(function: Callable) -> Callable:

18 def wrapper(*args, **kwargs):

19 try:

20 return function(*args, **kwargs)

21 except: # noqa

22 raise ClientConfigFileException(f"ERROR IN CLIENT CONFIG FILE

HANDLING! ({function.__name__})")

23 return wrapper

24

25

26 CONFIG_FILE_HANDLER_INSTANCES: int = 0

27

28

29 class ClientConfigFileHandler:

30 target_file: str

31 __current_dict: Dict

32 __keys_mandatory: List

33

34 def __new__(cls, *args, **kwargs): # Singleton implementation

35 global CONFIG_FILE_HANDLER_INSTANCES

36 if CONFIG_FILE_HANDLER_INSTANCES > 0:

37 raise ClientConfigFileException("ONLY ONE INSTANCE OF

ClientConfigFileHandler ALLOWED!")

38 CONFIG_FILE_HANDLER_INSTANCES += 1

39 return super(ClientConfigFileHandler, cls).__new__(cls)

40

41 def __init__(self, program_directory: str, file_name: str, create_new

: bool = False):

42 self.__keys_mandatory = "username userid password serverdomain

deviceid certificate " \

43 "servercertificate bootstrapped".split()

44 if not file_name.strip():

45 raise ClientConfigFileException("NO FILE SPECIFIED!")

46 self.target_file = os.path.join(program_directory, file_name)

47 if create_new and not os.path.isfile(self.target_file):

48 self.__current_dict = {}

49 self.save_file()

50 self.load_file()

51

52 @client_config_file_exception

53 def load_file(self) -> None:

54 assert os.path.isfile(self.target_file)

55 with open(self.target_file, "r") as file:

96

A.5 client_container_file.py

56 self.__current_dict = json.load(file)

57

58 @client_config_file_exception

59 def save_file(self) -> None:

60 with open(self.target_file, "w") as file:

61 json.dump(self.__current_dict, file)

62

63 def is_bootstrapped(self) -> bool:

64 self.load_file()

65 checked_data: Dict = deepcopy(self.__current_dict)

66 for key in self.__keys_mandatory:

67 if checked_data.get(key, "") == "": # key = potentially

missing attribute

68 return False

69 return True

70

71 def enter(self, key: str, value: str) -> None:

72 self.load_file()

73 self.__current_dict[key] = value

74 self.save_file()

75

76 @deepcopy

77 def get(self, key: str) -> str:

78 self.load_file()

79 return self.__current_dict.get(key, "")

80

81 @deepcopy

82 def get_mandatory_key_list(self) -> List:

83 return self.__keys_mandatory

84

85 def generate_user_configuration(self, username: str, password: str)

-> None:

86 self.enter("username", username)

87 self.enter("password", password)

88 self.enter("deviceid", self.get_device_id())

89 self.enter("serverdomain", "http://localhost:11235")

90

91 @staticmethod

92 def get_device_id() -> str:

93 components: List[str] = [platform.node(), platform.system(),

platform.processor()]

94 # for testing, os.getcwd() can be added to the components to

simulate different devices in different folders

95 uncooked: bytes = con_utf_bytes(":".join(components))

96 return sha512(uncooked).hexdigest()

A.5 client_container_file.py

97

A Code of the Model Implementation

1 # typing imports

2 from typing import Optional, Callable, Dict

3 # standard library imports

4 import os

5 import pickle

6 # external imports

7 # project level imports

8 from package_dataconversion import deepcopy, con_dict_json, con_json_dict

9 from package_cryptography import CryptoSystemAES

10 from package_licenses import PostingLicense, PostingLicenseUnencrypted

11

12

13 class ContainerFileException(Exception):

14 pass

15

16

17 def container_file_exception(function: Callable) -> Callable:

18 def wrapper(*args, **kwargs):

19 try:

20 return function(*args, **kwargs)

21 except: # noqa

22 raise ContainerFileException(f"ERROR WITH CONTAINER FILE! ({

function.__name__})")

23 return wrapper

24

25

26 class ContainerFile:

27 version: int = 1

28 owner_id: str

29 container_file_path: str

30 full_original_file_path: str

31 body: bytes

32 body_is_encrypted: bool

33 posting_license: PostingLicense

34 container_file_extension: str

35

36 def __init__(self, source_file: str, owner_id: Optional[str] = ""):

37 self.container_file_extension = ".container"

38 assert source_file

39 if source_file.endswith(self.container_file_extension):

40 self.load_existing_container_file(source_file)

41 else:

42 self.create_new_container_file(source_file, owner_id)

43

44 @container_file_exception

45 def load_existing_container_file(self, path: str) -> None:

46 assert os.path.isfile(path) and path.endswith(self.

container_file_extension)

47 loaded_container: ContainerFile

48 with open(path, "rb") as opened_file:

98

A.5 client_container_file.py

49 loaded_container = pickle.load(opened_file)

50 self.version = loaded_container.version

51 self.owner_id = loaded_container.owner_id

52 self.container_file_path = os.path.abspath(path)

53 self.full_original_file_path = loaded_container.

full_original_file_path

54 self.body = loaded_container.body

55 self.body_is_encrypted = loaded_container.body_is_encrypted

56 self.posting_license = loaded_container.posting_license

57 assert self.posting_license.encrypted

58

59 @container_file_exception

60 def create_new_container_file(self, source_file: str, owner_id: str)

-> None:

61 assert source_file and owner_id

62 assert os.path.isfile(source_file)

63 self.owner_id = owner_id

64 self.full_original_file_path = os.path.abspath(source_file)

65 self.container_file_path = self.full_original_file_path + self.

container_file_extension

66 self.body_is_encrypted = False

67 with open(self.full_original_file_path, "rb") as opened_file:

68 self.body = opened_file.read()

69 self.posting_license = PostingLicenseUnencrypted()

70 self.posting_license.content_key = self.encrypt_body()

71 self.posting_license.add_owner(owner_id) # noqa

72

73 @container_file_exception

74 def encrypt_body(self, known_json_key: str = "") -> str:

75 assert self.body

76 assert not self.body_is_encrypted

77 crypto_system: CryptoSystemAES = deepcopy(CryptoSystemAES()) #

is local to prevent accidentally reusing a key

78 if known_json_key:

79 crypto_system.import_full_private_key(con_json_dict(

known_json_key)) # uses existing key

80 else:

81 crypto_system.generate_random_key() # creates random key

82 self.body = crypto_system.encrypt(self.body)

83 assert self.body

84 self.body_is_encrypted = True

85 return con_dict_json(crypto_system.export_full_private_key())

86

87 @deepcopy

88 @container_file_exception

89 def get_decrypted_body(self, json_key: str) -> bytes:

90 assert json_key

91 if not self.body_is_encrypted:

92 return self.body

93 key: Dict = con_json_dict(json_key)

99

A Code of the Model Implementation

94 crypto_system: CryptoSystemAES = CryptoSystemAES()

95 crypto_system.import_full_private_key(key)

96 return crypto_system.decrypt(self.body)

97

98 @container_file_exception

99 def save_container_file(self) -> None:

100 assert self.version and self.owner_id and self.

container_file_path and self.full_original_file_path

101 assert self.body and self.body_is_encrypted and self.

posting_license.encrypted and self.container_file_extension

102 with open(self.container_file_path, "wb") as opened_file:

103 pickle.dump(self, opened_file)

104

105 @container_file_exception

106 def delete_original_file(self) -> None:

107 assert os.path.isfile(self.container_file_path)

108 assert os.path.isfile(self.full_original_file_path)

109 os.remove(self.full_original_file_path)

A.6 client_server_handler.py

1 # typing imports

2 from typing import Optional, Callable, Dict

3 # standard library imports

4 # external imports

5 import requests # requests

6 # project level imports

7 from package_dataconversion import con_dict_json

8

9

10 class ServerHandlerException(Exception):

11 pass

12

13

14 def server_handler_exception(function: Callable) -> Callable:

15 def wrapper(*args, **kwargs):

16 try:

17 return function(*args, **kwargs)

18 except: # noqa

19 raise ServerHandlerException(f"ERROR IN SERVER HANDLER! ({

function.__name__})")

20 return wrapper

21

22

23 class ClientServerHandler:

24 server_domain: str

25 uname: str

26 password: str

100

A.6 client_server_handler.py

27 jwt_token: str

28

29 def __init__(self, user_name: Optional[str] = None, password:

Optional[str] = None) -> None:

30 self.server_domain = "http://localhost:11235"

31 self.uname = user_name if user_name else ""

32 self.password = password if password else ""

33 self.jwt_token = ""

34

35 @server_handler_exception

36 def authenticate(self) -> None:

37 self.jwt_token = ""

38 response = requests.post(f"{self.server_domain}/login", auth=(

self.uname, self.password), timeout=5)

39 self.jwt_token = response.json()['data']

40

41 @server_handler_exception

42 def get(self, path: str, timeout: int = 3) -> Dict:

43 response = requests.get(self.server_domain + path, timeout=

timeout)

44 return response.json()

