

Zusammenstellung der experimentellen Untersuchungen

zum Durchstanz- und Verbundbewehrungssystem in Bezug zur ETA-19/0130 mit

L- und Z- Blechen

und den Vorunstersuchungen mit

kurzen und langen Blechen

Zeitraum: 2000-2023

Inhaltsverzeichnis

Α	Durchstanz- und Verbundbewehrung mit L- Blechen nach ETA 2/22	
	A1. Beschreibung der L- Bleche als Durchstanz- und Verbund-	
	Bewehrung für Halbfertigteildecken	3
	A2. Bemessungsbeispiel	14
	A3. Tabellarische Zusammenstellung und Berechnung der Experimente	30
В	Durchstanz- und Verbundbewehrung mit Z- Blechen nach ETA 2/22	
	B1. Abbildung der Z- Bleche	37
	B2. Tabellarische Zusammenstellung und Berechnung der Experimente	38
С	Voruntersuchungen der Durchstanz- und Verbundbewehrungen mit	
	kurzen und langen Blech	<u>ıen</u>
	C1. Überblick der untersuchten kurzen und langen Bleche	39
	C2. Tabellarische Zusammenstellung der experimentellen Voruntersuchungen	40
		10
D	Anhang: Durchstanz- und Verbundbewehrung mit <u>L-Blechen</u>	10
D		
D	Anhang: Durchstanz- und Verbundbewehrung mit <u>L-Blechen</u>	

A Durchstanz- und Verbundbewehrung mit L-Blechen nach ETA 2/22

A1. Beschreibung der L- Bleche als Durchstanz- und Verbundbewehrung für Halbfertigteildecken

Nur ein L-Blech als Durchstanz- und Verbundbewehrung für alle Halbfertigteildecken mit unterschiedlich hohen Ortbetonergänzungen*)

In den letzten Jahren sind die konstruktiven Anforderungen für Betontragwerke weiter gestiegen. Flache Decken und schlanke Stützen stellen Tragwerksplaner schnell vor die Problematik des **Nachweises** Durchstanztragfähigkeit. Die Betontragfähigkeit der Flachdecken ist sehr oft nicht ausreichend und der Durchstanznachweis gelingt nur unter Verwendung eines Bewehrungssystems (Bild 1).

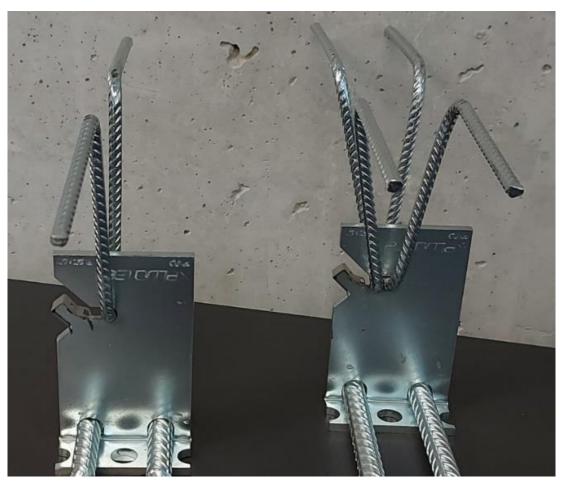


Bild 1 Durchstanzbewehrungselemente aus L-Blechen mit einem oder zwei eingehängten Bügeln

^{*)} Der Bericht wurde mit geringen Änderungen bereits im Aug. 2023 in der Zeitschrift BFT INTERNATIONAL veröffentlicht.

In diesem Bericht wird die Verwendung des Durchstanz- und Verbundbewehrungssystems gemäß der Europäischen Technischen Bewertung ETA 19/0310 vom 21. Februar 2022 [1] zur Herstellung von Halbfertigteildecken beschrieben.

Die Durchstanztragfähigkeit von Flachdecken kann um mehr als das Doppelte der Betontragfähigkeit mit dem System gesteigert werden. Das europaweit patentierte Bewehrungssystem [2] übernimmt außerdem einen großen Anteil an der Verbundkraftübertragung in der Fuge zwischen dem Halbfertigteil und der Ortbetonergänzung.

Technische Beschreibung des Bewehrungssystems

Das Durchstanz- und Verbundbewehrungssystem setzt sich aus einem oder zwei Bügeln aus herkömmlichen Betonstahl und einem gekanteten L-Blech zusammen (Bild 1). Die Bügel werden über das schräge Langloch im Blech eingehängt und mit einem Federclip gesichert. Die Lagesicherung der L-Bleche in der Schalung wird durch die beiden handelsüblichen Betonstähle mit einem Durchmesser von 12 mm sichergestellt. Diese werden unten durch die vorgesehenen Bohrungen in den L-Blechen geführt und können als Zulagebewehrung verwendet oder als Teil der vorgesehenen Biegebewehrung angerechnet werden.

Bauliche Durchbildung

Für die Stahlbetonbauteile ist Normalbeton der Festigkeitsklassen C20/25 bis C50/60 zugelassen.

Die Deckenhöhen sind in Abhängigkeit von der Anzahl der Bügel je L-Blech festgelegt.

L-Bleche mit einem Bügel: 18 cm \leq h \leq 40 cm L-Bleche mit zwei Bügeln: 18 cm \leq h \leq 110 cm

In Abhängigkeit von der Deckenhöhe h und der Betondeckung c_{unten} und c_{oben} ergeben sich die Bügelhöhen.

Deckenhöhe < 24 cm: $h_{B\ddot{u}qel} = (h - c_{oben} - c_{unten} - 7,5) \cdot 1,06$ [cm]

Deckenhöhe \geq 24 cm: $h_{B\ddot{u}gel} = h - c_{oben} - c_{unten} - 6.5$ [cm]

Bemessung

Die Bemessung kann mit der Software [3] in wenigen Schritten durchgeführt werden (Bild 2). Die Berechnungen nach der Europäischen Technischen Bewertung ETA 19/0310 vom 21. Februar werden in Anlehnung an 2022 [1] die für vorgenommen. Durchstanzbemessung Bügel nach EC 2 Bemessungssoftware können auch Parameter wie Elementfugen und Aussparungen erfasst werden.

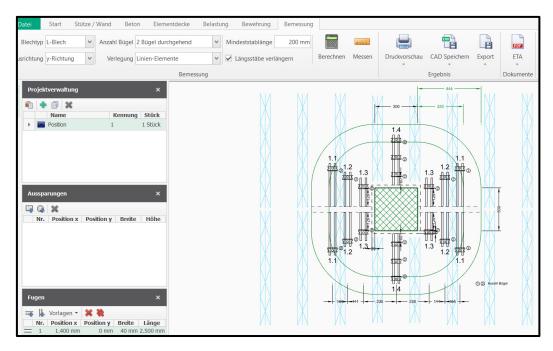


Bild 2 Eingabemaske der Bemessungssoftware [3]

Die einzelnen Berechnungsschritte zum Durchstanz- und Verbundnachweis sind im folgenden Beispiel für eine Innenstütze per Handrechnung ausführlich beschrieben.

Im Ergebnisausdruck wird die Einbauverteilung (Bild 2) und die Stückliste der Linienelemente mit genauen Abmessungen angegeben (Bild 3). Für die Fertigung im Werk werden alle benötigten Informationen zur Herstellung der aneinandergereihten L-Blechen zu Linienelementen bereitgestellt.

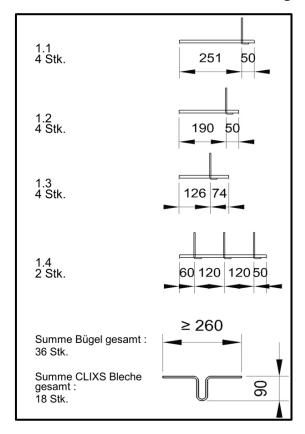


Bild 3 Stückliste der Linienelemente und Abmessungen der Bügel in der Ausgabe der Bemessungssoftware

Zur einfachen Verlegung der L-Bleche als Linienelemente können die verlängerten Längseisen gewählt werden (Bild 2). Die verlängerten Längseisen werden zur Lagesicherheit an die Randschalung bzw. an die Stützenaussparung angelegt. Die Linienelemente im Bild 4 entsprechen der Stückliste im Bild 3.

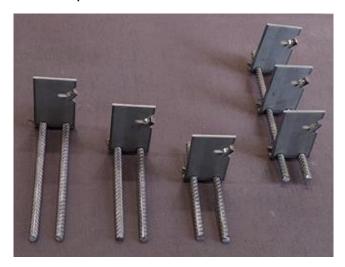


Bild 4 Als Linienelemente zusammengefasste L-Bleche entsprechend der Stückliste im Bild 3

Herstellung der Linienelemente mit aneinandergereihten L-Blechen

Im Werk können die L-Bleche unter Verwendung einer Zahnschiene auf zwei Stabstähle Ø 12mm zu einem Linienelement aufgefädelt und mit Haftpunkten oder Rödeldraht in ihrer Lage gesichert werden (Bild 5).

