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Preface

The aim of this paper is to specify the assumptions and statements of va-
rious models of linear regression analysis, show the relationships between the
models and illustrate the possible applications.

The actual task of regression analysis is an optimisation task: From a set
of functions, find the one that „best“ matches a given set of points Pi. —
We will limit ourselves here to the simplest case: Determine the straight line
„closest“ to the points (x1, y1), . . . , (xn, yn) lies. — It is astonishing that I am
not aware of any source that mentions this optimisation task in connection
with the regression analysis. The formulation of the task as an optimisation
problem is so important because it is the starting point for the mathematical
development of the different model variants. So we start with the optimisa-
tion problem in Chapters 1 and 2 and, in contrast to inductive statistics,
we deliberately refer to this section as regression calculation as a subfield of
descriptive statistics.

It is equally astonishing that reference is very rarely made to a central
prerequisite for the models of simple regression analysis: The observed values
x1, . . . , xn of the independent variable are not only fixed, but must be the
same for each repetition of the sampling.1 As far as I know, only Fuller 1987
and Gujarati 1988 write this so clearly in textbooks.2 This requirement is
usually fulfilled for time series, but not for other features, especially economic
ones. The observed values y1, . . . , yn of the dependent variable, on the other
hand, can change when the sample is repeated and are subject to random
fluctuations.

It is also noteworthy that the basic mathematical model, which enables
the transition from descriptive to inductive statistics, is only presented in
one recent source known to me, namely in Fisz 1989, p. 91 et sq.3 Other
authors at least implicitly use the basic mathematical model, but speak at
best of conditional expected values.4 In most cases, only the properties of the

1The violation of this requirement has fundamental consequences: Compare Gujarati
1988, p. 417.

2Fuller 1987, p. 1.Gujarati 1988 chooses the following formulation on p. 19: The explana-
tory variables, on the other hand, are assumed to have fixed values (in repeated sampling),
...

3An older source is Cramér 1946, p. 270 et sq.
4Cp. Miller 1986, p. 222.
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Preface

distributions that sum up to the model are listed.5 Although the different
models and model variants can be represented very well with the help of the
basic model.

Furthermore, it is puzzling that during the development phase of the
measurement error model in the 1940s to 1960s, the work of Kummell 1879
was not taken into account accordingly, although Deming 1948 cites his re-
sult.6 The problems with the functional model, which were only solved in
1969, would not have happened in this way.

The measurement error model (MEM) treats the two features (variables)
X and Y equally: The feature values of both features are measured with ran-
dom deviations. This gives the MEM an advantage: It is possible to estimate
the regression line symmetrically, i.e. it does not matter whether x is the
independent variable and y the dependent variable or vice versa.7 Here, too,
it is astonishing that this property is very rarely mentioned in the literature.
This also applies to the independence with regard to scaling (multiples of
units).

If the quotient of the error variances σ2
δ and σ

2
ε is known, then the functio-

nal model is by far to be favoured (Lemma 2.2.3, Theorem 2.2.20, Theorem
3.0.4):

• The model is the generalisation of simple regression.

• The model is symmetrical.

• The estimators are consistent.

• The model is independent in terms of scaling.

The restriction here to the two variable, i.e. the observation of only two
features, is of no particular significance. As econometrics shows, the results
can be generalised relatively easily into multidimensionality. However, the
formalism becomes more complex.

As a rule, the observed values x1, . . . , xn are all different, just like the
observed values y1, . . . , yn. But this does not have to be the case. Whether
all observed values x1, . . . , xn or y1, . . . , yn may be the same depends on the
model. In simple regression analysis, at least two of the x1, . . . , xn must be
different. Otherwise the Theorem 1.1.1 does not apply.8

5Cp. Fuller 1987, p. 30 et sqq.; Kendall and Stuart 1979, p. 403 et sqq.; Schach and
Schäfer 1978, p. 155 et sqq.

6Deming 1948, p. 184. – On p. 181, Madansky 1959 only refers to Deming 1948 in order
to prove the different names of a procedure. The result of Kummel mention Madansky
1959, p.202 and Lindley 1947, p. 241. However, the references to the results of Kummell
1879 do not seem to have had any consequences.

7Cp. Schach and Schäfer 1978, p. 159 et sq., footnote +).
8Note Georgii 2004, p. 317, example 12.1.
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1 Simple Regression Analysis

In this chapter, the basic properties of simple regression are provided, which
are referred to in the extension to the measurement error model . The starting
point of the regression analysis, the optimisation problem and a possible
solution are formulated in section 1.1. In section 1.2, we switch to inductive
statistics with the presentation of the basic model of probability theory in
order to then obtain statements on the quality of LS estimators in section
1.3.

1.1 Regression Calculation

The regression calculation is a subfield of descriptive statistics and assumes
that observed values x1, . . . , xn and y1, . . . , yn of two continuously scaled
features X and Y exist, whereby there should be a functional relation of the
type f(x) = y. Probability theory is not used.

Here we only consider the linear relation between two features X and Y ,
i.e. the straight line1

y = α+ β · x .

If n > 2, i.e. if more than two points (xi, yi) are given, then the linear system
of equations

y1 = α+ β · x1

...
yn = α+ β · xn

is overdetermined. Normally, this system of equations cannot be solved ex-
actly. A linear equation

y = a+ b · x ,

the so-called regression function, here regression line, must therefore be
determined, to which the points (xi, yi) have the smallest possible „distance“.
This is an optimisation task. The method of least squares2 is usually

1With regard to the notation of the linear regression model mentioned below, this
should actually read η = α+ β · x. However, this notation is not common in this context.

2Cp. Pestman 1998, p. 183 et sq.
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1 Simple Regression Analysis

used to solve this, which minimises the sum of the squares of the individual
deviations

ei := yi − (a+ b · xi) .

We are therefore looking for the minimum of the function

S : R× R→ R, (a, b) 7→
n∑
i=1

(yi − a− b · xi)2 .

Differential calculus provides the local minimum with the coordinates

b =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

and a = ȳ − b · x̄ .

a and b are called least squares estimators, in short LS estimators. In
total we have:

Theorem 1.1.1:3 Let x1, . . . , xn and y1, . . . , yn be observed values of the
features X and Y in statistical units of a population. If the relation y =
α+ β · x, α ∈ R, β ∈ R\{0} is assumed, then

b :=

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

and a := ȳ − b · x̄

are the LS estimators for β and α.

Corollary 1.1.2: The point (x̄, ȳ) lies on the regression function y = a+bx.

Remark 1.1.3: (i) The method of least squares is based on two assumptions
due to the minimisation of deviations

ei := yi − (a+ b · xi) ⇐⇒ yi = a+ b · xi + ei

• x1, . . . , xn are fixed values and would not change if the sampling was
repeated.