45

46 @server_handler_exception

47 def authenticated_get(self, path: str, timeout: int = 3, json_data:

str = "") -> Dict:

48 if not self.jwt_token:

49 assert self.uname and self.password

50 self.authenticate()

51 headers = {'Authorization': ("Bearer " + self.jwt_token)}

52 try:

53 if json_data:

54 response = requests.get(self.server_domain + path,

headers=headers, timeout=timeout, json=json_data)

55 else:

56 response = requests.get(self.server_domain + path,

headers=headers, timeout=timeout)

57 except Exception as e:

58 print(e)

59 response = requests.Response()

60 response.status_code = 450

61 if 500 > response.status_code >= 400:

62 self.authenticate()

63 headers = {'Authorization': ("Bearer " + self.jwt_token)} if

len(self.jwt_token) > 0 else {}

64 if json_data:

65 response = requests.get(self.server_domain + path,

headers=headers, timeout=timeout, json=json_data)

66 else:

67 response = requests.get(self.server_domain + path,

headers=headers, timeout=timeout)

101

A Code of the Model Implementation

68 return response.json()

69

70 @server_handler_exception

71 def authenticated_post(self, path: str, json_data: str, timeout: int

= 3) -> requests.Response:

72 if not self.jwt_token:

73 self.authenticate()

74 headers = {'Authorization': ("Bearer " + self.jwt_token)} if len(

self.jwt_token) > 0 else {}

75 try:

76 response = requests.post(self.server_domain + path, json=

json_data, headers=headers, timeout=timeout)

77 except Exception as e:

78 print(e)

79 response = requests.Response()

80 response.status_code = 450

81 if 500 > response.status_code >= 400:

82 self.authenticate()

83 headers = {'Authorization': ("Bearer " + self.jwt_token)} if

len(self.jwt_token) > 0 else {}

84 response = requests.post(self.server_domain + path, json=

json_data, headers=headers, timeout=timeout)

85 return response

86

87 @server_handler_exception

88 def authenticated_put(self, path: str, json_data: str, timeout: int =

3) -> requests.Response:

89 if not self.jwt_token:

90 self.authenticate()

91 headers = {'Authorization': ("Bearer " + self.jwt_token)} if len(

self.jwt_token) > 0 else {}

92 try:

93 response = requests.put(self.server_domain + path, json=

json_data, headers=headers, timeout=timeout)

94 except Exception as e:

95 print(e)

96 response = requests.Response()

97 response.status_code = 450

98 if 500 > response.status_code >= 400:

99 self.authenticate()

100 headers = {'Authorization': ("Bearer " + self.jwt_token)} if

len(self.jwt_token) > 0 else {}

101 response = requests.put(self.server_domain + path, json=

json_data, headers=headers, timeout=timeout)

102 return response

103

104 @server_handler_exception

105 def get_public_server_key(self) -> Dict:

106 return self.authenticated_get("/certificate")["data"]

107

102

A.7 file_handler.py

108 @server_handler_exception

109 def register_client_certificate(self, encrypted_payload: str,

server_encrypted_meta_key: str) -> bool:

110 json_data: str = con_dict_json({"payload": encrypted_payload, "

key": server_encrypted_meta_key})

111 response = self.authenticated_post("/newdevice", json_data)

112 return response.status_code == 201

113

114 @server_handler_exception

115 def get_user_id(self) -> str:

116 return self.authenticated_get("/profile")["data"]

A.7 file_handler.py

1 # typing imports

2 from typing import Callable, List

3 # standard library imports

4 import os

5 import secrets

6 import getpass

7 import tempfile

8 # external imports

9 # project level imports

10 from client_container_file import ContainerFile

11 from package_dataconversion import deepcopy

12 from package_licenses import PermissionObject, PostingLicenseUnencrypted

13

14

15 class FileHandlerException(Exception):

16 pass

17

18

19 class FileHandlerMissingKeyException(FileHandlerException):

20 pass

21

22

23 class FileHandlerPermissionException(FileHandlerException):

24 pass

25

26

27 class FileHandlerSupportException(FileHandlerException):

28 pass

29

30

31 def file_handler_exception(function: Callable) -> Callable:

32 def wrapper(*args, **kwargs):

33 try:

34 return function(*args, **kwargs)

103

A Code of the Model Implementation

35 except: # noqa

36 raise FileHandlerException(f"ERROR IN FILE HANDLER! ({

function.__name__})")

37

38 return wrapper

39

40

41 class FileHandler:

42 secret_key: str

43 supported_commands: List

44 container: ContainerFile

45 permissions: PermissionObject

46

47 def __init__(self, container: ContainerFile, permissions:

PermissionObject, json_key: str = ""):

48 assert container and permissions

49 self.container = container

50 self.secret_key = json_key

51 self.permissions = permissions

52 self.supported_commands = deepcopy(["protect, decrypt"])

53 if type(self).__name__ == "FileHandler":

54 raise NotImplementedError

55

56 @file_handler_exception

57 def view(self) -> None:

58 raise FileHandlerSupportException

59

60 @file_handler_exception

61 def edit(self) -> ContainerFile:

62 raise FileHandlerSupportException

63

64 def _get_decrypted_body(self) -> bytes:

65 decrypted_body: bytes

66 if not self.container.posting_license.encrypted:

67 source: PostingLicenseUnencrypted = deepcopy(self.container.

posting_license)

68 self.secret_key = source.get_content_key()

69 else:

70 if not self.secret_key:

71 raise FileHandlerMissingKeyException()

72 decrypted_body = deepcopy(self.container.get_decrypted_body(self.

secret_key))

73 return decrypted_body

74

75 def get_supported_command_text(self) -> str:

76 return deepcopy(", ".join(self.supported_commands))

77

78 def _generate_temp_decrypted_file(self) -> str:

79 temp_file_name: str = secrets.token_urlsafe(32) + "." + self.

container.full_original_file_path.split(".")[-1]

104

A.8 file_handler_factory.py

80 temp_directory: str = tempfile.gettempdir()

81 full_temp_path: str = os.path.abspath(os.path.join(temp_directory

, temp_file_name))

82 content: bytes = self._get_decrypted_body()

83 with open(full_temp_path, "wb") as opened_file:

84 opened_file.write(content)

85 return full_temp_path

86

87 @staticmethod

88 def _remove_temp_file(temp_file: str) -> None:

89 while os.path.isfile(temp_file):

90 try:

91 os.remove(temp_file)

92 except PermissionError:

93 print("\n<you must close all programs and processes using

the file before continuing>")

94 getpass.getpass("<press enter when you closed all

processes and programs using the file>")

95

96 def _set_new_body_content(self, new_content: bytes) -> None:

97 self.container.body_is_encrypted = False

98 self.container.body = deepcopy(new_content)

99

100 def _secure_new_body_content(self, new_body: bytes) -> ContainerFile:

101 status_4_plus: bool = deepcopy(self.container.posting_license.

encrypted)

102 assert self.container.posting_license

103 if not status_4_plus: # status 3

104 assert isinstance(self.container.posting_license,

PostingLicenseUnencrypted)

105 self.secret_key = self.container.posting_license.content_key

106 self._set_new_body_content_protected(new_body, self.secret_key)

for status 4, the key is already in secret_key

107 return self.get_container() # returns container of status 3 or 4

108

109 def get_container(self) -> ContainerFile:

110 return deepcopy(self.container)

111

112 def _set_new_body_content_protected(self, new_content: bytes,

existing_body_key: str) -> None:

113 self._set_new_body_content(new_content)

114 self.container.encrypt_body(existing_body_key)

A.8 file_handler_factory.py

1 # typing imports

2 from typing import Tuple

3 # standard library imports

105

A Code of the Model Implementation

4 # external imports

5 # project level imports

6 from file_handler import *
7 from file_handler_text import FileHandlerText

8 from file_handler_generic import FileHandlerGeneric

9

10

11 class FileHandlerFactory:

12

13 def create(self, container: ContainerFile, permissions:

PermissionObject, key: str = "")\

14 -> Tuple[FileHandler, bool]:

15 result: FileHandler

16 success: bool

17 if self.__check_if_content_utf_compatible(container, permissions,

key):

18 result, success = FileHandlerText(container, permissions),

True

19 else:

20 result, success = FileHandlerGeneric(container, permissions),

False

21 if key:

22 result.secret_key = key

23 return result, success

24

25 @staticmethod

26 def __extract_file_extension(container: ContainerFile) -> str:

27 extension: str = container.full_original_file_path.strip().split(

".")[-1].lower()

28 return extension

29

30 @staticmethod

31 def __check_if_content_utf_compatible(container: ContainerFile,

permissions: PermissionObject, key: str) -> bool:

32 try:

33 temporary_generic: FileHandlerGeneric = FileHandlerGeneric(

container, permissions, key)

34 if container.body_is_encrypted:

35 if not container.posting_license.encrypted: # not status

4 --> status 3

36 temporary_generic.secret_key = container.

posting_license.content_key # noqa

37 decrypted_body: bytes = temporary_generic._get_decrypted_body

() # noqa

38 decrypted_body.decode("utf-8")