Bild 5 Zahnschiene zur einfachen Herstellung der Linienelemente vor Ort

Ablage der Linienelemente auf die Schalung im Werk

Ein von der Software gesteuerter Plotter zeichnet bei der Herstellung im Werk zuerst mit gelber Farbe die Positionen der Linienelemente auf die Schalung. Im Anschluss werden die Linienelemente plangemäß auf Abstandshalter zwischen den Gitterträgern verlegt (Bild 6).

Bild 6 Auf die Abstandhalter parallel zu den Gitterträgern abgelegte Linienelemente für eine Innenstütze mit sehr hoher Belastung

Infolge der linienförmigen Anordnung der Durchstanzbewehrungselemente ist ein kollisionsfreier Einbau der Deckenbewehrungen im Unterschied zu sternförmig fixierten Durchstanzbewehrungen problemlos möglich. Die Linienelemente mit L-Blechen liegen parallel in derselben Lage wie die Längsbewehrungen und die Grundgitterträger (Bild 7).

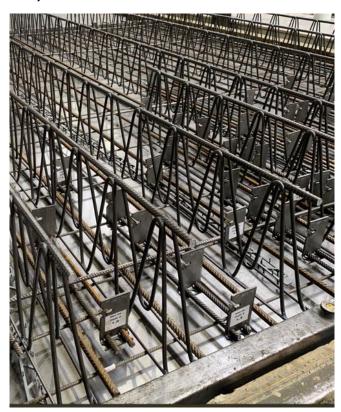


Bild 7 Kollisionsfreie Bewehrungen für eine Decke mit großer Höhe

Einbetonieren der Linienelemente

Die Bleche werden im Fertigteilwerk lagesicher zusammen mit den unteren Bewehrungen und den Gitterträgern einbetoniert (Bild 8).

Bild 8 Zwischen den Gitterträgern einbetonierte L-Bleche

Lagerung und Transport der Halbfertigteildecken

Zum Transport sowie der Lagerung der Halbfertigteildecken werden keine Stapelhilfen benötigt da die einbetonierten Bleche nicht über die Gitterträger ragen. Die stoßgeschützten L-Bleche in den Halbfertigteildecken haben keinen Einfluss auf das Lagern, das Verladen, das Transportieren und das Zwischenlagern auf der Baustelle (Bild 9).

Bild 9 Lagerung von Halbfertigteildecken mit fertig einbetonierten L-Blechen ohne Stapelhilfen

Bestimmungen für die Ausführung

Der Abstand zwischen dem Stützenanschnitt und der Halbfertigteildecke kann zwischen 4 und -1 cm liegen. Falls die Elementdecke direkt auf der Stütze aufgelagert wird, ist die Fuge zwischen der Stütze und der Platte vollständig zu vermörteln. Hierdurch wird die Durchleitung der Lasten aus den darüber liegenden Geschossen gewährleistet.

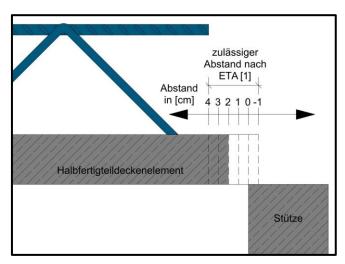


Bild 10 Einbautoleranzen für Halbfertigteildecken mit L-Blechen

Auf der Baustelle verlegte Halbfertigteildecken mit L-Blechen

Im Bild 11 sind eingebaute Halbfertigteildecken mit L-Blechen an einer Wandecke und im Bild 12 für eine Innenstütze dargestellt.

Bild 11 Auf der Baustelle abgelegte Halbfertigteildecken mit L-Blechen an einer Wandecke

Bild 12 Halbfertigteildecken mit L-Blechen für eine Innenstütze mit sehr hoher Querkraftbeanspruchung

Im Bild 13 ist zu sehen, dass auch bei zahlreichen unterschiedlichen Einbauteilen in den Decken die L-Bleche als Durchstanzbewehrung problemlos verwendet werden können.

Bild 13 L-Bleche als Durchstanz- und Verbundbewehrung in Decken mit vielfältigen Einbauteilen

Einbau der Bewehrungen und Einhängen der Bügel auf der Baustelle

Die L-Bleche behindern das Verlegen der unteren Bewehrungen auf dem Beton der Halbfertigteildecken und der oberen Bewehrungen auf den Gitterträgern nicht (Bild 14).

Bild 14 Verlegung der Bewehrungen ohne Behinderungen durch die L-Bleche

Nachdem die obere Bewehrung vor Ort verlegt ist, können die Bügel von oben in das Langloch der L-Bleche eingehängt und ohne weitere Fixierung auf oder an der oberen Bewehrungslage abgelegt werden. Die Bügel können nach dem Ablegen bis zu 30° nach beiden Seiten geneigt sein (Bild 15).

Bild 15 Vollständige Deckenbewehrung mit L-Blechen und Bügeln

Vorteile der L-Bleche zusammengefasst

Das Durchstanz- und Verbundbewehrungssystem besteht immer aus dem gleichen Basiselement. Decken von 18 bis 110 cm können mit dem L-Blech verstärkt werden.

Bügel verschiedener Länge ergänzen das immer gleiche L-Blech. Im Fertigteilwerk muss nur ein L-Blech für alle Decken ausreichend vorrätig sein.

Die Linienelemente können einfach parallel zu den Gitterträgern und den Bewehrungen kollisionsfrei abgelegt werden.

Auf der Baustelle müssen nur noch die Bügel in die L-Bleche eingehängt und in Höhe der obersten Bewehrungslage abgelegt werden. Eine weitere Befestigung der Bügel ist nicht notwendig.

Der Gitterträger hat durch die geringen Abmessungen des L-Blechs die größte Höhe. Die Deckenelemente können somit ohne Stapelhilfen platzsparend in dem Trockenbereich, dem Lagerplatz dem Fahrzeug gestapelt werden. und Beschädigungen wie bei überstehenden Doppelköpfen können beim Bewehrungssystem mit L-Blechen ausgeschlossen werden.

Die L-Bleche mit den eingehängten Bügeln übernehmen auch Verbundkräfte. Zusätzliche Gitterträger und die damit verbundenen Materialkosten können somit eingespart werden.

Für Stahl- oder Verbundstützen mit steifen Lasteinleitungsplatten gelten ebenfalls die Vorgaben der ETA.

Insbesondere bei dünnen Stützen und hohen Decken ist die Maximaltragfähigkeit des Bewehrungssystem wesentlich höher als bei allen anderen bekannten Durchstanzbewehrungssystemen.

Die Ergebnisse der Tragfähigkeitsnachweise, der Verlegungsplan und die Stückliste werden vom Berechnungsprogramm übersichtlich ausgegeben.

Bei anstehenden Projekten ermöglicht die einfache Lagerhaltung eine sofortige Verfügbarkeit und damit eine hohe Flexibilität. Infolge der Lagerhaltung ist eine Unabhängigkeit von problematischen Lieferketten und enorm steigenden Rohstoffpreisen vorhanden.

Die freie Wahl der eigenen Fertigungstiefe bestimmt der Deckenhersteller selbst und damit den Grad seiner Wertschöpfung. Wenn im eigenen Betrieb die Linienelemente auf Basis der L-Bleche sowie auch die benötigten Bügel selbst hergestellt werden, hat er die größtmögliche Wertschöpfung. Die Linienelemente können auch bestellt und mit selbst gebogenen Bügeln verwendet werden, oder das vollständige System mit Linienelementen und Bügeln wird zeitnahe geliefert.

Erhebliche Kosteneinsparungen lassen sich gegenüber anderen bekannten Durchstanzbewehrungen erreichen.

Da ausschließlich Stahl verwendet wird, können die CLIXS Bewehrungselemente nachhaltig hergestellt und sortenrein recycelt werden.

Literatur

- [1] Deutsches Institut für Bautechnik (2022) Europäisch Technische Bewertung ETA-19/0310 vom 21. Februar 2022 Durchstanzbewehrung mit L- oder Z-förmigen Metallblechen.
- [2] Europäische Patentschrift (2021) Flächiges Bauteil, Querkraftbewehrungselement. EP 2 940 227 B1, Apr. 2014.
- [3] Berechnungsprogramm (2022) www.betomax.com.
 - *) Der Bericht wurde mit geringen Änderungen bereits im Aug. 2023 in der Zeitschrift BFT INTERNATIONAL veröffentlicht.