• y1, . . . , yn can deviate from the values a + b · x1, . . . , a + b · xn, where
(x1, y1), . . . , (xn, yn) belong to the same sample.4

3Pestman 1998, p. 185, Proposition IV.1.1.
4From a different sample (x1, ỹ1), . . . , (xn, ỹn) other LS estimators than a and b are

usually calculated, such as ã and b̃. And then, of course, ỹ1, . . . , ỹn deviate from the values
ã+ b̃ · x1, . . . , ã+ b̃ · xn.
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1.1 Regression Calculation

This can be interpreted to mean that xi is measured without error, yi with
error.
(ii) The notation b = β̂ and a = α̂ is often used at this point. This notation
is deliberately avoided here, as we are not yet in the inductive statistics.
(iii) The aim of the regression calculation is to adjust the parameters of a
given function type f(x) = y „as well as possible“ to the points (x1, y1), . . . ,
(xn, y1). „As well as possible“ is usually understood to mean the determinati-
on of a minimum with the help of differential calculus. Especially in the two
variable linear regression calculation, only the minimum of S is determined
when using the least squares method. How well this minimum solves the op-
timisation task is not yet known. Or in the language of inductive statistics:
The properties of the LS estimators and their quality are still open. For this
we need a probabilistic model for regression.

So far, we have assumed that x is the independent variable5 and y is the
dependent variable6. However, the reverse can also be the case. The following
notations are common:
Definition 1.1.4: Let x1, . . . , xn and y1, . . . , yn be observed values of the
features X and Y in statistical units of a population.
(i) If the functional relation f(x) = y is assumed, then there is a regression
of y on x.
(ii) If the functional relation f(y) = x is assumed, then there is a regression
of x on y.

There are cases in which the dependency of the features X and Y is
factually established, i.e. it is factually justified whether there is a regression
of y on x or a regression of x on y. But there are also cases in which the
dependency cannot be objectively justified or even makes no sense. For these
cases, it would be advantageous if the regression function x = a′+b′y (in the
y-x coordinate system) corresponded to the regression function y = a + bx
(in the x-y coordinate system). The following now applies:

y = a+ bx ⇐⇒ x = −a
b

+
1

b
y

In particular, b′ = 1/b must therefore be true. Looking at the two estimators

b =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

and b′ =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(yi − ȳ)2

,

it is clear that b′ = 1/b does not apply in general.7 To summarise, we have
seen:

5Other names: Explanatory variable, regressor, predictor, exogenous variable
6Other names: Explained variable, regressand, predictand, endogenous variable
7Cp. Schach and Schäfer 1978, p. 159, footnote +.
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1 Simple Regression Analysis

Remark 1.1.5: (i) In simple linear regression (with LS estimators), a regres-
sion of y on x generally leads to a different regression line than a regression
of x on y. Simple linear regression is asymmetrical.8

(ii) The asymmetry of simple linear regression has its origin in the fact that
the KQ method uses independent and dependent variables differently: The
independent variable is measured without error, the dependent variable is
not – see remark 1.1.3.
Description of the model of the linear regression calculation:

x1, . . . , xn fixed values of the feature X, do not change
when the sampling is repeated

y1, . . . , yn values of the feature Y
yi = a+ b · xi + ei regression equations

y = a+ b · x regression function (regression line)
η = α+ β · x „true“ relation

1.2 Basic Model of Probability Theory

In order to be able to say something about the quality of the LS estimators
from Theorem 1.1.1, a probabilistic model is to be used. The only probabili-
stic model of regression analysis known to me is by Fisz 1989 and is presented
on pages 91 et sqq:

Let (X,Y ) be a two-dimensional random variable with continuous density
f(x, y) and continuous marginal densities fX and fY .
Theorem 1.2.1:9 The following applies to the conditional expected values:

E(X|Y = y) =

∞∫
−∞

x·f(x, y)

fY (y)
dx as well as E(Y |X = x) =

∞∫
−∞

y·f(x, y)

fX(x)
dy

If X and Y are stochastically independent, then E(X|Y = y) = E(X) and
E(Y |X = x) = E(Y ).

Definition 1.2.2:10 The set of points in the x-y plane with the coordinates(
E(X|Y = y), y

)
is called regression curve of the random variable X with respect to
Y , the set of points with the coordinates(

x,E(Y |X = x)
)

8Cp. Miller 1986, p. 169; Schach and Schäfer 1978, p. 159, footnote +; Madansky 1959,
p. 175.

9Fisz 1989, p. 91, (3.7.1’), p. 92.
10Fisz 1989, p. 92, Definition 3.7.1.
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1.3 Properties of the Estimators

is called regression curve of the random variable Y with respect to
X.

Remark 1.2.3: In general, the two regression curves do not overlap.11 The
regression is therefore fundamentally asymmetrical, see Remark 1.1.5.

The regression curve of the random variable X with respect to Y or the
regression curve of the random variable Y with respect to X corresponds
to the regression of x on y or the regression of y on x in the regression
calculation. We will establish the connection between the two terms in the
next section.

1.3 Properties of the Estimators

In the following, we only consider the regression curve of the random variable
Y with respect to X and establish the connection to the regression of y on
x with the

Assumption 1 E(Y |X = x) = α+ β · x, α ∈ R, β ∈ R\{0} .

The approach for the regression curve of the random variable X with respect
to Y is analogue and the results are the same.

Let x1, . . . , xn be fixed realisations of X, which do not change even if
the sampling is repeated, and let Yx1 , . . . , Yxn be random variables whose
distribution is the conditional distribution of Y under X = xi. The overde-
termined linear system of equations

E(Yx1) = α+ β · x1

...
E(Yxn) = α+ β · xn

thus exists.
Theorem 1.3.1:12 Let y1, . . . , yn be realisations of Yx1 , . . . , Yxn. The LS
estimators a and b for α and β are unbiased and a linear combinations of
Yx1 , . . . , Yxn, so-called linear estimators in Yx1 , . . . , Yxn.

Remark 1.3.2: (i) An estimator is a random variable and a as well as b
are not. However, a and b are realisations of the corresponding estimators.
Since the formalism for defining the corresponding estimators is of secondary
importance here, we take the realisation of an estimator as the estimator.
(ii) If the realisations x1, . . . , xn can change when the sampling is repeated,
for example if they cannot be measured without error, then it is difficult to
make a statement about the unbiasedness of the LS estimators a and b, since

11Cp. Fisz 1989, p. 92.
12Pestman 1998, p. 187, Proposition IV.1.2.
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1 Simple Regression Analysis

E(b) cannot be calculated as in Theorem 1.3.1.13 With the consistency of the
LS estimators, it is the other way round: The denominator of b is n times the
sample variance. This converges in probability against the variance14, which
here has the value 0, since x1, . . . , xn are fixed values and not realisations of
sample variables X1, . . . , Xn.

For further statements on the LS estimators, we need the following ass-
umptions:

Assumption 2 Yx1 , . . . , Yxn are stochastically independent.
Assumption 3 It applies V(Yx1) = · · · = V(Yxn) =: σ2 .