39 return True

40 except (UnicodeDecodeError, FileHandlerMissingKeyException):

41 return False

106

A.9 file_handler_generic.py

A.9 file_handler_generic.py

1 # typing imports

2 from typing import Optional

3 # standard library imports

4 # external imports

5 import startfile as os_independent #universal-startfile # noqa

6 # project level imports

7 from file_handler import *
8

9

10 class FileHandlerGeneric(FileHandler):

11

12 def __init__(self, container: ContainerFile, permissions:

PermissionObject, json_key: Optional[str] = ""):

13 super().__init__(container, permissions, json_key)

14 self.supported_commands.append("view")

15 self.supported_commands.append("edit")

16

17 def view(self) -> None:

18 try:

19 assert self.permissions.owner or self.permissions.view

20 except AssertionError:

21 raise FileHandlerPermissionException()

22 temp_file: str = self._generate_temp_decrypted_file()

23 os.chmod(temp_file, 0o777) # fixes file permission issue on

linux

24 os_independent.startfile(temp_file)

25 getpass.getpass("<press enter when you finished viewing the file>

")

26 FileHandlerGeneric._remove_temp_file(temp_file)

27

28 def edit(self) -> ContainerFile: # receives containers of status 3

and 4

29 try:

30 assert self.permissions.owner or self.permissions.modify

31 except AssertionError:

32 raise FileHandlerPermissionException()

33

34 temp_file: str = self._generate_temp_decrypted_file()

35 os.chmod(temp_file, 0o777) # fixes file permission issue on

linux

36 os_independent.startfile(temp_file)

37 getpass.getpass("<press enter when you saved the changes to the

file>")

38 new_body: bytes

39 with open(temp_file, "rb") as opened_file:

40 new_body = opened_file.read()

41 FileHandlerGeneric._remove_temp_file(temp_file)

42 return self._secure_new_body_content(new_body)

107

A Code of the Model Implementation

A.10 file_handler_text.py

1 # typing imports

2 # standard library imports

3 # external imports

4 # project level imports

5 from file_handler import *
6 from extended_code_library.text_editor import TextEditor

7

8

9 class FileHandlerText(FileHandler):

10

11 def __init__(self, container: ContainerFile, permissions:

PermissionObject, json_key: str = ""):

12 super().__init__(container, permissions, json_key)

13 self.supported_commands.append("view")

14 self.supported_commands.append("edit")

15

16 def __get_content(self) -> str:

17 content: str

18 try:

19 content = self._get_decrypted_body().decode("utf-8")

20 except UnicodeDecodeError:

21 content = str(self._get_decrypted_body())

22 return content

23

24 def view(self) -> None:

25 try:

26 assert self.permissions.owner or self.permissions.view

27 except AssertionError:

28 raise FileHandlerPermissionException()

29 content: str = self.__get_content()

30 print(content)

31

32 def edit(self) -> ContainerFile:

33 try:

34 assert self.permissions.owner or self.permissions.modify

35 except AssertionError:

36 raise FileHandlerPermissionException()

37 content: str = self.__get_content()

38 content = TextEditor.edit_text(content)

39 return self._secure_new_body_content(content.encode("utf-8"))

A.11 package_certificates.py

1 # typing imports

108

A.11 package_certificates.py

2 from typing import Callable, Dict, Optional

3 # standard library imports

4 # external imports

5 # project level imports

6 from package_dataconversion import deepcopy

7 from package_cryptography import CryptographyException, CryptoSystemRSA

8

9

10 class CertificateException(CryptographyException):

11 pass

12

13

14 def certificate_exception(function: Callable) -> Callable:

15 def wrapper(*args, **kwargs):

16 try:

17 return function(*args, **kwargs)

18 except: # noqa

19 raise CryptographyException(f"ERROR IN CERTIFICATE PACKAGE!

({function.__name__})")

20 return wrapper

21

22

23 class HalfCertificate:

24 __csys: CryptoSystemRSA

25

26 @certificate_exception

27 def __init__(self, public_key: Optional[Dict] = None) -> None:

28 self.__csys = CryptoSystemRSA()

29 if public_key:

30 self.import_public_key(public_key)

31

32 @certificate_exception

33 def encrypt(self, message: bytes) -> bytes:

34 return self.__csys.encrypt(message)

35

36 @certificate_exception

37 def verify(self, message: bytes, signature: bytes) -> str:

38 return self.__csys.verify(message, signature)

39

40 @certificate_exception

41 def import_public_key(self, key: Dict) -> None:

42 self.__csys.import_public_key(key)

43

44

45 class FullCertificate:

46 __csys: CryptoSystemRSA

47

48 def __init__(self, key_size: int = 0):

49 self.__csys = CryptoSystemRSA()

50 if key_size > 0:

109

A Code of the Model Implementation

51 self.__csys.set_key_size(key_size)

52

53 @certificate_exception

54 def set_key_size(self, size: int) -> None:

55 return self.__csys.set_key_size(size)

56

57 @deepcopy

58 def get_msg_max_size(self) -> int:

59 return self.__csys.get_msg_max_size()

60

61 @certificate_exception

62 def generate_keys(self) -> None:

63 self.__csys.set_threads_maximum()

64 return self.__csys.generate_keys()

65

66 @certificate_exception

67 def encrypt(self, message: bytes) -> bytes:

68 return self.__csys.encrypt(message)

69

70 @certificate_exception

71 def decrypt(self, ciphertext: bytes) -> bytes:

72 return self.__csys.decrypt(ciphertext)

73

74 @certificate_exception

75 def sign(self, message: bytes) -> bytes:

76 return self.__csys.sign(message, "SHA-256")

77

78 @certificate_exception

79 def verify(self, message: bytes, signature: bytes) -> bool:

80 return self.__csys.verify(message, signature) == "SHA-256"

81

82 @certificate_exception

83 @deepcopy

84 def export_public_key(self) -> Dict:

85 return self.__csys.export_public_key()

86

87 @certificate_exception

88 def import_public_key(self, key: Dict) -> None:

89 self.__csys.import_public_key(key)

A.12 package_cryptography.py

1 # typing imports

2 # standard library imports

3 import secrets

4 import io

5 # external imports

6 import rsa # rsa

110

A.12 package_cryptography.py

7 import pyAesCrypt # pyAesCrypt # type: ignore

8 from Crypto.Cipher import AES as AES4GCM # pycryptodome # noqa

9 from psutil import cpu_count # psutil

10 # project level imports

11 from package_dataconversion import *
12

13

14 class CryptographyException(Exception):

15 pass

16

17

18 def cryptography_exception(function: Callable) -> Callable:

19 def wrapper(*args, **kwargs):

20 try:

21 return function(*args, **kwargs)

22 except: # noqa

23 raise CryptographyException(f"ERROR IN CRYPTOGRAPHIC PACKAGE!

({function.__name__})")

24 return wrapper

25

26

27 class CryptoSystem:

28 def encrypt(self, data: bytes) -> bytes:

29 raise NotImplementedError()

30

31 def decrypt(self, data: bytes) -> bytes:

32 raise NotImplementedError()

33

34 def export_full_private_key(self) -> Dict:

35 raise NotImplementedError()

36

37 def import_full_private_key(self, key: Dict) -> None:

38 raise NotImplementedError()

39

40

41 class CryptoSystemAES(CryptoSystem):

42 __key: bytes = b""

43 buffer_size: int = 64 * 1024

44

45 @cryptography_exception

46 def generate_random_key(self) -> None:

47 assert not self.__key

48 self.__key = secrets.token_bytes(256)

49

50 @deepcopy

51 @cryptography_exception

52 def export_full_private_key(self) -> Dict:

53 return {"key": con_bytes_utf(con_bytes_b64(self.__key))}

54

55 @cryptography_exception

111

A Code of the Model Implementation

56 def import_full_private_key(self, key: Dict) -> None:

57 self.__key = con_b64_bytes(con_utf_bytes(key["key"]))

58

59 @deepcopy

60 @cryptography_exception

61 def encrypt(self, data: bytes) -> bytes:

62 assert self.__key

63 pbs = deepcopy(io.BytesIO(data)) # plaintext binary stream

64 cbs = deepcopy(io.BytesIO()) # ciphertext binary stream

65 pyAesCrypt.encryptStream(pbs, cbs, str(self.__key), self.

buffer_size)

66 return cbs.getvalue()

67

68 @deepcopy

69 @cryptography_exception

70 def decrypt(self, data: bytes) -> bytes:

71 assert self.__key

72 cbs = deepcopy(io.BytesIO(data)) # ciphertext binary stream

73 dbs = deepcopy(io.BytesIO()) # decrypted binary stream

74 pyAesCrypt.decryptStream(cbs, dbs, str(self.__key), self.

buffer_size, len(data))

75 return dbs.getvalue()

76

77

78 class CryptoSystemRSA(CryptoSystem):

79 __key_size: int

80 threads: int

81 __msg_max_size: int

82 __pubkey: rsa.key.PublicKey

83 __privkey: rsa.key.PrivateKey

84

85 def __init__(self, key_size: int = -1):