A2. Bemessungsbeispiel

nach der ETA-19/0310 vom Februar 2022 mit erheblichen Einsparungen der Anzahl der Bleche gegenüber der vorherigen ETA

Die Bemessung des Bewehrungssystems bei ständigen und quasi-ständigen Einwirkungen erfolgt nach Eurocode 2, Abschnitt 6.4 [1] und den Anhängen C.1 und C.2 der ETA [2].

Die Weiterentwicklungen des Systems [3] und [4] mit erheblichen Reduzierungen der Anzahl der Bleche gegenüber der vorherigen ETA werden zahlenmäßig in der Gegenüberstellung am Ende des Beispiels besonders deutlich.

In dem folgenden Beispiel werden leicht verständlich zur Nachvollziehbarkeit der Bemessung die einzelnen Schritte per Handrechnung ausführlich beschrieben. Alle Schritte sind ebenfalls im Ergebnisausdruck der Bemessungssoftware [5] dargestellt.

Durchstanznachweis

Der **Bemessungswert der einwirkenden Querkraft** v_{Ed} entlang des kritischen Rundschnitts u₁ im Abstand von 2 d vom Stützenrand wird wie folgt bestimmt:

 V_{Ed} einwirkende Bemessungsquerkraft u_1 Umfang des kritischen Rundschnitts im Abstand von 2 d vom Stützenrand d mittlere statische Nutzhöhe β Lasterhöhungsfaktor zur Berücksichtigung von Lastexzentrizitäten (Abb. 1)

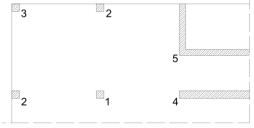


Abb. 1: Vereinfachte Lasterhöhungsfaktoren

Für unverschiebliche Systeme mit Stützweitendifferenzen von weniger als 25%:

1. Innenstütze β = 1,10 2. Randstütze β = 1,40 3. Eckstütze β = 1,50 4. Wandecke β = 1,20

5. Wandende

 $\beta = 1.35$

Alternativ kann der Lasterhöhungsfaktor β nach dem Verfahren der plastischen Schubspannungsverteilung mit der Bemessungssoftware berechnet werden.

Eine Durchstanzbewehrung ist erforderlich, wenn die einwirkende Querkraft je Flächeneinheit entlang des kritischen Rundschnitts u₁ größer ist als der in Gleichung (2) beschriebene **Durchstanzwiderstand des Betons** v_{Rd.c.}

$$V_{Rd,c} = C_{Rd,c} \cdot k \cdot \left(100 \cdot \rho_l \cdot f_{ck}\right)^{1/3} \geq v_{min} \tag{2}$$

$$C_{Rd,c} \qquad \text{empirischer Faktor, } C_{Rd,c} = 0,18/\gamma_c$$

$$k \qquad \qquad \text{Faktor zur Berücksichtigung des Maßstabseffekts}$$

$$k = 1 + \sqrt{\frac{200}{d}} \leq 2,0 \text{ mit d in [mm]}$$

$$f_{ck} \qquad \qquad \text{charakteristische Zylinderdruckfestigkeit des Betons}$$

$$\rho_l \qquad \qquad \text{gemittelter Bewehrungsgrad in y- und z- Richtung}$$

$$\rho_l = \sqrt{\rho_{lz} \cdot \rho_{ly}} \leq \begin{cases} 2,0\\ 0,5 \cdot f_{cd}/f_{yd} \end{cases}$$

$$f_{cd} \qquad = \alpha_{cc} \cdot f_{ck} / \gamma_c \qquad \text{Bemessungswert der Betondruckfestigkeit}$$

$$f_{yd} \qquad = f_{yk} / \gamma_s \qquad \text{Bemessungswert der Streckgrenze des}$$

$$\text{Bewehrungsstahls}$$

$$V_{min} \qquad \qquad (0,0525 / \gamma_c) \cdot k^{3/2} \cdot f_{ck}^{1/2} \text{ für d} \leq 600 \text{ mm}$$

$$(0,0375 / \gamma_c) \cdot k^{3/2} \cdot f_{ck}^{1/2} \text{ für d} > 800 \text{ mm}$$

$$Zwischenwerte dürfen linear interpoliert werden$$

Für Innenstützen bei Flachdecken mit kleinen Verhältnissen von Stützenumfang zu statischer Nutzhöhe gilt:

$$\frac{u_0}{d} < 4.0 : C_{Rd,c} = \frac{0.18}{\gamma_c} \cdot \left(0.1 \cdot \frac{u_0}{d} + 0.6\right) \ge \frac{0.15}{\gamma_c}$$

 u_0 Umfang der Stützenlasteinleitungsfläche γ_c Teilsicherheitsbeiwert für Beton ($\gamma_c = 1,5$)

Die äußere Bewehrungsreihe ist im Abstand 1,5 d nach innen vom **äußeren Rundschnitt** u_{out} nach Gleichung (3) vorzusehen.

$$u_{\text{out}} = \frac{\beta_{\text{red}} \cdot V_{\text{Ed}}}{V_{\text{Rd}} \cdot d}$$
 (3)

β_{red} reduzierter Faktor zur Berücksichtigung von Einflüssen aus Lastexzentrizitäten entlang des äußeren Rundschnitts u_{out}

$$\beta_{\text{red}} = \kappa_{\beta} \cdot \beta \ge 1,10$$
 (4)

Randstütze
$$\kappa_{\beta} = \frac{1}{1,2 + \frac{\beta}{20} \cdot \frac{I_{s}}{d}}$$

$$Eckstütze \qquad \kappa_{\beta} = \frac{1}{1,2 + \frac{\beta}{15} \cdot \frac{I_{s}}{d}}$$
Wandecke
$$\kappa_{\beta} = 1,0$$
Wandende
$$\kappa_{\beta} = 1,0$$

ls Abstand zwischen der Stützenoberfläche und dem äußersten

Durchstanzbewehrungselement

β Lasterhöhungsfaktor (vollplastische Schubspannungsverteilung)

Der *reduzierte Faktor* β_{red} kann bei der Bestimmung des Durchstanzwiderstandes des äußeren Rundschnitts u_{out} bei Rand- und Eckstützen nach Gleichung (4) berechnet werden.

Die *Maximaltragfähigkeit* v_{Rd,max} wird im kritischen Rundschnitt u₁ im Abstand von 2,0 d vom Stützenrand nach Gleichung (5) berechnet.

$$v_{Rd,max} = k_{pu,sl} \cdot v_{Rd,c}$$
 (5)

v_{Rd,max} maximale Durchstanztragfähigkeit

k_{pu,sl} Erhöhungsfaktor für den Durchstanzwiderstand

= 2,05 für L-Bleche mit einem oder zwei Bügel Ø6

= 1,90 für L-Bleche mit einem Bügel Ø8

VRd,c Bemessungswert des Durchstanzwiderstandes nach Gleichung (2) mit

 $C_{Rd,c} = 0.18 / \gamma_c$ unabhängig vom Verhältnis u₀ / d

Der Nachweis erfolgt nach Gleichung (6).

$$\frac{\beta \cdot V_{Ed}}{u_1 \cdot d} \le v_{Rd,max} \tag{6}$$

v_{Rd,max} maximale Durchstanztragfähigkeit

Die sehr hohe Maximaltragfähigkeit der L-Bleche ist insbesondere bei dünnen Stützen und hohen Decken mit u_0 / d < 4 durch den konstanten Faktor für $C_{Rd,c}$ wesentlich höher als bei allen anderen bekannten Durchstanzbewehrungssystemen.