Remark 1.3.3: (i) From assumption 2, the modelling could also be carried
out using the errors ei: The assumptions are formulated for the random
variables Exi := Yxi − (α+ β · xi).
(ii) Assumption 3 means that the standard deviation in the data measu-
rement is always the same. This property is called homoscedasticity in
econometrics.15

Theorem 1.3.4:16 The following applies under assumptions 1 to 3:

V(b) = σ2

n∑
i=1

(xi−x̄)2

V(a) =

(
n∑
i=1

(xi−x̄)2+n·(x̄)2
)
·σ2

n·
n∑
i=1

(xi−x̄)2

Cov(a, b) = − x̄·σ2

n∑
i=1

(xi−x̄)2

Theorem 1.3.5:17 by Gauß-Markov With assumptions 1 to 3, the LS
estimators a and b have the lowest variance among the unbiased linear esti-
mators and are the only ones with this property.

Remark 1.3.6: The LS estimators a and b are also called BLUE estima-
tors (best linear unbiased estimator).18

Assumption 4 Yxi ∼ N(α+ β · xi, σ2) applies for all xi .

13Gujarati 1988 claims on p. 417 that the KQ estimators are not unbiased.
14Fisz 1989, p. 367.
15Cp. Gujarati 1988, p. 316 et sqq.
16Pestman 1998, p. 187, Proposition IV.1.2.
17Pestman 1998, p. 189, Proposition IV.1.3. Cp. Gujarati 1988, p. 63.
18Cp. Gujarati 1988, p. 63.
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1.3 Properties of the Estimators

Remark 1.3.7: (i) With assumption 4, assumptions 1 and 3 are irrelevant
and can therefore be omitted.
(ii) If assumption 4 applies,we are talking about normal regression ana-
lysis.19

Theorem 1.3.8:20 With assumptions 1 to 4, the LS estimators a and b are
also the ML estimators for α and β.

The following diagram21 is intended to give an impression of what normal
regression analysis means. The distribution of Yxi essentially only differs in
the size of the expected value. And the graph shows how much the realisations
yi can deviate from the expected value E(Yxi), vary around it:22

Before we can specify the description of the model, we need to define the
deviations, the errors for i = 1, . . . , n:

Exi := Yxi − (α+ β · xi)

It is Exi ∼ N(0, σ2) and Ex1 , . . . , Exn are stochastically independent.

Description of the normal linear regression model:

(X,Y ) two-dimensional random variable
x1, . . . , xn ?)

y1, . . . , yn ??)

Yxi = α+ β · xi + Exi regression equations
y = a+ b · x regression function

η = E(Yx) = E(Y |X = x) = α+ β · x „true“ relation
Yx1 , . . . , Yxn are stochastically independent

Yxi ∼ N(α+ β · xi, σ2)

Exi ∼ N(0, σ2)

19Cp. Pestman 1998, p. 194.
20Pestman 1998, p. 198, Proposition IV.3.4.
21The graphic is taken from Fahrmeir [u.a.] 2011, p. 478. Cp. Gujarati 1988, p. 55.
22Instead of y = α+ β · x it must be η = α+ β · x.
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1 Simple Regression Analysis

?): Fixed realisations of the random variable X do not change when sampling
is repeated.
??): Realisations of the random variables Yx1 , . . . , Yxn

14



2 Measurement Error Model

The starting point of the simple regression analysis are observed values
x1, . . . , xn and y1, . . . , yn of two features X and Y , for which there should be
a functional relationship of the type f(x) = y. If we assume the relationship
y = α+β ·x, then the resulting optimisation problem can be solved using the
least squares method. The method of least squares assumes that x1, . . . , xn
are very specific fixed values, in particular measured without error, where-
as y1, . . . , yn can change when the sampling is repeated, and are therefore
subject to error – see Remark 1.1.3 (i).

If X is an economic feature, then x1, . . . , xn are usually measured with
errors in the same way as y1, . . . , yn. And this applies not only to economic
features, but to many others — most? — too.1 The model of the simple
regression analysis must therefore be changed with regard to the non-existent
errors of x1, . . . , xn so that the optimisation problem can also be solved with
the least squares method for x1, . . . , xn with errors. The model in which both
x1, . . . , xn and y1, . . . , yn can change when sampling is repeated is called
measurement error model, or MEM for short.

The aim of this chapter is to show the consequences of changing the
model assumption with regard to x1, . . . , xn. In section 2.1, we start again
with the regression calculation.

Ideally, the measurement error model is a generalisation of the simple
regression model or, in other words, the simple regression model is a special
case of the measurement error model. It will be shown in section 2.2 that a
variant of the measurement error model, the so-called functional model, is
the generalisation of the simple regression model (Lemma 2.2.3).

2.1 Regression Calculation

We start with observed values ξ1, . . . , ξn and y1, . . . , yn of two continuously
scaled features X and Y as in the usual regression calculation. All observa-
tions can be measured with errors, i.e. there are „random errors“2 δ1, . . . , δn,

1Cp. Miller 1986, p. 221.
2A distinction is often made between improper errors, systematic errors and random

errors as error types. A improper error occurs when there is a lack of care or concentra-
tion when measuring. The systematic error includes environmental influences and device

15



2 Measurement Error Model

ε1, . . . , εn and the error-free values x1, . . . , xn, η1, . . . , ηn, which cannot be
observed, so that

ξ1 = x1 + δ1, . . . , ξn = xn + δn as well as y1 = η1 + ε1, . . . , yn = ηn + εn

applies.3

Again, we consider the linear relationship

y = α+ β · ξ respectively η = α+ β · x .

If n > 2, then the system of linear equations

y1 = α+ β · ξ1

...
yn = α+ β · ξn

is overdetermined. Normally, this system of equations cannot be solved ex-
actly. The regression line

y = a+ b · ξ ,

must therefore be determined from which the points (ξi, yi) have the smallest
possible „distance“. As before, the method of least squares minimizes the sum
of the squares of the individual deviations

ei := yi − (a+ b · ξi) .

At this point, there is a decisive change compared to the simple regression.
If a and b are determined with the error-free values xi and ηi, then ηi =
α+ β · xi = a+ b · xi, and therefore4

ei = ηi + εi − a− b · (xi + δi) = ηi − (a+ b · xi) + (εi − b · δi) = εi − b · δi .

The least squares method is related to the slope b of the regression line that
is to be calculated using the method. And this has unpleasant consequences
for the properties of the LS estimators a and b. – For comparison, this is not
the case with simple regression:

ei = ηi + εi − a− b · xi = ηi − (a+ b · xi) + εi = εi

Formally, we can proceed as with simple regression and obtain the calcu-
lation formulas for a and b according to theorem 1.1.1. With the LS estimator,
the MEM is of course also asymmetric.

errors. The random error is considered unavoidable and arises from the imperfection of
the measuring instruments and human perception.

3x1, . . . , xn are still the error-free values. This significantly increases the readability of
the following notations.