86 self.__key_size = key_size

87 self.threads = 1

88 self.__msg_max_size = -1

89

90 @cryptography_exception

91 def set_key_size(self, size: int) -> None:

92 assert size in [128, 256, 384, 512, 1024, 2048, 3072, 4096]

93 self.__key_size = size

94

95 def update_msg_max_size(self) -> None:

96 self.__msg_max_size = int(self.__key_size / 8 - 11) # always 11

byte overhead with this RSA implementation

97

98 @deepcopy

99 def get_msg_max_size(self) -> int:

100 return self.__msg_max_size

101

102 @cryptography_exception

112

A.12 package_cryptography.py

103 def generate_keys(self) -> None:

104 (pubkey, privkey) = rsa.newkeys(self.__key_size, poolsize=self.

threads, accurate=True)

105 self.__pubkey = pubkey

106 self.__privkey = privkey

107 self.update_msg_max_size()

108

109 @cryptography_exception

110 def encrypt(self, data: bytes) -> bytes:

111 assert self.__pubkey

112 return rsa.encrypt(data, self.__pubkey)

113

114 @cryptography_exception

115 def decrypt(self, data: bytes) -> bytes:

116 assert self.__privkey

117 return rsa.decrypt(data, self.__privkey)

118

119 @cryptography_exception

120 def sign(self, message: bytes, hash_algorithm: str = "SHA-256") ->

bytes:

121 assert self.__privkey

122 assert self.__msg_max_size > 51

123 return rsa.sign(message, self.__privkey, hash_method=

hash_algorithm)

124

125 @cryptography_exception

126 def verify(self, message: bytes, signature: bytes) -> str:

127 assert self.__pubkey

128 try:

129 return rsa.verify(message, signature, self.__pubkey)

130 except rsa.VerificationError:

131 return ""

132

133 @cryptography_exception

134 @deepcopy

135 def export_public_key(self) -> Dict:

136 return {"n": self.__pubkey.n, "e": self.__pubkey.e}

137

138 @cryptography_exception

139 def import_public_key(self, key: Dict) -> None:

140 n = key["n"]

141 e = key["e"]

142 self.__pubkey = rsa.PublicKey(n, e)

143

144 @cryptography_exception

145 def set_threads(self, threads: int) -> bool:

146 if not (1 <= threads <= cpu_count()):

147 return False

148 self.threads = threads

149 return True

113

A Code of the Model Implementation

150

151 @cryptography_exception

152 def set_threads_maximum(self) -> bool:

153 return self.set_threads(cpu_count())

154

155 @cryptography_exception

156 def set_threads_minimum(self) -> bool:

157 return self.set_threads(1)

158

159 @deepcopy

160 @cryptography_exception

161 def export_full_private_key(self) -> Dict:

162 return {"n": self.__privkey.n,

163 "e": self.__privkey.e,

164 "d": self.__privkey.d,

165 "p": self.__privkey.p,

166 "q": self.__privkey.q}

167

168 @cryptography_exception

169 def import_full_private_key(self, key: Dict) -> None:

170 key_n: int = key["n"]

171 key_e: int = key["e"]

172 key_d: int = key["d"]

173 key_p: int = key["p"]

174 key_q: int = key["q"]

175 self.__privkey = rsa.PrivateKey(key_n, key_e, key_d, key_p, key_q

)

176

177

178 class CryptoSystemAESGCM(CryptoSystem):

179 __key: bytes = b""

180 __header: bytes = b""

181

182 def set_header(self, header_text: bytes) -> None:

183 self.__header = header_text

184

185 @cryptography_exception

186 def generate_random_key(self) -> None:

187 assert not self.__key

188 self.__key = secrets.token_bytes(32)

189

190 @deepcopy

191 @cryptography_exception

192 def encrypt(self, data: bytes) -> bytes:

193 cipher = AES4GCM.new(self.__key, AES4GCM.MODE_GCM)

194 cipher.update(self.__header)

195 new_ciphertext, tag = cipher.encrypt_and_digest(data)

196 outbound: Callable = lambda x: con_bytes_utf(con_bytes_b64(x))

197 cipher_data: Dict = {

198 "nonce": outbound(cipher.nonce),

114

A.13 package_dataconversion.py

199 "header": outbound(self.__header),

200 "ciphertext": outbound(new_ciphertext),

201 "tag": outbound(tag)

202 }

203 return con_utf_bytes(con_dict_json(cipher_data))

204

205 @deepcopy

206 @cryptography_exception

207 def decrypt(self, data: bytes) -> bytes:

208 cipher_data: Dict = con_json_dict(con_bytes_utf(data))

209 fin: Callable = lambda x: con_b64_bytes(con_utf_bytes(x))

210 old_ciphertext = fin(cipher_data["ciphertext"])

211 nonce = fin(cipher_data["nonce"])

212 header = fin(cipher_data["header"])

213 tag = fin(cipher_data["tag"])

214 cipher = AES4GCM.new(self.__key, AES4GCM.MODE_GCM, nonce=nonce)

215 cipher.update(header)

216 plaintext = cipher.decrypt_and_verify(old_ciphertext, tag)

217 return plaintext

218

219 @deepcopy

220 @cryptography_exception

221 def export_full_private_key(self) -> Dict:

222 return {"key": con_bytes_utf(con_bytes_b64(self.__key))}

223

224 @cryptography_exception

225 def import_full_private_key(self, key: Dict) -> None:

226 self.__key = con_b64_bytes(con_utf_bytes(key["key"]))

A.13 package_dataconversion.py

1 # typing imports

2 from typing import Any, Dict, Callable

3 # standard library imports

4 import copy

5 import json

6 import base64

7 # external imports

8 # project level imports

9

10

11 class ConversionException(Exception):

12 pass

13

14

15 def conversion_exception(function: Callable) -> Callable:

16 def wrapper(*args, **kwargs):

17 try:

115

A Code of the Model Implementation

18 return function(*args, **kwargs)

19 except: # noqa

20 raise ConversionException(f"ERROR IN DATA CONVERSION PACKAGE!

({function.__name__})")

21 return wrapper

22

23

24 def deepcopy(thing: Any) -> Any:

25 if callable(thing):

26 def wrapper(*args, **kwargs):

27 x: Any = thing(*args, **kwargs)

28 return copy.deepcopy(x)

29

30 return wrapper

31 else:

32 return copy.deepcopy(thing)

33

34

35 @deepcopy

36 @conversion_exception

37 def con_bytes_hex(data: bytes) -> str:

38 return data.hex()

39

40

41 @deepcopy

42 @conversion_exception

43 def con_hex_bytes(data: str) -> bytes:

44 return bytes.fromhex(data)

45

46

47 @deepcopy

48 @conversion_exception

49 def con_dict_json(data: Dict) -> str:

50 return json.dumps(data)

51

52

53 @deepcopy

54 @conversion_exception

55 def con_json_dict(data: str) -> Dict:

56 return json.loads(data)

57

58

59 @deepcopy

60 @conversion_exception

61 def con_bytes_b64(data: bytes) -> bytes:

62 return base64.urlsafe_b64encode(data)

63

64

65 @deepcopy

66 @conversion_exception

116

A.14 package_debugging.py

67 def con_b64_bytes(data: bytes) -> bytes:

68 return base64.urlsafe_b64decode(data)

69

70

71 @deepcopy

72 @conversion_exception

73 def con_bytes_utf(data: bytes) -> str:

74 return data.decode("utf-8")

75

76

77 @deepcopy

78 @conversion_exception

79 def con_utf_bytes(data: str) -> bytes:

80 return data.encode("utf-8")

81

82

83 @deepcopy

84 @conversion_exception

85 def con_b64_hex(data: bytes) -> str:

86 return con_bytes_hex(con_b64_bytes(data))

87

88

89 @deepcopy

90 @conversion_exception

91 def con_hex_b64(data: str) -> bytes:

92 return con_bytes_b64(con_hex_bytes(data))

A.14 package_debugging.py

1 # typing imports

2 from typing import Callable, Any

3 # standard library imports

4 from time import perf_counter

5 # external imports

6 # project level imports

7

8

9 def printing_timer(function: Callable) -> Callable:

10 def wrapper(*args, **kwargs) -> Callable:

11 start: float = perf_counter()

12 x: Any = function(*args, **kwargs)

13 end: float = perf_counter()

14 print(f"{str(function)[1:-1]} terminated in {end - start} seconds

...")

15 return x

16 return wrapper

117

A Code of the Model Implementation

A.15 package_licenses.py

1 # typing imports

2 from typing import List, Optional

3 # standard library imports

4 # external imports

5 # project level imports

6 from package_dataconversion import *
7

8

9 class LicenseException(Exception):

10 pass

11

12

13 def license_exception(function: Callable) -> Callable:

14 def wrapper(*args, **kwargs):

15 try:

16 return function(*args, **kwargs)

17 except: # noqa

18 raise LicenseException(f"ERROR IN LICENSE! ({function.