Die *Bemessung der Durchstanzbewehrung* erfolgt im kritischen Rundschnitt u₁. Die Anzahl der Durchstanzbewehrungselemente muss so groß sein, dass folgende Ungleichung erfüllt ist.

$$\beta \cdot V_{Ed} \le V_{Rd cs \ l - Bleche} \tag{7}$$

V_{Rd.cs,L-Bleche} Durchstanzwiderstand der L-Bleche

Der **Durchstanzwiderstand** V_{Rd,cs,L-Bleche} setzt sich aus dem Traganteil der Durchstanzbewehrungselemente und dem Betontraganteil zusammen. Die erforderliche Anzahl von Bewehrungselementen ist für jede der ersten drei Reihen bis zu einem Abstand von 2,0 d zur Stütze einzubauen und kann mit der Gleichung (8) ermittelt werden.

$$V_{Rd,cs,L-Bleche} = k_1 \cdot v_{Rd,c} \cdot u_1 \cdot d + k_{2,L} \cdot n_{B\ddot{u}gel} \cdot 2 A_{s,B\ddot{u}gel} \cdot f_{vwd,ef} \cdot n_{Bleche} \cdot 1,5 d / s_r$$
 (8)

 $\begin{array}{lll} k_1 &= 0.85 \ \text{Wirkungsbeiwert für die Betontragf\"{a}higkeit} \\ u_1 & \text{Rundschnitt im Abstand 2 d vom St\"{u}tzenrand} \\ n_{B\ddot{u}gel} & \text{Anzahl der B\"{u}gel je L-Blech (1 oder 2 B\"{u}gel)} \\ k_{2,L} &= 0.55 \ \text{Wirkungsbeiwert f\"{u}r den Verbund} \\ A_{s,B\ddot{u}gel} & \text{Querschnittsfl\"{a}che eines B\"{u}gelschenkels} \end{array}$

 $f_{ywd,ef}$ = 250 + 0,25 d \leq f_{yd} , effektiver Bemessungswert der Streckgrenze der Bügel,

mittlere statische Nutzhöhe d in mm, fyd = 435 N/mm²

n_{Bleche} Anzahl der L-Bleche im Rundschnitt

 s_r radialer Abstand der Durchstanzbewehrung, empfohlen $s_r = 0.75$ d

Überschreitet der Abstand der Bewehrungsreihen 2,0 d zum Stützenrand wird der Wirkungsbeiwert für den Verbund ab der vierten Bewehrungsreihe auf $k_{2,L}$ = 1,0 erhöht.

Verbundnachweis in der Fuge im Durchstanzbereich

Bei der abschnittsweisen Herstellung von Betonbauteilen, wie Halbfertigteildecken mit Ortbetonergänzung, grenzen Betone unterschiedlichen Alters aneinander. Die Bauteile sollen das Tragverhalten von monolithischen Körpern aufweisen. Deshalb müssen die Fugen kraftschlüssig ausgeführt werden.

Der Bemessungswert der Einwirkung ved.ui für jeden Rundschnitt, ab einem Abstand von 1,25 d vom Stützenrand, kann mit Gleichung (9) bestimmt werden.

$$v_{Ed,ui} = \frac{\beta \cdot (V_{Ed} - \Delta V_{Ed,i})}{u_i \cdot z}$$
(9)

Abzugswert der Belastung vom jeweiligen Rundschnitt bis zur Stütze $\Delta V_{Ed,i}$ = A_i · (q_d + q_d), mit A_i als Fläche des Durchstanzbereichs bis zum jeweiligen

Umfang des jeweiligen Rundschnitts Uί

Hebelarm der inneren Kräfte, Z

= 0.9 d

oder geringerer Hebelarm bei gleichzeitiger Querkraftbeanspruchung,

 $= \max \begin{cases} d - c_{unten} - 0.03 \text{ m} \\ d - 2 \cdot c_{unten} \end{cases}$ c_{unten} Verlegemaß der Längsbewehrung in der Druckzone

Im Abstand von 0,5 d ist kein Nachweis erforderlich, da dort die Querkraft direkt in die Stütze eingeleitet wird.

Die **Verbundtragfähigkeit** v_{Rdi} setzt sich additiv aus einem Betonverzahnungstraganteil v_{Rd,c}, einem Reibungsanteil vRd,r infolge einer Normalkraft und aus den die Fuge kreuzenden Bewehrungsanteilen v_{Rd,si} zusammen und kann nach Gleichung (10) berechnet werden. Der Reibungsanteil aus dem Eigengewicht des Ortbetons ist bei dünnen Decken gering und kann vernachlässigt werden.

$$\begin{aligned} v_{Rdi} &= v_{Rd,c} + v_{Rd,r} + v_{Rd,si} \leq 0,5 \cdot v \cdot f_{cd} \\ v_{Rdi} &= c \cdot f_{ctd} + \mu \cdot \sigma_n + \rho_i \cdot f_{yd} \cdot (1,2 \cdot \mu \cdot \sin \alpha_i + \cos \alpha_i) \leq 0,5 \cdot v \cdot f_{cd} = v_{Rd,max} \end{aligned} \tag{10}$$

$$f_{ctd} \qquad = \alpha_{ct} \cdot 0,7 \cdot 0,3 \cdot f_{ck}^{2/3} / \gamma_c \quad \text{Bemessungswert der Betonzugfestigkeit}$$

$$\sigma_n \qquad \text{Druckspannungen rechtwinklig zur Fuge, Zugkräfte werden negativeingesetzt}$$

$$\rho_i \qquad \text{jeweiliger Bewehrungsgehalt der die Fuge kreuzenden Bewehrungen}$$

$$\alpha_i \qquad \text{Neigung der betrachteten Bewehrung zur Fuge}$$

$$c, \mu \text{ und } v \qquad \text{Beiwerte in Abhängigkeit von der Oberflächenbeschaffenheit der Fuge des Halbfertigteils, verzahnt, mit Zahnhöhe $\geq 10 \text{ mm}} \qquad c = 0,50; \ \mu = 0,90; \ v = 0,75 \\ \text{rau, mit Rechen aufgeraut} \qquad c = 0,40; \ \mu = 0,70; \ v = 0,50 \\ \text{glatt, abgezogene Fugenfläche} \qquad c = 0,20; \ \mu = 0,60; \ v = 0,20 \\ \text{sehr glatt, glatte Schalung} \qquad c = 0,00; \ \mu = 0,50; \ v = 0,00 \\ \text{maximale Verbundkraftübertragung} \end{aligned}$$

Der Verbundkrafttraganteil des Betons vRd,c ergibt sich nach Gleichung (11).

$$v_{Rd,c} = c \cdot f_{ctd} \tag{11}$$

Der *Verbundkrafttraganteil des Grundgitterträgers* v_{Rd,GT} kann nach Gleichung (12) berechnet werden.

$$v_{Rd,GT} = \frac{n_{Stabe} \cdot A_{Stab}}{b_{GT} \cdot s_{GT}} \cdot f_{yd} \cdot (1.2 \cdot \mu \cdot \sin \alpha_{GT} + \cos \alpha_{GT})$$
 (12)

nstäbe die Fuge kreuzende Diagonalstäbe steigend zum Auflager im Abstand bgt

b_{GT} Abstand der Diagonalstäbe s_{GT} mittlerer Abstand der Gitterträger

h_{GT} Trägerhöhe

Astab Querschnittsfläche eines Diagonalstabs steigend zum Auflager

 f_{yd} Bemessungswert der Streckgrenze der Diagonalstäbe α_{GT} Winkel der zwei Diagonalstäbe steigend zum Auflager

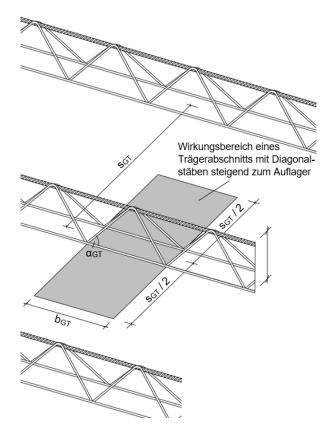


Abb. 2: Grundgitterträger mit Wirkungsbereich eines Trägerabschnitts

Falls Schubgitterträger als Zulage eingebaut werden, kann der **Verbundkrafttraganteil des Schubgitterträgers** v_{Rd,ST} mit Gleichung (13) bestimmt werden.

$$v_{Rd,ST} = \frac{n_{V,St\"{a}be} \cdot A_{VS}}{b_{ST} \cdot s_{ST}} \cdot f_{yd} \cdot 1, 2 \cdot \mu$$

$$+ \frac{n_{D,St\"{a}be} \cdot A_{DS}}{b_{ST} \cdot s_{ST}} \cdot f_{yd} \cdot (1, 2 \cdot \mu \cdot \sin \alpha_{ST} + \cos \alpha_{ST}) \cdot \beta$$
(13)

NV,Stäbe	die Fuge kreuzende Vertikalstäbe im Abstand b _{ST}
Avs	Querschnittsfläche eines Vertikalstabes
b _{ST}	Abstand der Diagonal- und Vertikalstäbe
S ST	mittlerer Abstand der Schubgitterträger, analog zum Gitterträger
hst	Trägerhöhe
n _D ,Stäbe	die Fuge kreuzenden Diagonalstäbe im Abstand b _{ST}
ADS	Querschnittsfläche eines Diagonalstabes
f_{yd}	Bemessungswert der Streckgrenze der Diagonal- und Vertikalstäbe
α_{ST}	Winkel der zwei Diagonalstäbe steigend zum Auflager
β	Abminderung, da tangentiale und radiale Verlegung zur Stütze empfohlen $\beta \leq 0.7$