4Cp. Schach and Schäfer 1978, p. 153.
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2.2 Probabilistic models

Description of the model of the linear regression calculation:

x1, . . . , xn error-free values of the feature X
η1, . . . , ηn error-free values of the feature Y

ξi := xi + δi, i = 1, . . . , n observed values of the feature X
yi := ηi + εi, i = 1, . . . , n observed values of the feature Y

yi = a+ b · ξi + ei regression equations
y = a+ b · ξ regression function
η = α+ β · x „true“ relation

2.2 Probabilistic models

The change in the model assumption that xi can no longer be measured
without error has a significant impact on the estimation of the parameters
a and b of the regression line. Initially, the LS estimator proves to be not
consistent. Then, until 1969, there was only one very specific model — the
structural model with additional information — in which a quality estimate,
namely a consistent one, was possible at all.5 This probably also explains
why most textbooks still only present the structural model. Since the mid-
1970s, there has also been a consistent estimator in the functional model
with additional information.

We will now introduce the functional and the structural model and then
first show in section 2.2.1 that the LS estimators are not consistent for both
models. Then, in section 2.2.2, we look at the ML estimation in both models.
Functional and structural model are based on the basic model from section
1.2 and combine the regression curve with the regression calculation.

Starting from the two-dimensional random variable (X,Y ) of the ba-
sic model, let the conditional distribution of Y under X = x be a normal
distribution, more precisely

Y|X=x ∼ N(α+ β · x, σ2
ε)

with α ∈ R, β ∈ R\{0}, σ2
ε > 0. In particular,6

E(Y|X=x) = E(Y |X = x) = α+ β · x

and7

V(Y|X=x) = (1− %2
X,Y ) · σ2

Y .

Here %2
X,Y is the correlation coefficient of X and Y and σ2

X is the variance
of X.

5Cp. Schach and Schäfer 1978, p. 165. See sentence 2.2.14.
6Pestman 1998, p. 30, Theorem I.6.2.
7Fisz 1989, p. 159, (5.11.5). Cp. Pestman 1998, p. 479, Exercise 17.
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2 Measurement Error Model

Let x1, . . . , xn be fixed realisations of X, which do not change even with
repeated sampling, but cannot be observed and Yx1 , . . . , Yxn are stochasti-
cally independent random variables whose distribution is the conditional
distribution of Y under X = xi, i.e.

Yxi ∼ N(α+ β · xi, σ2
ε) .

The errors of the dependent variable are

Exi := Yxi − (α+ β · xi)

for i = 1, . . . , n. It applies Exi ∼ N(0, σ2
ε) with σ2

ε = (1 − %2
X,Y ) · σ2

Y and
Ex1 , . . . , Exn are stochastically independent.8 The errors of the independent
variable are still missing: Let Dx1 , . . . , Dxn be stochastically independent
random variables defined on the measurable spaces of X with the following
properties:

1. Dx1 , . . . , Dxn , Ex1 , . . . , Exn are stochastically independent.

2. Dxi ∼ N(0, σ2
δ ) with σ2

δ := (1− %2
X,Y ) · σ2

X for i = 1, . . . , n.

The special choice of the variance of the distribution, σ2
δ guarantees the

symmetry of the functional model.
The values of the independent variable observed with errors are now

missing. Let Vxi := xi + Dxi for i = 1, . . . , n. The following applies: Vxi ∼
N(xi, σ

2
δ ).

9 This provides the functional model:
Definition 2.2.1:10 The model

(X,Y ) two-dimensional random variable
x1, . . . , xn error-free values of the random variable X
y1, . . . , yn observed realisations of Yx1 , . . . , Yxn

Vxi := xi +Dxi Random variable of observed values of X
v1, . . . , vn observed realisations of Vx1 , . . . , Vxn

Yxi = α+ β · xi + Exi regression equations
y = α̂+ β̂ · v regression function

η = E(Y |X = x) = α+ β · x „true“ relation
Yxi ∼ N(α+ β · xi, σ2

ε)

Exi ∼ N(0, σ2
ε)

Dxi ∼ N(0, σ2
δ )

Dx1 , . . . , Dxn , Ex1 , . . . , Exn stochastically independent
8Cp. Bruchlos 2015, p. 90, Lemma 1.
9Pestman 1998, p. 30, Theorem I.6.1 (i).

10Bruchlos 2015, p. 90 et sq., Lemma 2 (ii). Cp. Kendall and Stuart 1979, p. 407 et sq.;
Schach and Schäfer 1978, p. 152 et sq.
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2.2 Probabilistic models

is called functional model.

Remark 2.2.2: v1, . . . , vn corresponds to ξ1, . . . , ξn in the linear regression
model.

The normal regression analysis is a special case of the functional model:
Lemma 2.2.3:11 If we set Dxi ≡ 0 in the functional model, then we have
the normal regression model.

For the structural model, let the random variables X1, . . . , Xn, defined
on the measurable spaces of X, be normally distributed, more precisely12

Xi ∼ N(xi, σ
2
δ/2), i = 1, . . . , n .

Let the stochastic independent random variables D̃x1 , . . . , D̃xn be the errors
of the independent variable, defined on the measurable spaces of X, with the
following properties:

1. D̃x1 , . . . , D̃xn , Ex1 , . . . , Exn are stochastically independent.

2. D̃xi , Xi are for i = 1, . . . , n stochastically independent.13

3. D̃xi ∼ N(0, σ2
δ/2) for i = 1, . . . , n.14

Now let Wxi := Xi + D̃xi . Then Wxi ∼ N(xi, σ
2
δ ).

15

11Bruchlos 2015, p. 90 et sq., Lemma 2 (iii).
12The special choice of the variance of the distribution, σ2

δ/2 guarantees the symmetry
of the structural model.

13This is required so thatWxi is correspondingly normally distributed. The requirement
of stochastic independence corresponds to the non-systematic, random error. Cp. Fuller
1987, p. 3, (1.1.3).

14The special choice of the variance of the distribution, σ2
δ/2 guarantees the symmetry

of the structural model.
15Pestman 1998, p. 34, Theorem I.6.6.
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2 Measurement Error Model

Definition 2.2.4:16 The model

(X,Y ) two-dimensional random variable
x1, . . . , xn error-free values of the random variable X
y1, . . . , yn observed realisations of Yx1 , . . . , Yxn

Wxi := Xi + D̃xi Random variable of observed values of X
w1, . . . , wn observed realisations of Wx1 , . . . ,Wxn

Yxi = α+ β · xi + Exi regression equations
y = α̂+ β̂ · w regression function

η = E(Y |X = x) = α+ β · x „true“ relation
Yxi ∼ N(α+ β · xi, σ2

ε)

Xi ∼ N(xi, σ
2
δ/2)

Exi ∼ N(0, σ2
ε)

D̃xi ∼ N(0, σ2
δ/2)

D̃x1 , . . . , D̃xn , Ex1 , . . . , Exn stochastically independent
D̃x1 , . . . , D̃xn , X1, . . . , Xn stochastically independent

is called ultrastructural model.17 If Xi ∼ N(µ, σ2
δ/2), µ ∈ R applies for

i = 1, . . . , n, then we have the structural model.18

Remark 2.2.5: (i) The following mnemonic is useful for the names of the
models: Structural like stochastic, functional like fixed.19

(ii) w1, . . . , wn corresponds to ξ1, . . . , ξn in the linear regression calculation.
(iii) The description of the structural model changes in three places compared
to the ultrastructural model:

Yxi = α+ β · µ+ Exi regression equations
Yxi ∼ N(α+ β · µ, σ2

ε)

Xi ∼ N(µ, σ2
δ/2)

(iv) The regression function in the functional and ultrastructural model, i.e.
y = α̂+β̂ ·v and y = α̂+β̂ ·w differ from the regression function y = a+b·x in
the simple case in three aspects: We do not yet have any estimators, i.e. the
procedure is exactly the opposite: There are no estimators that have proven
themselves in practice and are analysed with regard to their probabilistic

16Cp. Kendall and Stuart 1979, p. 400 et sq., p. 403; Schach and Schäfer 1978, p. 152
et sq., p. 155.