__name__})")

19

20 return wrapper

21

22

23 class PermissionObject:

24 version: int

25 keys: List[str]

26 # Permission Flags

27 owner: bool # all permissions below (overwriting)

28 view: bool # can view document

29 decrypt: bool # can restore unencrypted version

30 modify: bool # can change file content (without changing the PL)

31 repost: bool # can issue new posting license and send to server

32

33 def __init__(self, permission_object_string: Optional[str] = ""):

34 self.version = 1

35 self.keys = ["owner", "view", "decrypt", "modify", "repost"]

36 if not permission_object_string:

37 permission_object_string = "{}"

38 data: Dict = json.loads(permission_object_string)

39 self.version = data.get("version", self.version)

40 self.owner = data.get("owner", False)

41 self.view = data.get("view", False)

42 self.decrypt = data.get("decrypt", False)

43 self.modify = data.get("modify", False)

44 self.repost = data.get("repost", False)

45

46 def __repr__(self):

47 return con_dict_json({

118

A.15 package_licenses.py

48 "version": self.version,

49 "owner": self.owner,

50 "view": self.view,

51 "decrypt": self.decrypt,

52 "modify": self.modify,

53 "repost": self.repost

54 })

55

56 def anything(self) -> True:

57 rights: List[bool] = [self.owner, self.view, self.decrypt, self.

modify, self.repost]

58 return bool(max(rights))

59

60 def set(self, key: str, value: bool) -> None:

61 assert key in self.keys

62 assert isinstance(value, bool)

63 setattr(self, key, value)

64

65 def set_all(self, value: bool = True) -> None:

66 for key in self.keys:

67 self.set(key, value)

68

69 def get(self, key: str) -> bool:

70 assert key in self.keys

71 return deepcopy(getattr(self, key))

72

73 @deepcopy

74 def json_version(self) -> str:

75 return str(self)

76

77

78 class PermissionMerger:

79 @staticmethod

80 @deepcopy

81 def merge(permissions: List[PermissionObject]) -> PermissionObject:

82 base_object: PermissionObject = PermissionObject()

83 for additional_permission in permissions:

84 base_object.owner = base_object.owner or

additional_permission.owner

85 base_object.view = base_object.view or additional_permission.

view

86 base_object.decrypt = base_object.decrypt or

additional_permission.decrypt

87 base_object.modify = base_object.modify or

additional_permission.modify

88 base_object.repost = base_object.repost or

additional_permission.repost

89 return base_object

90

91

119

A Code of the Model Implementation

92 class RightsObject:

93 subject: str

94 permissions: PermissionObject

95

96 def __init__(self, rights_object_string: Optional[str] = ""):

97 if not rights_object_string:

98 rights_object_string = "{}"

99 data: Dict = json.loads(rights_object_string)

100 self.version = data.get("version", 1)

101 self.subject = data.get("subject", "")

102 self.permissions = PermissionObject(data.get("permissions", ""))

103

104 def __repr__(self) -> str:

105 return con_dict_json({

106 "version": self.version,

107 "subject": self.subject,

108 "permissions": self.permissions.json_version()

109 })

110

111 def generate_owner(self, owner: str) -> None:

112 assert owner

113 self.subject = owner

114 owner_permissions: PermissionObject = PermissionObject()

115 owner_permissions.owner = True

116 self.permissions = owner_permissions

117

118 @deepcopy

119 def json_version(self) -> str:

120 return str(self)

121

122

123 class License:

124 encrypted: bool

125

126 def json_version(self) -> str:

127 raise NotImplementedError

128 return "" # noqa

129

130

131 class PostingLicense(License):

132 pass

133

134

135 class PostingLicenseEncrypted(PostingLicense):

136 __encrypted: bool

137 __data: bytes

138 __encrypted_key: bytes

139 __signature: bytes

140

120

A.15 package_licenses.py

141 def __init__(self, encrypted_license: str, encrypted_key: str,

signature: str):

142 assert encrypted_license and encrypted_key and signature

143 self.encrypted = True

144 self.__data = con_hex_bytes(encrypted_license)

145 self.__encrypted_key = con_hex_bytes(encrypted_key)

146 self.__signature = con_hex_bytes(signature)

147

148 @deepcopy

149 def json_version(self) -> str:

150 assert self.encrypted and self.__data and self.__encrypted_key

and self.__signature

151 return con_dict_json({

152 "data": con_bytes_utf(con_bytes_b64(self.__data)),

153 "key": con_bytes_utf(con_bytes_b64(self.__encrypted_key)),

154 "signature": con_bytes_utf(con_bytes_b64(self.__signature))

155 })

156

157

158 class PostingLicenseUnencrypted(PostingLicense):

159 encrypted = False

160 version: int = 1

161 content_key: str = ""

162 rights: List[RightsObject] = []

163

164 def __init__(self, posting_license_string: Optional[str] = ""):

165 self.content_key = ""

166 self.rights = []

167 if posting_license_string:

168 data: Dict = json.loads(posting_license_string)

169 self.version = data["version"]

170 self.content_key = data["content_key"]

171 rights_object_string_list: List[str] = json.loads(data["

rights"])

172 self.rights = [RightsObject(x) for x in

rights_object_string_list]

173

174 def __repr__(self) -> str:

175 return con_dict_json({

176 "version": self.version,

177 "content_key": self.content_key if self.content_key else "",

178 "rights": json.dumps([x.json_version() for x in self.rights])

if self.rights else "[]"

179 })

180

181 def add_owner(self, owner: str) -> None:

182 assert owner

183 assert len(self.rights) < 1

184 owner_rights_object = RightsObject()

185 owner_rights_object.generate_owner(owner)

121

A Code of the Model Implementation

186 self.rights.append(deepcopy(owner_rights_object))

187

188 def get_content_key(self) -> str:

189 return deepcopy(self.content_key)

190

191 @deepcopy

192 def json_version(self) -> str:

193 assert self.content_key and self.rights

194 return str(self)

195

196 @deepcopy

197 def get_subjects(self) -> List[str]:

198 return [x.subject for x in self.rights]

A.16 server_app.py

1 # typing imports

2 from typing import Tuple, Union

3 # standard library imports

4 import os

5 import pickle

6 import traceback

7 import secrets

8 import datetime as dt

9 # external imports

10 import jwt # PyJWT # noqa

11 from flask import Flask, request, abort # flask # noqa

12 # project level imports

13 from server_database import DatabaseHandler, ServerDatabaseException

14 from server_certificates import ServerCertificate, ClientCertificateCopy

15 from package_cryptography import CryptoSystemAESGCM,

CryptographyException

16 from package_licenses import *
17

18 # EXTERNAL

19 certificate_file: str = "server_certificate.bin"

20 db_file: str = "server_database.sqlite"

21 port: int = 11235

22 jwt_lifetime: float = 0.5

23 # INTERNAL

24 certificate: ServerCertificate

25 db = DatabaseHandler

26 app: Flask = Flask(__name__)

27 app.config['SECRET_KEY'] = secrets.token_urlsafe(512)

28 next_endpoint_counter: int = 0

29

30

31 def generate_endpoint() -> str:

122

A.16 server_app.py

32 global next_endpoint_counter

33 next_endpoint_counter += 1

34 return "ep" + str(next_endpoint_counter)

35

36

37 def generate_token(data: Dict, minutes: float = 30) -> str:

38 assert data.get("exp", "") == ""

39 data["exp"] = (dt.datetime.utcnow() + dt.timedelta(minutes=minutes))

40 return jwt.encode(data, app.config['SECRET_KEY'], algorithm='HS256')

41

42

43 def needs_authentication(function: Callable):

44 def wrapper(*args, **kwargs):

45 if "Authorization" not in request.headers:

46 abort(401) # "authorization required"

47 user_id_from_jwt: str = "" # assignment for pep8 compliance

48 try:

49 token = str(request.headers["Authorization"]).split(" ")[1]

50 data = jwt.decode(token, app.config['SECRET_KEY'], algorithms

=['HS256'])

51 user_name_from_jwt = data['username']

52 user_id_from_jwt = data['id']

53 assert db.id_is_user(user_id_from_jwt)

54 assert db.retrieve_name_from_id(user_id_from_jwt) ==

user_name_from_jwt

55 except Exception as e:

56 # print("-->", e)

57 traceback_text: str = traceback.format_exc().strip()

58 if not isinstance(e, jwt.exceptions.ExpiredSignatureError):

59 print(traceback_text)

60 abort(403) # "forbidden"

61 try:

62 return function(user_id_from_jwt, *args, **kwargs)

63 except Exception as e:

64 print("-->", e)

65 traceback_text: str = traceback.format_exc().strip() # noqa

66 print(traceback_text)

67 abort(500)

68 return wrapper

69

70

71 def encrypt_data_randomly_symmetrically(data: bytes) -> Tuple[str, str]:

noqa

72 crypto_system: CryptoSystemAESGCM = CryptoSystemAESGCM()

73 crypto_system.generate_random_key()

74 ciphertext: str = con_bytes_hex(crypto_system.encrypt(data))

75 plain_symmetric_key: str = con_dict_json(crypto_system.

export_full_private_key())