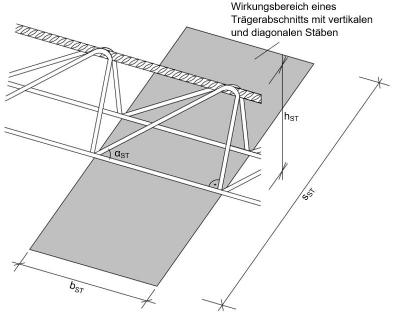


Abb. 3: Kenngrößen des Schubgitterträgers

Der **Verbundkrafttraganteil der L-Bleche** $v_{Rd,L-Blech}$ wird nach Gleichung (14) berechnet. Bei der Berechnung des Verbundtraganteils der L-Bleche wird die Querschnittsfläche der Bügel als Verbundbewehrung angerechnet. Die Bügel dürfen mit einer Neigung von α = 90 ° zur Plattenebene rechnerisch angesetzt werden.

$$v_{Rd,L\text{-Blech}} = \frac{A_{L\text{-Blech},i}}{s_{w,i} \cdot u_i} \cdot f_{yd} \cdot (1,2 \cdot \mu \cdot \sin \alpha_{L\text{-Blech}} + \cos \alpha_{L\text{-Blech}}) \tag{14}$$

$$A_{L\text{-Blech},i} = n_i \cdot n_s \cdot 2 \cdot A_{s,B\ddot{u}gel}$$

$$n_i \qquad \text{Anzahl der Bleche je Rundschnitt}$$

$$n_s \qquad \text{Anzahl der B\ddot{u}gel je Blech (1 oder 2)}$$

$$2 \cdot A_{s,B\ddot{u}gel} \qquad \text{zweifache Querschnittsfläche, da zweischnittiger B\ddot{u}gel}$$

$$s_{w,i} \qquad \text{Breite des jeweiligen Rundschnitts,}$$

$$\text{empfohlen } s_w = 1,25 \text{ d erster Rundschnitt, } s_w = 0,75 \text{ d alle weiteren Rundschnitte}}$$

$$u_i \qquad \text{Umfang des jeweiligen Rundschnitts}$$

$$f_{yd} \qquad \text{Bemessungswert der Streckgrenze der B\ddot{u}gel}$$

$$\alpha_{L\text{-Blech}} \qquad \text{Neigung der B\ddot{u}gelschenkel zur Plattenebene, empfohlen } \alpha = 90 \, ^{\circ}$$

Der gleichzeitige Einsatz von Blechen und Gitterträgern ist entsprechend der ETA [2] möglich.

Die größte aus der Fugen- und Durchstanzbemessung ermittelte Bewehrungsmenge ist einzubauen.

Bemessungsbeispiel

Innenstütze einer Halbfertigteilflachdecke

System

Einwirkung: $V_{Ed} = 405 \text{ kN}$

 $g_d = 6.0 \cdot 1.35 = 8.1 \text{ kN/m}^2$, $q_d = 5.0 \cdot 1.5 = 7.5 \text{ kN/m}^2$

Deckenhöhe: h = 20 cm

Stützenabmessungen: a = 30 cm, b = 30 cm

Deckenbeton: C30/37

Betonüberdeckung: $c_{unten} = 2,5 cm$

 $c_{oben} = 2.5 cm$

Deckenbewehrung: Grundbewehrung – kreuzweise,

 \emptyset 12 – 30 \rightarrow a_s = 3,77 cm²/m

Zulagen – Längs- und Querrichtung im Stützbereich,

 $7 \text{ Ø}12\text{-}10 \rightarrow A_s = 7,92 \text{ cm}^2$

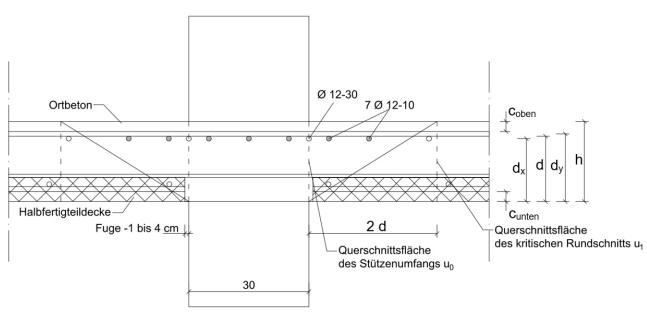


Abb. 4: System des Bemessungsbeispiels

Durchstanznachweis

Bemessungswert der einwirkenden Querkraft

$$v_{Ed} = \frac{\beta \cdot V_{Ed}}{u_1 \cdot d} = \frac{1,1 \cdot 0,405}{3,21 \cdot 0,16} = 0,87 \text{ MN/m}^2$$
 (1)
$$\beta = 1,1$$
 Lasterhöhungsfaktor infolge Exzentrizität bei Innenstützen
$$V_{Ed} = 0,405 \text{ MN}$$
 Bemessungswert der einwirkenden Querkraft
$$u_1 = 3,21 \text{ m}$$
 Umfang des kritischen Rundschnitts im Abstand von 2 d vom Stützenrand
$$u_1 = 2 (a + b) + \pi \cdot 2 \cdot 2 \cdot d = 2 (30 + 30) + \pi \cdot 2 \cdot 2 \cdot 16 = 321 \text{cm}$$
 mittlere statische Nutzhöhe in der Querschnittsfläche
$$d_x = 20 - 2,5 - 0,6 = 16,9 \text{ cm}$$

$$d_y = 20 - 2,5 - 1,2 - 0,6 = 15,7 \text{ cm}$$

$$d = (d_x + d_y) / 2 = (16,9 + 15,7) / 2 = 16,3 \text{ cm}$$
 unter Berücksichtigung der Rippenhöhe wird die mittlere statische Höhe mit d = 16 cm festgelegt

Durchstanzwiderstand ohne Querkraftbewehrung

$$v_{Rd,c} = C_{Rd,c} \cdot k \cdot \left(100 \cdot \rho_{||} \cdot f_{ck}\right)^{1/3} \ge v_{min} \tag{2}$$

$$v_{Rd,c} = 0,12 \cdot 2 \cdot \left(100 \cdot 0,0063 \cdot 30\right)^{1/3} = 0,64 \; \text{MN/m}^2 \ge 0,54 \; \text{MN/m}^2$$

$$\frac{u_0}{d} = \frac{2 \; (a+b)}{d} = \frac{2 \; (30+30)}{16} = 7,5 \ge 4,0$$

$$\rightarrow C_{Rd,c} = \frac{0,18}{\gamma_c} = \frac{0,18}{1,5} = 0,12$$

$$k = 2$$
 Faktor zur Berücksichtigung des Maßstabseffekts
$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{160}} = 2,12 > 2,0 \; \text{mit d in [mm]}$$

$$f_{ck} = 30 \; \text{N/mm}^2$$
 charakteristische Zylinderdruckfestigkeit des Betons gemittelter Bewehrungsgrad im x- und y- Richtung Längsbewehrungsgrad im Stützenstreifen wird auf eine Breite der Stütze zuzüglich 3 d je Seite ermittelt,
$$b_{sx,sy} = 30 + 2 \; (3 \cdot 16) = 126 \; \text{cm}$$

$$\rho_{||} = \left(\frac{3,77}{100} + \frac{7,92}{126}\right) / \; 16 = 0,0063 \; < 0,02 \; ; \; 0,5 \cdot f_{cd} / \; f_{yd}$$
 anrechenbare Längsbewehrung ist mit l_b hinter dem äußeren Rundschnitt u_{out} zu verankern.
$$v_{min} = 0,54 \; \text{MN/m}^2$$
 Mindestwert für d $\leq 600 \; \text{mm}$
$$(0,0525 / \; \gamma_c) \cdot k^{3/2} \cdot f_{ck}^{1/2} = (0,0525 / \; 1,5) \cdot 2^{3/2} \cdot 30^{1/2} = 0,54 \; \text{MN/m}^2$$

Vergleich der einwirkenden Querkraft zum Durchstanzwiderstand ohne Bewehrung

$$V_{Ed} = 0.87 \text{ MN/m}^2 > V_{Rd,c} = 0.64 \text{ MN/m}^2$$

-> Durchstanzbewehrung ist erforderlich

Maximale Tragfähigkeit der Durchstanzbewehrung

$$v_{Rd,max} = 2,05 \cdot v_{Rd,c} = 2,05 \cdot 0,64 = 1,31 \text{ MN/m}^2$$
 (5)

 $V_{Rd,c} = 0.64MN/m^2$

Bemessungswert des Durchstanzwiderstands des Betons mit $C_{Rd,c}$ = 0,18 / γ_c , gilt auch für Decken mit u_0 / d < 4

$$v_{Fd} = 0.87 \text{ MN/m}^2 < v_{Rd,max} 1.31 \text{ MN/m}^2$$

Äußerer Rundschnitt

$$u_{\text{out}} = \frac{\beta_{\text{red}} \cdot V_{\text{Ed}}}{V_{\text{Rd,c}} \cdot d} = \frac{1,1 \cdot 0,405}{0,64 \cdot 0,16} = 4,35 \text{ m}$$
 (3)