17Dolby 1976, p. 39 et sq. Cp. Kendall and Stuart 1979, p. 407.
18Cp. Kendall and Stuart 1979, p. 400 et sq., p. 403; Schach and Schäfer 1978, p. 152

et sq., p. 155; Fuller 1987, p. 1 et sqq., especially (1.1.1), (1.1.2) and (1.1.3).
19Cp. Fuller 1987, p. 2.
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2.2 Probabilistic models

statements. The regression function now differs in both variables from the
„true“ relation η = α + β · x and the regression function has a different
independent variable than the regression equations Yxi = α + β · xi + Exi .
This indicates the difficulty of the estimation.
(v) A common presentation of the MEM, here for the structural model:20

Yxi = α+ β · xi + Exi Wxi = Xi + D̃xi

Xi ∼ N(µ, σ2
x)

Exi ∼ N(0, σ2
ε) D̃xi ∼ N(0, σ2

δ )

D̃xi , Exi , Xi stochastically independent

The basic model is not mentioned, the random variables of the errors are not
deduced and the regression function is not specified. In particular, this means
that the correlations between the variances of the errors and the different
variables of the regression function and the regression equations are not stand
out. The description of the functional model is even more spartan.21

A major advantage of the two measurement error models is that the
regression line can be estimated symmetrically, i.e. the regression line (re-
gression function) for the regression of y on v or w is the same as for the
regression of v or w on y.22 This is due to the fact that both variables are
not observed without error. With corresponding estimators, it is therefore
no longer important whether v or w is the independent variable and y the
dependent variable or vice versa. What property must the estimators fulfil
for this?

Analogous to the linear relationship η = α + β · x in the regression
calculation, the following applies in the MEM

η = α+ β · x

in the x-η coordinate system. For the symmetry,

x = −α
β

+
1

β
· η

must be in the η-x coordinate system. If ã, b̃ are the estimators for α, β and
ǎ, b̌ are the estimators for −α

β ,
1
β , then the MEM is symmetric if and only

if23

b̌ =
1

b̃
and ǎ = − ã

b̃
.

This property must be checked for the estimators.
20Fuller 1987, p. 13 or p. 30. Cp. Schach and Schäfer 1978, p. 152, p. 155; Kendall and

Stuart 1979, p. 400, p.403.
21Cp. Schach and Schäfer 1978, p. 152, p. 163; Kendall and Stuart 1979, p. 407 et sq.
22Cp. Fuller 1987, p. 30.
23Cp. Schach and Schäfer 1978, p. 159 et sq., footnote +).
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2 Measurement Error Model

If ã := ȳ − b̃ · w̄, then because of

ǎ = − ã
b̃

= − ȳ − b̃ · w̄
b̃

= w̄ − 1

b̃
· ȳ

the following applies in particular:
Lemma 2.2.6: If ã := ȳ − b̃ · w̄ respectively ã := ȳ − b̃ · v̄, then the MEM is
symmetrical if and only if b̌ = 1

b̃
.

In contrast to the procedure described here, the functional and structural
models are often initially defined without a distribution assumption in order
to show that the LS estimators are not consistent without any distribution
assumption.24 For all further statements, however, the normal distribution
assumption is necessary.

The aim of the next two sections is to determine the regression function

y = α̂+ β̂ · v respectively y = α̂+ β̂ · w ,

i.e. the estimation of α and β using the observed values (v1, y1), . . . , (vn, yn)
in the functional model respectively (w1, y1), . . . , (wn, yn) in the ultrastruc-
tural model.

2.2.1 LS Estimator

For the estimation of α and β, the LS estimator of the simple regression
calculation is initially suitable, see section 1.1. With regard to Remark 1.3.2,
it is not unbiasedness that is considered, but the consistency:
Theorem 2.2.7:25 In the structural model, the LS estimator b converges for
n→∞ P -almost surely to

β ·
σ2
δ/2

σ2
δ/2 + σ2

δ/2
=
β

2
.

The LS estimators b and a are therefore not consistent estimators for β and
α.

Remark 2.2.8: The description of convergence in Theorem 2.2.7 is more
general in the literature:

β · σ2
x

σ2
x + σ2

d

Here, σ2
x := V(Xi) and σ2

d := V(D̃xi). The description in Theorem 2.2.7 is a
consequence of the construction of Wxi .

24Cp. Schach and Schäfer 1978, p. 155; Kendall and Stuart 1979, p. 402 et sq.;Miller
1986, p. 223 et sq.

25Madansky 1959, p. 177; Gujarati 1988, p. 418, (13.6.10); Schach and Schäfer 1978,
p. 155; Miller 1986, p. 223; Fuller 1987, p. 3, (1.1.6). For the statement regarding the LS
estimator a see Georgii 2004, p. 210, Theorem 7.19. a and b are calculated with (wi, yi).
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2.2 Probabilistic models

Corollary 2.2.9:26 In the functional model, the LS estimators b and a are
not consistent estimators for β and α.

Remark 2.2.10: Of course, the estimators a and b still do not provide a
symmetrical MEM – see the end of section 1.1.

2.2.2 ML Estimator

Theorem 1.3.8 suggests that the next estimation method to be considered is
maximum likelihood. We need a distribution type for the ML method. Also
with regard to theorem 1.3.8, the normal distribution is a suitable distribu-
tion type. The structural and functional models are defined accordingly. As
a quality characteristic we try to show consistency and not unbiasedness –
compare Remark 1.3.2.

The following statement clearly restricts the choice of models:

Theorem 2.2.11:27 In the ultrastructural model, the ML estimators for α
and β are not consistent. This does not change even if σ2

δ is known.

A consistent estimator is currently only known for the special case, the
structural model. The condition Xi ∼ N(µ, σδ), µ ∈ R for i = 1, . . . , n
means that there is only one „true“ value, µ and the measured values scatter
around it. This only applies to very specific examples.28 Nevertheless, only
the structural model is usually considered in the literature.

In the functional and structural model, the ML estimator for α or β
generally does not exist. In both models, further information is required to
calculate the ML estimator, such as the information that the quotient of the
error variances λ or λ̃ is known.

2.2.2.1 Structural Model

When calculating the ML estimators for α and β, the problem arises that
five equations with six unknowns are to be solved uniquely. Therefore applies

Theorem 2.2.12:29 In the structural model, the ML estimators for α and
β generally do not exist.