76 return ciphertext, plain_symmetric_key

77

123

A Code of the Model Implementation

78

79 def decrypt_data_symmetrically(data: str, key: str) -> bytes: # noqa

80 crypto_system: CryptoSystemAESGCM = CryptoSystemAESGCM()

81 crypto_system.import_full_private_key(con_json_dict(key))

82 restored_plaintext = crypto_system.decrypt(con_hex_bytes(data))

83 return restored_plaintext

84

85

86 def respond(message: str, data: str = "", key: str = "") -> str:

87 return json.dumps({"msg": message, "data": data, "key": key})

88

89

90 def double_decryption(double_encrypted_data: str, encrypted_key: str) ->

bytes:

91 assert double_encrypted_data and encrypted_key

92 decrypted_key: bytes = certificate.decrypt(con_hex_bytes(

encrypted_key))

93 restored_aes_key: Dict = con_json_dict(con_bytes_utf(decrypted_key))

94 return decrypt_data_symmetrically(double_encrypted_data,

con_dict_json(restored_aes_key))

95

96

97 def double_encryption(plain_data: bytes, user_certificate_text: str) ->

Tuple[str, str]:

98 assert plain_data and user_certificate_text

99 re_encrypted_data, plain_aes_key =

encrypt_data_randomly_symmetrically(plain_data)

100 temporary_user_certificate: ClientCertificateCopy =

ClientCertificateCopy(con_json_dict(user_certificate_text))

101 re_encrypted_aes_key: str = con_bytes_hex(temporary_user_certificate.

encrypt(con_utf_bytes(plain_aes_key)))

102 return re_encrypted_data, re_encrypted_aes_key

103

104

105 def verify_data_with_any_specific_user_signature(user_id: str, data:

bytes, signature: bytes) -> bool:

106 user_certificate_strings: List = db.retrieve_user_certificates(

user_id)

107 if not len(user_certificate_strings) > 0:

108 return False

109 signature_verified: bool = False

110 for certificate_option in user_certificate_strings:

111 current_certificate: ClientCertificateCopy =

ClientCertificateCopy(con_json_dict(certificate_option[0]))

112 try:

113 if current_certificate.verify(data, signature):

114 signature_verified = True

115 break

116 except CryptographyException as e:

117 print(e)

124

A.16 server_app.py

118 pass

119 return signature_verified

120

121

122 def verify_data_with_any_user_signature(data: bytes, signature: bytes) ->

bool:

123 users: Dict = db.retrieve_all_users()

124 for username in users.keys():

125 userid = users[username]

126 if verify_data_with_any_specific_user_signature(userid, data,

signature):

127 return True

128 return False

129

130

131 #

###

132

133 @app.get("/", endpoint=generate_endpoint())

134 def hello_world() -> str:

135 return "Hello World"

136

137

138 @app.post("/login")

139 def login() -> Union[str, Any]:

140 auth = request.authorization

141 if not auth or not auth.username or not auth.password:

142 abort(400) # "bad request"

143 uid: str

144 try:

145 uid = db.retrieve_id_from_name(auth.username)

146 assert db.id_is_user(uid)

147 assert db.check_password(uid, auth.password)

148 token: str = generate_token({"username": auth.username, "id": uid

}, jwt_lifetime)

149 return respond(uid, token)

150 except (AssertionError, ServerDatabaseException):

151 abort(401) # "unauthorized"

152

153

154 @app.get("/certificate", endpoint=generate_endpoint())

155 @needs_authentication

156 def send_certificate(user_id: str) -> Union[str, Any]: # noqa

157 public_key_dict: str = json.dumps(certificate.export_public_key())

158 return respond("certificate", public_key_dict), 200

159

160

161 @app.get("/profile", endpoint=generate_endpoint())

162 @needs_authentication

125

A Code of the Model Implementation

163 def send_userid(user_id: str) -> Union[str, Any]:

164 return respond(f"You are authenticated as {user_id}", user_id), 200

165

166

167 @app.get("/groups", endpoint=generate_endpoint())

168 @needs_authentication

169 def send_groups(user_id: str) -> Union[str, Any]:

170 device_id: str = json.loads(request.json)['deviceid']

171 all_groups: Dict = dict(db.retrieve_all_groups())

172 payload: bytes = con_utf_bytes(con_dict_json(all_groups))

173 key_text: str = db.retrieve_user_device_certificate(user_id,

device_id)

174 assert key_text

175 group_information, decryption_key = double_encryption(payload,

key_text)

176 return respond(f"group information available", group_information,

decryption_key), 200

177

178

179 @app.get("/users", endpoint=generate_endpoint())

180 @needs_authentication

181 def send_users(user_id: str) -> Union[str, Any]:

182 device_id: str = json.loads(request.json)['deviceid']

183 all_users: Dict = dict(db.retrieve_all_users())

184 payload: bytes = con_utf_bytes(con_dict_json(all_users))

185 key_text: str = db.retrieve_user_device_certificate(user_id,

device_id)

186 assert key_text

187 user_information, decryption_key = double_encryption(payload,

key_text)

188 return respond(f"user information available", user_information,

decryption_key), 200

189

190

191 @app.post("/newdevice", endpoint=generate_endpoint())

192 @needs_authentication

193 def save_user_certificate(user_id: str) -> Union[str, Any]: # noqa

194 encrypted_payload: bytes = con_hex_bytes(json.loads(request.json)['

payload'])

195 encrypted_meta_key: bytes = con_hex_bytes(json.loads(request.json)['

key'])

196 decrypted_meta_key: Dict = con_json_dict(con_bytes_utf(certificate.

decrypt(encrypted_meta_key)))

197 aes_system: CryptoSystemAESGCM = CryptoSystemAESGCM()

198 aes_system.import_full_private_key(decrypted_meta_key)

199 decrypted_payload: Dict = con_json_dict(con_bytes_utf(aes_system.

decrypt(encrypted_payload)))

200 user_id = decrypted_payload["userid"]

201 user_name = decrypted_payload["username"]

202 device_id = decrypted_payload["deviceid"]

126

A.16 server_app.py

203 assert user_id and user_name and device_id

204 assert user_name == db.retrieve_name_from_id(user_id)

205 public_key: Dict = json.loads(decrypted_payload["publickey"])

206 assert public_key

207 db_formatted_client_pubkey: str = con_dict_json(public_key)

208 db.enter_user_certificate(user_id, device_id,

db_formatted_client_pubkey)

209 return respond("certificate registered"), 201

210

211

212 @app.post("/testcertificates", endpoint=generate_endpoint())

213 @needs_authentication

214 def reencrypt_dummy_data(user_id: str) -> Union[str, Any]:

215 device_id: str = json.loads(request.json)['deviceid']

216 double_encrypted_challenge: str = json.loads(request.json)['challenge

']

217 encrypted_key: str = json.loads(request.json)['key']

218 plain_challenge: bytes = double_decryption(double_encrypted_challenge

, encrypted_key)

219 key_text: str = db.retrieve_user_device_certificate(user_id,

device_id)

220 assert key_text

221 re_encrypted_challenge: str

222 new_symmetric_key: str

223 re_encrypted_challenge, new_symmetric_key = double_encryption(

plain_challenge, key_text)

224 return respond("challenge accepted", re_encrypted_challenge,

new_symmetric_key), 202

225

226

227 @app.put("/evaluate", endpoint=generate_endpoint())

228 @needs_authentication

229 def evaluate_publishing_license(user_id: str) -> Union[str, Any]:

230 pl_data_encrypted: str = con_b64_hex(request.json['data'])

231 pl_key_encrypted: str = con_b64_hex(request.json['key'])

232 pl_signature: bytes = con_b64_bytes(request.json['signature'])

233 device_id: str = con_bytes_utf(con_b64_bytes(request.json['deviceid'

]))

234 assert pl_data_encrypted and pl_key_encrypted and pl_signature and

device_id

235 pl_data_unencrypted: bytes = double_decryption(pl_data_encrypted,

pl_key_encrypted)

236 assert verify_data_with_any_user_signature(pl_data_unencrypted,

pl_signature)

237 posting_license: PostingLicenseUnencrypted =

PostingLicenseUnencrypted(con_bytes_utf(pl_data_unencrypted))

238 file_body_key: str = deepcopy(posting_license.content_key)

239 users_identities: List[str] = db.retrieve_all_identities(user_id)

240 permitted_rights: List[PermissionObject] = []

241 for rights_object in posting_license.rights:

127

A Code of the Model Implementation

242 if rights_object.subject in users_identities:

243 permitted_rights.append(deepcopy(rights_object.permissions))

244 concrete_permissions: PermissionObject = PermissionMerger.merge(

permitted_rights)

245 response_certificate_key_text: str = db.

retrieve_user_device_certificate(user_id, device_id)

246 assert response_certificate_key_text

247 payload: Dict = {"permissions": concrete_permissions.json_version()}

248 if concrete_permissions.anything:

249 payload["bodykey"] = file_body_key

250 if concrete_permissions.owner or concrete_permissions.repost:

251 payload["fulllicense"] = posting_license.json_version()