 $\beta_{red} = 1,1$

 $v_{Rd,c} = 0.64 \text{ MN/m}^2$

reduzierter Faktor zur Berücksichtigung von Einflüssen aus Lastexzentrizitäten entlang des äußeren Rundschnitts u_{out} Bemessungswert des Durchstanzwiderstands des Betons mit $C_{\text{Rd,c}}=0,18$ / γ_c

$$r_{out} = \frac{u_{out} - u_0}{2 \pi} = \frac{4,35 - 1,20}{2 \pi} = 0,50 \text{ m} \triangleq 3,13 \text{ d}$$

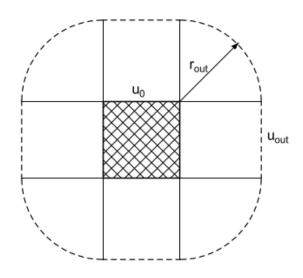


Abb. 5: Stützenumfang uo und äußerer Rundschnitt uout

Äußere Bewehrungsreihe

Die äußere Bewehrungsreihe ist im Abstand von 1,5 d nach innen vom äußeren Rundschnitt festgelegt.

$$r = r_{out} - 1.5 d = 3.13 d - 1.5 d = 1.63 d$$

→ 3 Bewehrungsreihen im Abstand von 0,5 d, 1,25 d und 2,0 d vom Stützenrand sind erforderlich

Bemessung der Durchstanzbewehrung mit L-Blechen

$$\beta \cdot V_{Ed} \le V_{Rd.cs.L-Bleche} \tag{7}$$

$$V_{Rd,cs,L-Bleche} = k_1 \cdot v_{Rd,c} \cdot u_1 \cdot d + k_{2,L} \cdot f_{ywd,ef} \cdot \frac{1,5 d}{s_r} \cdot n_{B\ddot{u}gel} \cdot 2 A_{s,B\ddot{u}gel} \cdot n_{Bleche}$$
(8)

 $\begin{array}{ll} k_1 = 0,85 & \text{Wirkungsbeiwert für die Betontragfähigkeit} \\ u_1 = 3,21 \text{ m} & \text{Rundschnitt im Abstand 2 d vom Stützenrand} \\ n_{\text{Bügel}} = 2 & \text{Anzahl der Bügel je L-Blech (1 oder 2 Bügel)} \end{array}$

 $k_{2,L} = 0.55$ Wirkungsbeiwert für den Verbund für die Rundschnitte bis 2,0 d,

ab 2,0 d kann der Wirkungsbeiwert für die äußeren Reihen auf

 $k_{2,L}$ = 1,00 erhöht werden

 $A_{s,B\ddot{u}gel}$ Querschnittsfläche der B \ddot{u} gelbewehrung, gewählt: d_s = 6 mm

 $= 28,27 \cdot 10^{-6} \text{ m}^2$

 $f_{ywd,ef}$ $f_{ywd,ef} = 250 + 0.25 d = 250 + 0.25 \cdot 160 = 290 MN/m²$

= 290 MN/m² \leq f_{yd} = 435 N/mm²

n_{Bleche} Anzahl der L-Bleche im Rundschnitt

 s_r = 0,75 d radialer Abstand der Durchstanzbewehrung, empfohlen s_r = 0,75 d

Einsetzen von Gleichung (8) in Gleichung (7) und umstellen nach n_{Bleche} ergibt die erforderliche Blechanzahl:

$$1,10 \cdot 0,405 \le 0,85 \cdot 0,64 \cdot 3,21 \cdot 0,16 + 0,55 \cdot 290 \cdot \frac{1,5 \text{ d}}{0,75 \text{ d}} \cdot 2 \cdot 2 \cdot 28,27 \cdot 10^{-6} \cdot n_{Bleche}$$

$$0,45 \le 0,28 + 0,036 \cdot n_{Bleche}$$

$$n_{Bleche} = \frac{0,45 - 0,28}{0.036} = 4,7$$

für die ersten drei Bewehrungsreihen sind statisch jeweils 5 Bleche mit zwei Bügeln erforderlich

Mindestblechanzahl je Rundschnitt

Folgende tangentiale Abstände müssen beim Verlegen der Bleche berücksichtig werden:

$$\begin{aligned} a_t & \leq \begin{cases} \text{max}(140 \text{ mm}; 0, 6 \cdot d \cdot i) & \text{für i=1} \\ 0, 6 \cdot d \cdot i & \text{für i} \geq 2 \end{cases} \\ a_{t,u0,50d} & \leq \text{max}(140 \text{mm}; 0, 6 \cdot 160 \cdot 1) = 140 \text{ mm} \\ a_{t,u1,25d} & \leq 0, 6 \cdot 160 \cdot 2 = 192 \text{ mm} \\ a_{t,u2,00d} & \leq 0, 6 \cdot 160 \cdot 3 = 288 \text{ mm} \end{aligned}$$

Aus dem tangentialen Abschnitt und dem Umfang der jeweiligen Rundschnitte ergibt sich die Mindestblechanzahl je Rundschnitt bei einfach symmetrischer Blechanordnung:

$$\begin{split} &n_{i} = u_{i} / a_{t,ui} \\ &n_{1} = \frac{u_{0,50d}}{a_{t,u0,50d}} = \frac{170}{14,0} = 12,1 \rightarrow 14 \text{ Bleche} \\ &n_{2} = \frac{u_{1,25d}}{a_{t,u1,25d}} = \frac{246}{19,2} = 12,8 \rightarrow 14 \text{ Bleche} \\ &n_{3} = \frac{u_{2,00d}}{a_{t,u2,00d}} = \frac{321}{28,8} = 11,1 \rightarrow 12 \text{ Bleche} \end{split}$$

insgesamt werden 40 L-Bleche benötigt

Überprüfung der Anordnung als 6er Stern für die Innenstütze

$$v_{Ed} = 0.87 \text{ MN/m}^2 < 1.46 \cdot v_{Rd,c} = 1.46 \cdot 0.64 = 0.93 \text{ MN/m}^2$$

→ die L-Bleche können als 6er Stern angeordnet werden

insgesamt werden nur 3 · 6 = 18 L-Bleche benötigt

Verbundnachweis in der Fuge im Durchstanzbereich

Bemessungswert der Einwirkung zum Verbundnachweis

$$v_{Ed,ui} = \frac{\beta \cdot (V_{Ed} - \Delta V_{Ed,i})}{u_i \cdot z} \tag{9}$$

$$v_{Ed,1,25d} = 1,1 \cdot (0,405 - 0,0071) / (2,46 \cdot 0,11) = 1,62 \text{ MN/m}^2$$

$$v_{Ed,2,00d} = 1,1 \cdot (0,405 - 0,0124) / (3,21 \cdot 0,11) = 1,22 \text{ MN/m}^2$$

$$v_{Ed,2,75d} = 1,1 \cdot (0,405 - 0,0191) / (3,96 \cdot 0,11) = 0,97 \text{ MN/m}^2$$

$$\Delta V_{Ed,i} = \frac{\lambda_i \cdot (g_d + q_d)}{(g_d + q_d)} \text{ mit } A_i \text{ als Fläche des Durchstanzbereichs bis zum jeweiligen Rundschnitt}$$

$$\Delta V_{Ed,1,25d} = [0,3^2 + 4 \cdot 0,3 \cdot 1,25 \cdot 0,16 + \pi \cdot (1,25 \cdot 0,16)^2] \cdot [1,35 \cdot 6,00 + 1,5 \cdot 5,0] = 7,1 \text{ kN}$$

$$\Delta V_{Ed,2,00d} = [0,3^2 + 4 \cdot 0,3 \cdot 2,200 \cdot 0,16 + \pi \cdot (2,00 \cdot 0,16)^2] \cdot [1,35 \cdot 6,00 + 1,5 \cdot 5,0] = 12,4 \text{ kN}$$

$$\Delta V_{Ed,2,75d} = [0,3^2 + 4 \cdot 0,3 \cdot 2,75 \cdot 0,16 + \pi \cdot (2,75 \cdot 0,16)^2] \cdot [1,35 \cdot 6,00 + 1,5 \cdot 5,0] = 19,1 \text{ kN}$$
 Umfang des jeweiligen Rundschnitts
$$u_{1,25d} = 4 \cdot 0,30 + \pi \cdot 2,5 \cdot 0,16 = 2,46 \text{ m}$$

$$u_{2,00d} = 4 \cdot 0,30 + \pi \cdot 4,0 \cdot 0,16 = 3,21 \text{ m}$$

$$u_{2,75d} = 4 \cdot 0,30 + \pi \cdot 5,5 \cdot 0,16 = 3,96 \text{ m}$$
 Hebelarm der inneren Kräfte
$$= 0,9 \text{ d} = 0,9 \cdot 0,16 = 0,144 \text{ m}$$
 oder geringerer Hebelarm bei gleichzeitiger Querkrafteinwirkung emax
$$\begin{cases} d \cdot c_{unten} - 0,03 \text{ m} = 0,16 \text{ m} - 0,025 \text{ m} - 0,03 \text{ m} = 0,105 \text{ m} \\ d \cdot 2 \cdot c_{unten} = 0,16 \text{ m} - 2 \cdot 0,025 \text{ m} = 0,110 \text{ m} \end{cases}$$