If we assume that

λ̃ :=
2 · σ2

ε

σ2
δ

is known, there is initially a restriction (overdetermined system of equations):

26a and b are calculated with (vi, yi).
27Dolby 1976, p. 43.
28Cp. Fuller 1987, p. 34; Madansky 1959, p. 198. Note Schach and Schäfer 1978, p. 156

et sq.
29Miller 1986, p. 224 et sq.; Schach and Schäfer 1978, p. 157. Cp. Kendall and Stuart

1979, p. 404.
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2 Measurement Error Model

Theorem 2.2.13:30 If λ̃ is known in the structural model and α = 0, the
ML estimator for β does not exist.
However, if there is no straight line through the origin, the following applies:
Theorem 2.2.14:31 If λ̃ is known in the structural model and α 6= 0, then

b̃ := θ +

√
θ2 + λ̃

with

θ :=

n∑
i=1

(yi − ȳ)2 − λ̃ ·
n∑
i=1

(wi − w̄)2

2 ·
n∑
i=1

(yi − ȳ) · (wi − w̄)

and
ã := ȳ − b̃ · w̄

are the consistent ML estimators for β and α if the estimator of the covarian-
ce of W and Y , i.e. the empirical covariance sW,Y is not equal to zero. Here
ȳ respectively w̄ is the arithmetic mean of y1, . . . , yn respectively w1, . . . , wn.
If sW,Y = 0, then b̃ = 0. ã and b̃ are also the method of moments estimators
for α and β.32 With these two estimators for α and β, the structural model
is symmetrical.33

Remark 2.2.15: (i) There are various representations of the ML estimator
for β from Theorem 2.2.14. However, there are also incorrect formulas, with
an age-old error reappearing in Miller 1986, p. 226 et sq.34

(ii) The regression line, which is calculated with the estimators from Theorem
2.2.14 and is also referred to as structural straight line, lies between the
regression lines from w to y and from y to w determined with KQ estimators.
The intercept of all three lines is (w̄, ȳ):35

30Creasy 1956, p. 69.
31Kendall and Stuart 1979, p. 405, p. 410 et sq.; Schach and Schäfer 1978, p. 158 et sq.

Cp. Fuller 1987, p. 31 et sq. For a description, see Miller 1986, p. 226.
32Fuller 1987, p. 31; Miller 1986, p. 227.
33Cp. Schach and Schäfer 1978, p. 160, footnote +). Note Lemma 2.2.6.
34Cp. Kendall and Stuart 1979, p. 405; Schach and Schäfer 1978, p. 158, footnote +).
35Schach and Schäfer 1978, p. 159 et sqq. In the notation of Schach, Schäfer, x here

corresponds to w and ξ here to x. Cp. Motulsky and Christopoulos 2004, p. 50. See also
Casella and Berger 2002, p. 583, taking into account Remark 2.3.4.
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2.2 Probabilistic models

The regression lines of w on y („Regression von x auf y“) and of y on w
(„Regression von y auf x“) are upper and lower bounds for the structural
line. Schach and Schäfer 1978 on page 160 gives an estimate of how far apart
the straight lines are.

The following applies to straight line through the origin:
Theorem 2.2.16:36 If α = 0 in the structural model, the ML estimator for
β is

b̃ :=
ȳ

w̄
.

With this estimator, the structural model is symmetrical.

Theorem 2.2.17:37 If σ2
ε is known in the structural model and α 6= 0, then

b̃ :=

n∑
i=1

y2
i − n · ȳ2 − (n− 1) · σ2

ε

n∑
i=1

wi · yi − n · w̄ · ȳ

and
ã := ȳ − b̃ · w̄

the consistent ML estimators for α and β.

Theorem 2.2.18:38 If σ2
δ is known in the structural model and α 6= 0, then

b̃ :=

n∑
i=1

wi · yi − n · w̄ · ȳ
n∑
i=1

w2
i − n · w̄2 − (n− 1) · σ2

δ/2

36Miller 1986, p. 229. Note Kendall and Stuart 1979, p. 403, (29.19).
37Kendall and Stuart 1979, p. 405, p. 410 et sq.; Fuller 1987, p. 14 et sq.
38Kendall and Stuart 1979, p. 405, p. 410 et sq.
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2 Measurement Error Model

and
ã := ȳ − b̃ · w̄

the consistent ML estimators for α and β.

Remark 2.2.19: (i) If either σ2
ε or σ2

δ is known in the structural model, the
question arises as to whether it makes sense to consider the symmetry at all,
since the error variance of only one variable is known. If we nevertheless ask
about the symmetry, the following example for Theorem 2.2.17 shows that
the ML estimators for α and β are asymmetrical:
We consider the „ideal body weight index“39

m = 0.9 · l − 100 ,

where the ideal body weight m is given in kilograms and the body height l
in centimetres. Without measurement error, this means („the truth“):

body height xi 195 163 178

ideal body weight ηi 75.5 46.7 60.2

The estimators are of course ã = −100 and b̃ = 0.9 as well as ǎ = 111.1̄ and
b̌ = 1.1̄, which means that there is symmetry. – For the values

body height wi 196 162 180

ideal body weight yi 76.3 46.6 59.6

measured with errors, where σ2
ε = 0.71 is rounded, the rounded estimators

b̃ = 0.877 and b̌ = 1.146 result. Since b̌−1 = 0.872, the regression lines are
not symmetrical.
A corresponding example shows that the ML estimators for α and β of the
Theorem 2.2.18 are also asymmetric.

(ii) If σ2
ε and σ2

δ are known, ML estimators for α and β can be available
under certain conditions. Compare Kendall and Stuart 1979, p. 405 et sq.

2.2.2.2 Functional Model

In the structural model, the problem of the underdetermined system of equa-
tions arises when calculating the ML estimators for α and β. This problem
could be solved by making additional assumptions. A similar problem now
occurs when calculating the ML estimators in the functional model: They
cannot be calculated without an additional assumption, as the likelihood

39This index is based on the Broca index, taking into account the lower limit of the
normal weight range of 18.5 of the body mass index.
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2.2 Probabilistic models

function does not have a local maximum, but a saddle point.40 In the litera-
ture, only the additional assumption that

λ :=
σ2
ε

σ2
δ

is known is now cited. Is this the only way to calculate the ML estimators
in the functional model?
Theorem 2.2.20:41 If λ is known in the functional model, then

b̃ := θ +
√
θ2 + λ

with

θ :=

n∑
i=1

(yi − ȳ)2 − λ ·
n∑
i=1

(vi − v̄)2

2 ·
n∑
i=1

(yi − ȳ) · (vi − v̄)

and
ã := ȳ − b̃ · v̄

are the consistent ML estimators for β and α if the estimator of the covarian-
ce of V and Y , i.e. the empirical covariance sV,Y is not equal to zero. Here
ȳ respectively v̄ is the arithmetic mean of y1, . . . , yn respectively v1, . . . , vn.
With these two estimators for α and β, the functional model is symmetrical.42

Remark 2.2.21: (i) The functional model is rarely discussed in the litera-
ture. In Fuller’s book, the theorem 2.2.20 is not mentioned, it is only stated
that the ML estimation does not lead to the goal in multidimensional models,
p. 103 et sq.
(ii) Since the estimators of Theorem 2.2.14 and Theorem 2.2.20 are identical
for a given sample, the functional straight line naturally also lies between
the regression lines of v on y and of y on v determined with KQ estimators.