252 unencrypted_byte_payload: bytes = con_utf_bytes(con_dict_json(payload

))

253 ciphertext, new_aes_key = double_encryption(unencrypted_byte_payload,

response_certificate_key_text)

254 return respond("okay", ciphertext, new_aes_key), 200

255

256

257 if __name__ == "__main__":

258 db = DatabaseHandler(db_file)

259 if os.path.isfile(certificate_file):

260 with open(certificate_file, "rb") as opened_file:

261 certificate = pickle.load(opened_file)

262 else:

263 certificate = ServerCertificate()

264 with open(certificate_file, "wb") as opened_file:

265 pickle.dump(certificate, opened_file)

266 exit(app.run(port=port))

A.17 server_certificates.py

1 # typing imports

2 # standard library imports

3 # external imports

4 # project level imports

5 from package_certificates import FullCertificate, HalfCertificate

6

7

8 class ServerCertificate(FullCertificate):

9 def __init__(self):

10 super().__init__(4096)

11 self.generate_keys()

12

13

14 class ClientCertificateCopy(HalfCertificate):

15 pass

128

A.18 server_database.py

A.18 server_database.py

1 # typing imports

2 from typing import Callable, List, Tuple, Dict

3 # standard library imports

4 import os

5 import sqlite3

6 import secrets

7 # external imports

8 import argon2.exceptions # argon2-cffi

9 from argon2 import PasswordHasher # argon2-cffi # successor of bcrypt,

less complicated than scrypt # noqa

10 # project level imports

11 from package_dataconversion import deepcopy

12

13

14 class ServerDatabaseException(Exception):

15 pass

16

17

18 def server_database_exception(function: Callable) -> Callable:

19 def wrapper(*args, **kwargs):

20 try:

21 return function(*args, **kwargs)

22 except: # noqa

23 raise ServerDatabaseException(f"ERROR IN SERVER DATABASE! ({

function.__name__})")

24

25 return wrapper

26

27

28 class DBCursor:

29 database_file: str

30 connection: sqlite3.Connection

31 cursor: sqlite3.Cursor

32

33 def __init__(self, file_name):

34 self.database_file = file_name

35

36 def __enter__(self):

37 self.connection = sqlite3.connect(self.database_file)

38 self.cursor = self.connection.cursor()

39 return self.cursor

40

41 def __exit__(self, exit_type, exit_value, traceback):

42 self.connection.commit()

43 self.connection.close()

44

45

46 class DatabaseHandler:

129

A Code of the Model Implementation

47 database_file: str

48

49 def __init__(self, database_file: str) -> None:

50 self.database_file = os.path.abspath(database_file)

51 if not os.path.isfile(database_file):

52 self.create_new()

53

54 def create_new(self) -> None: # defines database standard

configuration

55 self.reset()

56 self.generate_standard_tables()

57 group_id_01: str = self.enter_group("01_external") # noqa

58 group_id_02: str = self.enter_group("02_internal") # noqa

59 group_id_03: str = self.enter_group("03_nda") # noqa

60 group_id_04: str = self.enter_group("04_scl1") # noqa

61 group_id_05: str = self.enter_group("05_scl2") # noqa

62 user_id_admin: str = self.enter_user("admin", "admin")

63 self.enter_group_membership(group_id_05, user_id_admin)

64 user_id_jondoe = self.enter_user("jondoe", "password")

65 self.enter_group_membership(group_id_01, user_id_jondoe)

66

67 @server_database_exception

68 def reset(self) -> None:

69 try:

70 os.remove(self.database_file)

71 except FileNotFoundError:

72 pass

73

74 @server_database_exception

75 def __generate_table(self, table_name: str, attribute_definitions:

List) -> None:

76 with DBCursor(self.database_file) as cursor:

77 cursor.execute(f"DROP TABLE IF EXISTS {table_name}")

78 table = f"CREATE TABLE {table_name} ({str(chr(10)).join(

attribute_definitions)});"

79 cursor.execute(table)

80

81 @server_database_exception

82 def generate_standard_tables(self) -> None:

83 generate: Callable = lambda name, attribs: self.__generate_table(

name, attribs.strip().split())

84 generate("entities", """

85 id TEXT PRIMARY KEY,

86 name TEXT UNIQUE NOT NULL,

87 isgroup BOOLEAN NOT NULL,

88 pwhash TEXT

89 """)

90 generate("certificates", """

91 userid TEXT NOT NULL,

92 deviceid TEXT NOT NULL,

130

A.18 server_database.py

93 data TEXT NOT NULL,

94 created DATETIME DEFAULT CURRENT_TIMESTAMP,

95 FOREIGN KEY(userid) REFERENCES entities(id),

96 PRIMARY KEY (userid, deviceid)

97 """)

98 generate("memberships", """

99 groupid TEXT NOT NULL,

100 userid TEXT NOT NULL,

101 FOREIGN KEY(groupid) REFERENCES entities(id),

102 FOREIGN KEY(userid) REFERENCES entities(id),

103 PRIMARY KEY (userid, groupid)

104 """)

105 return None

106

107 @server_database_exception

108 def hash_password(self, password: str) -> str:

109 return str(PasswordHasher().hash(password))

110

111 def __retrieve_password_hash(self, user_id: str) -> str:

112 assert user_id

113 result: List

114 with DBCursor(self.database_file) as cursor:

115 cursor.execute(f"SELECT pwhash FROM entities WHERE id=? AND

isgroup=?;", (user_id, 0))

116 result = cursor.fetchone()

117 return result[0] if result is not None else ""

118

119 def __update_password(self, user_id: str, password: str) -> None:

120 assert user_id

121 assert self.id_is_user(user_id)

122 password_hash = str(self.hash_password(password))

123 with DBCursor(self.database_file) as cursor:

124 cursor.execute(f"UPDATE entities SET pwhash=? WHERE id=? AND

isgroup=?;", (password_hash, user_id, 0))

125

126 @server_database_exception

127 def check_password(self, user_id: str, password: str) -> bool:

128 if (not user_id) or (not self.id_is_user):

129 return False

130 pwh = PasswordHasher()

131 try:

132 stored_hash = self.__retrieve_password_hash(user_id)

133 if pwh.verify(stored_hash, password):

134 if pwh.check_needs_rehash(stored_hash):

135 self.__update_password(user_id, password)

136 return True

137 except argon2.exceptions.VerifyMismatchError:

138 pass

139 return False

140

131

A Code of the Model Implementation

141 @server_database_exception

142 def retrieve_id_from_name(self, name: str) -> str:

143 assert name

144 result: str

145 with DBCursor(self.database_file) as cursor:

146 cursor.execute(f"SELECT id FROM entities WHERE name=?", (name

,))

147 result = cursor.fetchone()

148 return result[0] if result is not None else ""

149

150 @server_database_exception

151 def retrieve_name_from_id(self, entity_id: str) -> str:

152 assert entity_id

153 result: str

154 with DBCursor(self.database_file) as cursor:

155 cursor.execute(f"SELECT name FROM entities WHERE id=?", (

entity_id,))

156 result = cursor.fetchone()

157 return result[0] if result is not None else ""

158

159 @server_database_exception

160 def __get_unused_id(self) -> str:

161 new_id: Callable = lambda: secrets.token_hex(8)

162 random_id: str = new_id()

163 while self.id_is_user(random_id) or self.id_is_group(random_id):

164 random_id = new_id()

165 return random_id

166

167 @server_database_exception

168 def enter_user(self, name: str, plain_password: str) -> str:

169 name = name.lower().strip()

170 assert name and plain_password

171 password_hash = self.hash_password(plain_password)

172 random_id = self.__get_unused_id()

173 with DBCursor(self.database_file) as cursor:

174 cursor.execute(f"INSERT INTO entities (id, name, pwhash,

isgroup) VALUES (?, ?, ?, ?);",

175 (random_id, name, password_hash, 0))

176 return self.retrieve_id_from_name(name)

177

178 @server_database_exception

179 def enter_group(self, name: str) -> str:

180 name = name.lower().strip()

181 assert name

182 random_id = self.__get_unused_id()

183 with DBCursor(self.database_file) as cursor:

184 cursor.execute(f"INSERT INTO entities (id, name, isgroup)

VALUES (?, ?, ?);", (random_id, name, 1))

185 return self.retrieve_id_from_name(name)

186

132

A.18 server_database.py

187 @server_database_exception

188 def id_is_user(self, identity: str) -> bool:

189 if not identity:

190 return False

191 with DBCursor(self.database_file) as cursor:

192 cursor.execute(f"SELECT id FROM entities WHERE id=? AND

isgroup=0 LIMIT 1;", (identity,))

193 result = cursor.fetchone()

194 return False if result is None else True

195

196 @server_database_exception

197 def id_is_group(self, identity: str) -> bool:

198 if not identity:

199 return False

200 with DBCursor(self.database_file) as cursor:

201 cursor.execute(f"SELECT id FROM entities WHERE id=? AND

isgroup=1 LIMIT 1;", (identity,))

202 result = cursor.fetchone()

203 return False if result is None else True

204

205 @server_database_exception

206 def enter_group_membership(self, group_id: str, user_id: str) -> None

:

207 assert user_id and group_id

208 assert self.id_is_user(user_id)

209 assert self.id_is_group(group_id)

210 with DBCursor(self.database_file) as cursor:

211 cursor.execute(f"INSERT INTO memberships (groupid, userid)

VALUES (?, ?);", (group_id, user_id))

212

213 @server_database_exception

214 def is_group_member(self, user_id: str, group_id) -> bool:

215 if not self.id_is_user(user_id):

216 print("user is no user")

217 return False

218 with DBCursor(self.database_file) as cursor:

219 cursor.execute(f"SELECT groupid FROM memberships WHERE

groupid=? AND userid=? LIMIT 1;",

220 (group_id, user_id))

221 result = cursor.fetchone()

222 return False if result is None else True

223

224 @server_database_exception

225 def retrieve_all_identities(self, user_id: str) -> List[str]:

226 assert user_id

227 assert self.id_is_user(user_id)

228 identities: List[str]

229 with DBCursor(self.database_file) as cursor:

230 cursor.execute(f"SELECT groupid FROM memberships WHERE userid

=?;", (user_id,))

133

A Code of the Model Implementation

231 meta_list: List[List[str]] = [[user_id]] + cursor.fetchall()

232 identities = [str(identity[0]) for identity in meta_list]

233 return identities

234

235 @server_database_exception

236 def enter_user_certificate(self, user_id: str, device_id, data: str)

-> None:

237 assert user_id and device_id and data

238 assert self.id_is_user(user_id)

239 with DBCursor(self.database_file) as cursor:

240 cursor.execute(f"INSERT INTO certificates (userid, deviceid,

data) VALUES (?, ?, ?);",

241 (user_id, device_id, data))

242

243 @server_database_exception

244 def retrieve_user_certificates(self, user_id: str) -> List[Tuple[str,

str]]:

245 assert user_id

246 assert self.id_is_user(user_id)

247 certificates: List[Tuple[str, str]]

248 with DBCursor(self.database_file) as cursor:

249 cursor.execute(f"SELECT data, deviceid FROM certificates

WHERE userid=?;", (user_id,))

250 certificates = [(str(certificate[0]), str(certificate[1]))

for certificate in cursor.fetchall()]

251 return deepcopy(certificates)

252

253 @server_database_exception

254 def retrieve_user_device_certificate(self, user_id: str, device_id:

str) -> str:

255 assert user_id and device_id

256 assert self.id_is_user(user_id)

257 certificate: str

258 with DBCursor(self.database_file) as cursor:

259 cursor.execute(f"SELECT data FROM certificates WHERE userid=?

and deviceid=?;", (user_id, device_id))

260 certificate = [certificate[0] for certificate in cursor.

fetchall()][0]

261 return certificate

262

263 @server_database_exception

264 def __retrieve_all_entity_type_members(self, isgroup: int) -> List[

Tuple[str, str]]:

265 assert isgroup == 0 or isgroup == 1

266 entries: List[Tuple[str, str]]

267 with DBCursor(self.database_file) as cursor:

268 cursor.execute(f"SELECT name, id FROM entities WHERE isgroup

=?;", (isgroup,))

269 entries = [(str(entry[0]), str(entry[1])) for entry in cursor

.fetchall()]

134

A.19 text_editor.py

270 return deepcopy(entries)

271

272 @server_database_exception

273 def retrieve_all_groups(self) -> Dict:

274 return deepcopy(dict(self.__retrieve_all_entity_type_members(1)))

275

276 @server_database_exception

277 def retrieve_all_users(self) -> Dict:

278 return deepcopy(dict(self.__retrieve_all_entity_type_members(0)))

A.19 text_editor.py

1 # CODE ROUGHLY BASED ON: stackoverflow.com/a/53938684

2 # SNAPSHOT AVAILABLE AT: web.archive.org/web/20230220083931/

stackoverflow.com/a/53938684

3

4 # typing imports

5 # standard library imports

6 import tkinter

7 from tkinter.scrolledtext import ScrolledText

8 # external imports

9 # project level imports

10

11

12 class TextEditor:

13 root_frame: tkinter.Tk

14 text_frame: ScrolledText

15 content: str

16

17 def __init__(self, root_window: tkinter.Tk, initial_content: str):

18 self.root_frame = root_window

19 self.root_frame.title("CHANGES ARE SAVED ON CLOSING THIS EDITOR")

20 self.content = initial_content

21 self.text_frame = ScrolledText(self.root_frame)

22 self.text_frame.insert(1.0, self.content)

23 self.text_frame.pack(fill="both", expand=True)

24

25 def synchronize(self) -> str:

26 self.content = self.text_frame.get('1.0', tkinter.END)

27 return self.content

28

29 def closing(self) -> None:

30 self.synchronize()

31 self.root_frame.destroy()

32

33 @staticmethod

34 def edit_text(previous_text: str) -> str:

35 root = tkinter.Tk()

135

A Code of the Model Implementation

36 t: TextEditor = TextEditor(root, previous_text)

37 root.protocol("WM_DELETE_WINDOW", t.closing)

38 root.mainloop()

39 return t.content

A.20 _burn.bat

1 call _burn_light.bat

2 del /s /q *.bin

A.21 _burn_light.bat

1 rmdir /s /q __pycache__

2 rmdir /s /q .mypy_cache

3

4 del /s /q *.json

5 del /s /q *.config

6 del /s /q *.sqlite

7 del /s /q *.container

A.22 _burn.sh

1 #!/bin/bash

2

3 ./_burn_light.sh

4 rm -f -r -d *.bin

A.23 _burn_light.sh

1 #!/bin/bash

2

3 rm -f -r -d __pycache__

4 rm -f -r -d .mypy_cache

5

6 rm -f -r -d *.json

7 rm -f -r -d *.config

8 rm -f -r -d *.sqlite

9 rm -f -r -d *.container

A.24 requirements.txt

136

A.24 requirements.txt

1 # CRYPTO

2 pyAesCrypt~=6.0.0 # AES CBC (files)

3 pycryptodome~=3.17 # AES GCM (communication)

4 rsa~=4.9 # RSA (certificates)

5 psutil~=5.9.4 # multithreaded certificate generation

6

7 # SERVER

8 Flask~=2.2.3 # HTTP-server

9 argon2-cffi~=21.3.0 # password hashing

10 PyJWT~=2.6.0 # JSON Web Token

11

12 # CLIENT

13 requests~=2.28.2 # HTTP-requests

14 universal-startfile~=0.2 # OS-dependent file opening

137

	Contents
	Introduction
	Background
	Motivation
	Problem Description
	Research Questions
	Contributions

	Technical Background
	CIA Triad
	Cryptography
	Symmetrical and Asymmetrical Cryptography
	Hash Functions
	Certificates
	Cryptographic Block Modes

	Data Classification
	Microsoft Products
	Active Directory
	Azure
	Microsoft 365
	Microsoft Rights Management Service

	Server-Dependent File Access Systems
	Related Definitions
	Digital Rights Management
	Enterprise Resource Management System
	Rights Management Services

	Definition
	Use Cases
	Existing SDFA-Like Systems

	Model Implementation
	Concept
	Purpose
	Derived Goals
	Terminology

	Implementation Process
	Methodology
	Code Conventions
	Used Software
	Used Technology Standards
	External Libraries
	Notable Python Features

	Result
	Structure
	Program Overview
	Program Flow
	File States
	Communication
	Server Database
	Encryption Layers
	Launch Instructions

	Evaluation
	Development Process Evaluation
	Validation
	Result Evaluation

	Comparison With Microsoft RMS
	Context
	File Support
	Features
	Scale
	Performance
	Safety
	Security

	Threat Scenarios
	Specific SDFA Security Concepts
	All-Or-Nothing Protection
	Service Entity Division

	External Attacks
	Denial of Service
	Man-In-The-Middle
	Cryptographic Attacks

	Internal Attacks
	Ripping Attack
	Memory Dumping Attacks
	Malicious Client
	Malicious Server
	Malicious Server With Insufficient Service Entity Division

	Human-Error-Based Attacks
	Unintentional Misconfiguration (Availability)
	Unintentional Data Leaks

	Future Challenges
	Cryptographic Durability

	Discussion
	Strengths of SDFA Systems
	Weaknesses of SDFA Systems
	Impact on (Offline) Forensic Investigations
	Research Questions Review
	Future Work

	Conclusion
	Bibliography
	Acronyms
	List of Figures
	Appendix
	Code of the Model Implementation
	client_backend.py
	client_certificates.py
	client_cli.py
	client_config_file_handler.py
	client_container_file.py
	client_server_handler.py
	file_handler.py
	file_handler_factory.py
	file_handler_generic.py
	file_handler_text.py
	package_certificates.py
	package_cryptography.py
	package_dataconversion.py
	package_debugging.py
	package_licenses.py
	server_app.py
	server_certificates.py
	server_database.py
	text_editor.py
	_burn.bat
	_burn_light.bat
	_burn.sh
	_burn_light.sh
	requirements.txt