Verbundtragfähigkeit

Maximale Verbundkraftübertragung

$$v_{Rd,max} = 0.5 \cdot v \cdot f_{cd} = 0.5 \cdot 0.5 \cdot 20 = 5.00 \text{ N/mm}^2$$

$$f_{cd} = 20 \text{ N/mm}^2 \qquad \qquad f_{cd} = \alpha_{cc} \cdot f_{ck} \, / \, \gamma_c \qquad \qquad \text{Bemessungswert der Betonzugfestigkeit mit}$$

$$\alpha_{cc} = 1.00 \text{ und } \gamma_c = 1.5$$

$$v_{Ed.1.25 d} = 1,62 \text{ N/mm}^2 < v_{Rd.max} = 5,00 \text{ N/mm}^2$$

Verbundkraftanteil des Betons

$$v_{Rd,c} = c \cdot f_{ctd} \tag{11}$$

$$f_{ctd} = 1,35 \text{ N/mm}^2 \qquad f_{ctd} = \alpha_{ct} \cdot 0,7 \cdot 0,3 \qquad \text{Bemessungswert der Betonzugfestigkeit mit}$$

$$\cdot f_{ck}^{2/3} / \gamma_c \qquad \alpha_{ct} = 1,00 \text{ und } \gamma_c = 1,5$$

$$v_{Rd,c} = 0,40 \cdot 1,35 = 0,54 \text{ N/mm}^2$$

Verbundkraftanteil infolge einer Normalkraft

$$v_{Rd,r} = \mu \cdot \sigma_n = 0$$

Die geringe Druckspannung rechtwinklig zur Fuge aus Eigengewicht des Ortbetons wird vernachlässigt.

Verbundkraftanteil des Grundgitterträgers

$$v_{Rd,GT} = \rho_{GT} \cdot f_{yd} \cdot (1,2 \cdot \mu \cdot \sin \alpha_{GT} + \cos \alpha_{GT})$$
 (12)
$$v_{Rd,GT} = 0,00062 \cdot 434,8 \cdot (1,2 \cdot 0,7 \cdot \sin 56,3 + \cos 56,3) = 0,34 \text{ N/mm}^2$$

Kennwerte des Grundgitterträgers:

$d_{s,D,GT} = 7 \text{ mm}$	Durchmesser Diagonalstab mit f _{yk} = 500 N/mm²
$e_{GT} = 70 \text{ mm}$	Trägerbreite
h _{GT} = 120 mm	Trägerhöhe
$b_{GT} = 200 \text{ mm}$	Abstand der Diagonalstäbe
s _{GT} = 625 mm	mittlerer Abstand der Gitterträger
α_{GT} = 56,3°	Winkel des Diagonalstabes
	tan α_{GT} = Gegenkathete / Ankathete = 120 / 80 = 56,3°, mit
	Gegenkathete = h_{GT} = 120 mm und
	Ankathete = $(b_{GT} / 2)$ – Biegeradien = 80 mm
$\rho_{GT} = 0,00062$	$\rho_{GT} = 2 \cdot \pi / 4 \cdot d_{s,D,GT}^2 / (b_{GT} \cdot s_{GT}) = 2 \cdot \pi / 4 \cdot 7^2 / (200 \cdot 625)$ $= 0.00062$

Verbundkraftanteil der L-Bleche

$$v_{Rd,L-Blech} = \frac{A_{L-Blech,i}}{s_{w,i} \cdot u_i} \cdot f_{yd} \cdot (1,2 \cdot \mu \cdot \sin \alpha_{L-Blech} + \cos \alpha_{L-Blech}) \tag{14}$$

$$v_{Rd,L-Blech} = \frac{n_i \cdot 2 \cdot 0,565}{s_{w,i} \cdot u_i} \cdot 434,8 \cdot (1,2 \cdot 0,70 \cdot \sin 90 + \cos 90)$$

$$v_{Rd,L-Blech} = \frac{n_i \cdot 412,7}{s_{w,i} \cdot u_i}$$

$$A_{L-Blech,i} = n_i \cdot n_s \cdot 2 \cdot A_{s,B\ddot{u}gel}$$

$$n_i \qquad \qquad Anzahl \ der \ Bleche \ je \ Rundschnitt, \\ n_s = 2 \qquad \qquad gewählt, \ Anzahl \ der \ B\ddot{u}gel \ je \ Blech \\ (1 \ oder \ 2)$$

$$2 \quad A_{s,B\ddot{u}gel} = 2 \cdot \pi \cdot 0,3^2 \qquad zweifache \ Querschnittsfläche, \ da \\ = 0,565 \ cm^2 \qquad zweischnittiger \ B\ddot{u}gel$$

$$s_{w,i} \qquad \qquad Breite \ des \ jeweilligen \ Rundschnitts$$

$$s_w = 1,25 \ d = 1,25 \cdot 16 = 20 \ cm \ erster \ Rundschnitt$$

$$s_w = 0,75 \ d = 0,75 \cdot 16 = 12 \ cm \ alle \ weiteren \ Rundschnitte$$

$$Neigung \ der \ B\ddot{u}gelschenkel \ zur \ Plattenebene$$

Erforderliche Anzahl von L- Blechen zur Verbundkraftübertragung

Das Einsetzen der Verbundtraganteile in Gleichung (10) und die Umstellung nach ni ergibt die erforderliche Blechanzahl des jeweiligen Rundschnitts.

$$\begin{split} v_{Rdi} &= v_{Rd,c} + v_{Rd,r} + v_{Rd,GT} + v_{Rd,L\text{-Blech}} = v_{Ed,ui} \\ v_{Rdi} &= 0.54 + 0 + 0.34 + \frac{n_i \cdot 412.7}{s_{w,i} \cdot u_i} = v_{Ed,ui} \\ n_i &= (v_{Ed,ui} - 0.88) \cdot (s_{w,i} \cdot u_i) / 412.7 \end{split}$$

$$\begin{aligned} n_{1,25d} &= (1.62 - 0.88) \cdot (20 \cdot 246) / 412.7 = 8.82 & \rightarrow 9 \text{ L- Bleche} \\ n_{2,00d} &= (1.22 - 0.88) \cdot (12 \cdot 321) / 412.7 = 3.17 & \rightarrow 4 \text{ L- Bleche} \\ n_{2,75d} &= (0.97 - 0.88) \cdot (12 \cdot 396) / 412.7 = 1.04 & \rightarrow 2 \text{ L- Bleche} \end{aligned}$$

Erforderliche Bügelhöhe

$$h_{\text{B\"ugel}}$$
 = (h - c_{oben} - c_{unten} - 7,5) · 1,06
mit h und c in [cm]
 $h_{\text{B\"ugel}}$ = (20 - 2,5 - 2,5 - 7,5) · 1,06 = 8,0 cm

Einbauverteilung

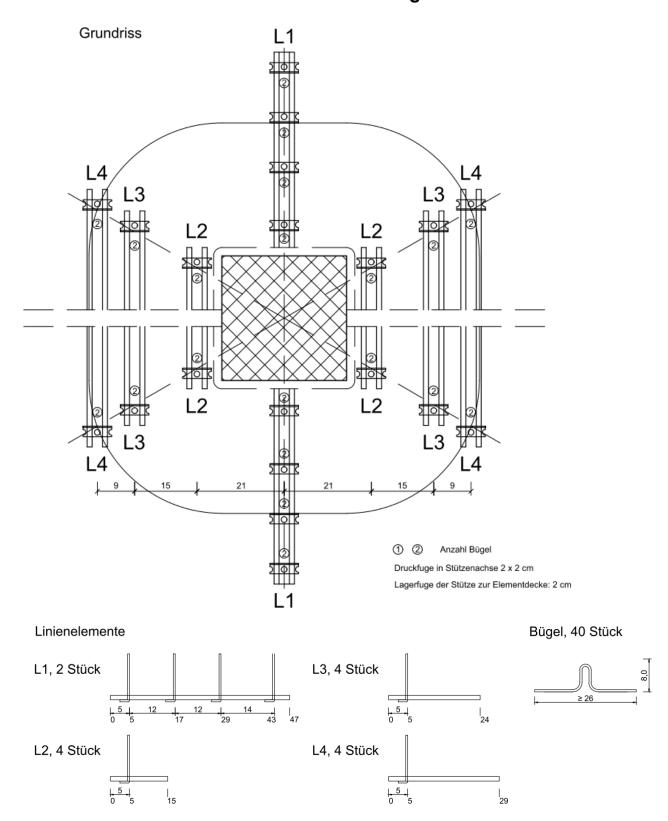


Abb. 6: Vom-Berechnungsprogramm [5] ermittelte Anordnung der Einbauteile mit verlängerten Längseisen zur vereinfachten Verlegung der Durchstanzbewehrung