2.2.3 Evaluation of the Models

As can be seen from Lemma 2.2.3, the functional model is the generalisation
of the simple regression model and for this reason alone is preferable to the
structural model. The structural model cannot be a generalisation of the
simple regression model, even in terms of the original optimisation task, as
the domain of definition of the regression function, i.e. the values for X, only
contains one number, namely µ. In the case of the simple regression model
and the functional model, the domain of definition consists of a real interval.

40Kendall and Stuart 1979, p. 407 et sq.;Dolby 1976, p. 43; Schach and Schäfer 1978, p.
165.

41Kendall and Stuart 1979, p. 410 et sq.; Schach and Schäfer 1978, p. 167 et sq.
42Cp. Schach and Schäfer 1978, p. 160, footnote +). Note Lemma 2.2.6.
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2 Measurement Error Model

What do applications to the structural model look like? There may only
be one „true“ feature expression for X. Madansky cites the example of the
yield strength of artillery shells,43 Fuller uses the example of the hen pheasant
population in Iowa,44 thus very specific applications. The number of possible
applications of the structural model is very small. The ultrastructural model
would be preferable, but no estimators are known for it, see Theorem 2.2.11.

Estimators are only available in the functional and structural model if
another property of the model is known. Estimators exist in the structural
model for the following additional information:

1. The quotient of the error variances λ̃ is known, compare Theorem
2.2.14.

2. It is a straight line through the origin, i.e. it is α = 0, compare Theorem
2.2.16.

3. The error variance σ2
ε is known, compare Theorem 2.2.17.

4. The error variance σ2
δ is known, compare Theorem 2.2.18.

In the functional model, there are estimators if the following additional in-
formation is available:

1. The quotient of the error variances λ is known, compare Theorem
2.2.20.

As a rule, it will be known whether a specific application is a straight line
through the origin. The quotient of the error variances λ or λ̃ is often also
available with the value 1.45 This case always occurs when both features are
measured in the same way. But how should the error variance σ2

δ or σ
2
ε of the

independent or dependent variable be known? I do not have an example of
this. Fuller proposes the estimation of the error variance — this is of course
not the knowledge of the same — from a large number of independently
repeated measurements.46

In principle, the MEM enables symmetrical estimation of the regression
line. Why is this an advantage? It often happens that a linear relation exists
or is suspected between two features X and Y , but there is no effect of
one feature on the other, i.e. it is not possible to speak of an explanatory
(independent) and an explained (dependent) variable. There is a clear mode
of action for the two features „fertiliser quantity“ and „wheat yield“ The
amount of fertiliser influences the amount of wheat harvested. There is no
mode of action for the features „body weight“ and „body height“ of humans.

43Madansky 1959, p. 198.
44Fuller 1987, p. 34.
45Kendall and Stuart 1979 write about this on page 405: This is the classical method of

resolving the identifiability problem.
46Fuller 1987, p. 13 et sq.
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2.3 Regression by Kummell

If there is no mode of action between the features X and Y and there
is no possibility of symmetrical estimation, then the result of the regression
analysis depends on which feature is used as the independent variable. The
regression analysis therefore does not provide a satisfactory result.

It is difficult to judge how often the case where there is no mode of
action occurs in relation to the case where there is a mode of action. There
are various examples in which there is no mode of action, which means that
the symmetrical estimate is of interest and should not be neglected.

2.3 Regression by Kummell

The estimators for α and β of the Theorems 2.2.14 and 2.2.20 have already
been proposed by Kummell 1879.47 However, the derivation is done in a
completely different way, namely with the help of the Taylor polynomial.48

Significantly, this approach also results in an underdetermined system of
equations.49

In some natural sciences, Kummell’s regression is referred to as Deming
regression,50 although this is not very appropriate. This is because Deming
1948 deals with the adjustment calculation mostly using the method of least
squares51 and only mentions Kummell’s regression in passing with reference
to him.52

Why the research of the 1940s did not take Kummell’s results into ac-
count, to which Deming refers, is incomprehensible to me. Results would
have been achieved more quickly, especially with the functional model.

Orthogonal regression is a special case53 of Kummell regression:
Definition 2.3.1:54 Let the model of the regression calculation be given
with the regression function y = α̂ + β̂ · ξ. If we use the squared Euclidean
distance to determine the regression function, i.e.55

n∑
i=1

(yi − α̂− β̂ · xi)2 + (ξi − xi)2 → min! ,

then we have the method of orthogonal regression, also known as total
least squares.

47Kummell 1879, p. 101, equation (f) is the estimator for α, equation (h) and the
following remarks the estimator for β.

48Kummell 1879, p. 98. Note Deming 1948, p. 38, equation (4).
49Kummell 1879, p. 100: „Unless we make a certain assumption with regard to the

weights of observed quantities, we cannot solve, by a direct process, even these eq’ns.“
50Cp. Motulsky and Christopoulos 2004, p. 50; Linnet 1998,
51Deming 1948, p. iii.
52Deming 1948, p. 184.
53Note Remark 2.3.4.
54Cramér 1946, p. 275.
55Madansky 1959, p. 37, (1.3.14); Casella and Berger 2002, p. 582.
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2 Measurement Error Model

Remark 2.3.2: (i) The Euclidean distance of a point to a straight line is the
shortest distance between this point and the straight line. The segment defi-
ned by the shortest distance is perpendicular (orthogonal) to the regression
line.56

(ii) What is the difference between the KQ method and the method of ortho-
gonal regression? The KQ method minimises the distance only with respect
to the y-axis, the method of orthogonal regression with respect to both axes.

Theorem 2.3.3:57 The method of orthogonal regression leads to the estima-
tors

b̂ := θ +
√
θ2 + 1

with

θ :=

n∑
i=1

(yi − ȳ)2 −
n∑
i=1

(ξi − ξ̄)2

2 ·
n∑
i=1

(yi − ȳ) · (ξi − ξ̄)

and
â := ȳ − b̃ · v̄ .

Remark 2.3.4: The estimators of the method of orthogonal regression cor-
respond to those in the Theorem 2.2.14 (structural model) with λ̃ = 1 and
those in the Theorem 2.2.20 (functional model) with λ = 1. Kummell already
mentions this special case with reference to Adcock.58

The method of orthogonal regression is the starting point to derive the
estimators of the Theorems 2.2.14 and 2.2.20 (for any λ̃, λ) in a third way.
Glaister 2001 shows this on pages 105 et sq.59

56Casella and Berger 2002, p. 581.
57Fuller 1987, p. 38, (1.3.21), (1.3.27). There is an error in the specification of the

conditions for equation (1.3.27). It must be σee = σuu. Casella and Berger 2002, p. 582.
58Kummell 1879, p. 101 et sq.
59Note that for Glaister 2001 µ = 1/λ.
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3 Independence of scaling

If we consider the feature X body height and the feature Y body weight in
humans and assume that there is the linear relationship

η = f(x) = α+ β · x

between these two features. Then it would be fatal for the estimation of
the regression line if the estimation depends on whether height is given in
centimetres or metres or weight in kilograms or grams.

What effect does a change in scaling have on a linear relation? Let’s
assume that body height is no longer given in metres but in centimetres.
This leads to the line

f̌(x) = α+ β̌ · x ,

which has the same ordinate intercept as f(x), but is 100 times flatter. So
that the linear relation remains unchanged,

β̌ =
1

100
· β

must apply. – If, on the other hand, the body weight is not given in kilograms
but in grams, this leads to

1000 · f(x) = 1000 · (α+ β · x) .

This means that the straight line f(x) is only adapted to the change in the
scaling of the ordinate axis, is shifted accordingly, but remains unchanged.

The change in scaling must therefore be taken into account in the follo-
wing way so that the same linear relation exists: For

f(x) = α+ β · x ,

let x be specified in the unit Λ and f(x) in the unit Θ. If x̌ is now specified
in the unit p · Λ and f̌(x̌) in the unit q ·Θ, where p, q ∈ R\{0}, then

f̌(x̌) = q · α+
q

p
· β · x̌ .

If the estimators change accordingly, the scaling of a unit does not play a
role in the estimation:

31



3 Independence of scaling

Definition 3.0.1: Let the regression function y = f(ξ) = α̂+ β̂ ·ξ be given1,
where ξ is in the unit Λ and f(ξ) is in the unit Θ.
(i) Let fp(ξ̌) = α̂p+ β̂p · ξ̌ be the regression function for which ξ̌ is specified in
the unit p·Λ, p ∈ R\{0}. The regression function f(ξ) is called independent
of the scaling with respect to ξ if fp(ξ) = α̂+ 1

p · β̂ · ξ̌ applies.

(ii) fq(ξ) = α̂q + β̂q · ξ is the regression function where fq(ξ) is given in the
unit q · Θ, q ∈ R\{0}. The regression function f(ξ) is called independent
of the scaling with respect to f(ξ) if q · f(ξ) = fq(ξ) applies.

Remark 3.0.2: (i) The estimators α̂, β̂, α̂p, β̂p, α̂q, β̂q in Definition 3.0.1 are
calculated in the same way.
(ii) The „unit“ is the dimension of the scale in which the feature is measured.
These can be physical units such as metres or milliamperes, but also economic
units such as the number of unemployed in thousands or euro cents. The
feature can usually be measured in different units, which can be converted
into each other. For example, if we consider the feature „time period“, then
this can be measured in the units year or second.
(iii) What does a change in the scaling of the unit mean? If ξ has the unit
p · Λ, then 1

p · ξ has the unit Λ. For example, if ξ has the unit centimetre
(= 100 · metre), then 1

100 · ξ has the unit metre. The same applies to f(ξ).

Lemma 3.0.3: The regression function y = a+ b ·x respectively y = a+ b · ξ
of the regression calculation with LS estimators is independent of the scaling
with regard to x respectively ξ and y.
Proof: Let x̌ := p · x, y̌ := q · y and y̌ = ǎ+ b̌ · x̌ with p, q ∈ R\{0}.
To show: y̌ = q · a+ q

p · b · x̌
We have

b̌ =

n∑
i=1

(p · xi − p · x̄)(q · yi − q · ȳ)

n∑
i=1

(p · xi − p · x̄)2

=

p · q ·
n∑
i=1

(xi − x̄)(yi − ȳ)

p2 ·
n∑
i=1

(xi − x̄)2

=
q

p
· b

and

ǎ = q · ȳ − b̌ · (p · x) = q · ȳ − q

p
· b · p · x̄ = q · ȳ − q · b · x̄ = q · a .

2

Theorem 3.0.4: The regression function y = ã + b̃ · w of the structural
model with known λ̃ with the estimators from Theorem 2.2.14 as well as the
regression function y = ã+ b̃ ·v of the functional model with known λ with the
estimators from Theorem 2.2.20 is independent of the scaling with respect to
w respectively v and y.

1This regression function is representative of all regression functions listed in this paper.
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Proof: Let w̌ := p · w, y̌ := q · y and y̌ = ǎ+ b̌ · w̌ with p, q ∈ R\{0}.
To show: y̌ = q · ã+ q

p · b̃ · w̌
Firstly, we have2

λ̌ =
q2

p2
· λ̃ .

From this follows

θ̌ =

q2 ·
n∑
i=1

(yi − ȳ)2 − q2

p2
· λ̃ · p2 ·

n∑
i=1

(wi − w̄)2

2 · p · q ·
n∑
i=1

(yi − ȳ) · (wi − w̄)

=
q

p
· θ

and therefore

b̌ = θ̌ +
√
θ̌2 + λ̌ =

q

p
· θ +

√(
q

p
· θ
)2

+
q2

p2
· λ̃ =

q

p
· b̃ .

The point is now that

ǎ = q · ȳ − b̌ · (p · w) = q · ȳ − q

p
· b̃ · p · w̄ = q · ã .

2

Remark 3.0.5: The difference between the estimators of the structural
model respectively the functional model on the one hand and those of the
orthogonal regression on the other hand is that λ̃ respectively λ are 1 in the
orthogonal regression – compare Remark 2.3.4. For the proof of Theorem
3.0.4, however, it is essential that λ̃ respectively λ is the quotient of the
error variances. Therefore, the orthogonal regression is not independent of
the scaling with regard to ξ or y. This has already been pointed out by Wald
1940 on page 284.

2Georgii 2004, p. 107, Theorem 4.23, a).
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4 Technical Questions

In the following, questions are listed for which I do not know the answer:

1. Are there other estimators in the structural or functional model besides
the estimator from Theorem 2.2.14 using the method of moments?

2. The estimators in Theorem 2.2.14 (structural model) are also method of
moments estimators. Does this also apply to the corresponding Theorem
2.2.20 (functional model)?

3. In the functional model, the ML estimator is available for a given λ. Are
there ML estimators under other conditions, for example with the know-
ledge of σ2

ε or σ2
δ? Can other estimators be constructed? What properties

do they have?

4. Does the property that the structural straight line lies between the two
LS regression lines — compare Remark 2.2.15 — also apply under other
conditions? Which statements regarding the functional straight line are
possible in the functional model — compare Remark 2.2.21 — if λ is not
known?

5. Theorem 2.2.14 gives an estimator for the case sW,Y = 0. Is a correspon-
ding statement possible in the parallel case of the Theorem 2.2.20 for
sV,Y = 0?

6. Is it possible to construct an estimator in the ultrastructural model?

7. In the functional model — also in the (ultra-)structural model — the
regression equations Yxi = α + β · xi + Exi have a different independent
variable than the regression function y = α̂ + β̂ · v. Can the functional
model be constructed in such a way that Yxi = α + β · vi + Exi? Note
Remark 2.2.5, (ii).
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