Gegenüberstellung der erforderlichen Anzahl von L-Blechen

nach ETA-19/0310 vom 28.Mai 2019:

A	nzahl der	L- Bleche	mit einem l	Bügel
Rund- schnitt	Durch- stanzen	Verbund	Mindest- anzahl	einzubauen
0,50d	10	10	14	14
1,25d	10	18	14	14
2,00d	10	8	12	12
2,75d		4		4

nach ETA-19/0310 vom 21.Februar 2022:

A	ınzahl der	L- Bleche	mit zwei Bi	ügeln
Rund- schnitt	Durch- stanzen	Verbund	6er Stern	einzubauen
0,50d	5	9	6	6
1,25d	5	9	6	6
2,00d	5	4	6	6
2,75d		2		2

Gegenüber den vorherigen Europäischen Technischen Bewertungen aus den Jahr 2019 konnte mit den Weiterentwicklungen [3] und [4], die in die ETA 2022 [2] aufgenommen wurden, die Anzahl der Bleche um mehr als die Hälfte reduziert werden.

Literaturverzeichnis

- [1] DIN EN 1992-1-1/A1 Eurocode 2, Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken Teil 1-1: Allgemeine Bemessungsregeln für den Hochbau. Deutsche Fassung EN 1992-1-1:2004/A1: 2014
- [2] Europäische Technische Bewertung ETA-19/0310 vom 21. Februar 2022 für die Durchstanzbewehrung, Deutsches Institut für Bautechnik, 2022
- [3] Günther, G. et al.: Untersuchung des Durchstanzwiderstands von Stahlbetondecken infolge von Blechen als Einbauteile, THM-Versuchsberichte 30 A bis 30 N, 2006 bis 2023
- [4] Hegger, J.; Sieburg, C.: Gutachterliche Stellungnahme zu Anpassungen von Anwendungsregeln der CLIXS Durchstanzbewehrung, 2021
- [5] Berechnungsprogramm, www.betomax.com, 2022

Zusa	nmenst	ellun	g der	Ехре	rime	nte m	it L- E	Blech	en im	Durc	hstar	ızberei	ich - E	Beme	ssung	g nacl	n Eur	opäis	ch Te	chnis	cher	Bewe	ertung ETA-19/0310 vom 21. Februar 2022
Körper	Bleche	statische Höhe d	Stütze C	$f_{c,cube}$	f _{cm} = f _{c,cube} x 0,83	f _{ck} = f _{cm} - 4	ρι	Abstand Stützen- rand zum Radius der Belas- tung Å	Blech- anzahl je Rund- schnitt 1/2/3	kleinste Blech- anzahl 1. oder 2. Rund- schnitt	Bügel- anzahl im maßge- benden Rund- schnitt n _{voh,Bü}	Umfang Rund-schnitt Abstand 2,0 d _{u1}	Maß- stabs- faktor k	Bruch- last V _{Test}	V _{Rk,c}	V _{Rk,c,u1}	V _{Test} / V _{Rk,c,u1}	0,85 x V _{Rk,c,u1}	$V_{Rk,s}$	V _{Test} / V _{Rk,cs}	n _{erf,Bü}	n _{erf,Bü} - n _{vorh,Bü}	Bauweise / Anordnung der Bleche
		[mm]	[mm]	[N/mm²]	[N/mm²]	[MN/m²]	[%]	[-]	[-]	[-]	[-]	[mm]	[mm]	[kN]	[MN/m²]	[KN]	[-]	[kN]	[kN]	[-]	[-]	[-]	
	Linienelemente - Bewehrung d _s = 10 mm - Bügelbewehrung d _s = 6 mm - nach Anzahl der Bügel pro Schnitt aufsteigend sortiert																						
вх	L3/10-1 Ø6	205	300k	52,9	44,0	40,0	1,53	4,5	12/8/12	8	8	3519	1,99	1210	1,411	1018	1,19	865	172	1,17	17	9	8er-Stern
СХ	L3/10-1 Ø6	205	300k	36,8	30,6	26,6	1,53	4,5	12/8/12	8	8	3519	1,99	1100	1,231	888	1,24	755	172	1,19	17	9	8er-Stern
30	L5/10-1Ø6 und L3/10- 1Ø6	205	300k	23,0	19,1	15,1	1,53	4,5	20/24/28	20	20	3519	1,99	1280	1,020	735	1,74	625	431	1,21	31	11	nahezu gleichmäßige Verteilung der Bleche
ВТ	L5/10-1 Ø6	205	300k	28,6	23,8	19,8	1,53	4,5	24/28/8	24	24	3519	1,99	1350	1,116	805	1,68	684	517	1,12	31	7	geringe Bügelanzahl im 3. Rundschnitt mit 75 % der Fläche ohne Bleche
ВV	L3/10-1 Ø6	210	300k	28,4	23,6	19,6	0,73	4,4	24/28/8	24	24	3581	1,98	945	0,865	650	1,45	553	519	0,88	19	-5	geringe Bügelanzahl im 3. Rundschnitt mit 75 % der Fläche ohne Bleche
CV	L3/10-1 Ø6	210	300k	37,4	31,1	27,1	0,73	4,4	24/28/8	24	24	3581	1,98	1075	0,963	724	1,48	616	519	0,95	22	-2	geringe Bügelanzahl im 3. Rundschnitt mit 75 % der Fläche ohne Bleche
ВW	L3/10-1 Ø6	205	300k	27,8	23,1	19,1	1,53	4,5	24/28/8	24	24	3519	1,99	1070	1,103	795	1,35	676	517	0,90	19	-5	geringe Bügelanzahl im 3. Rundschnitt mit 75 % der Fläche ohne Bleche
cw	L3/10-1 Ø6	205	300k	37,2	30,9	26,9	1,53	4,5	24/28/8	24	24	3519	1,99	1220	1,236	892	1,37	758	517	0,96	22	-2	geringe Bügelanzahl im 3. Rundschnitt mit 75 % der Fläche ohne Bleche

							Linier	nelemer	ite - Bew	vehrung	ds = 1	12 mm - B	ügelbev	vehrunç	g d _s = 6	mm - n	ach Anz	zahl dei	r Bügel _l	pro Sch	nitt auf	steigen	d sortiert
EA	L5/12-1 Ø6	130	200k	61,4	51,0	47,0	1,55	7,5	8/14/20	8	8	2262	2,00	760	1,502	442	1,72	376	162	1,41	20	12	geringe Bügelanzahl im 1. Rundschnitt
BS	L5/12-1 Ø6	205	300k	45,1	37,5	33,5	1,53	4,5	10/20/24	10	10	3519	1,99	1620	1,330	959	1,69	815	215	1,57	38	28	geringe Bügelanzahl im 1. Rundschnitt
DU	L3/12-1 Ø6	205	300k	35,0	29,1	25,1	1,53	4,5	12/22/20	12	12	3519	1,99	1347	1,208	871	1,55	741	259	1,35	29	17	geringe Bügelanzahl im 1. Rundschnitt
DU - F	L3/12-1 Ø6	205	300k	35,0	29,1	25,1	1,53	4,5	12/22/20	12	12	3519	1,99	1383	1,208	871	1,59	741	259	1,38	30	18	geringe Bügelanzahl im 1. Rundschnitt Halbfertigteildecke ohne Druckfugen - Fugenbreite zur Stütze 50 mm
OR	L5/12-2 Ø6	145	300k	48,0	39,9	35,9	1,22	6,4	6/6/6	6	12	2765	2,00	832	1,269	509	1,64	432	246	1,23	20	8	Ger-Stern
ос	L5/12-2 Ø6	215	300k	32,9	27,4	23,4	0,82	4,3	6/6/6	6	12	3644	1,96	1245	0,947	742	1,68	630	261	1,40	29	17	6er-Stern
ocw	L5/12-2 Ø6	215	300k	42,2	35,1	31,1	0,82	4,3	6/6/6	6	12	3644	1,96	1190	1,041	816	1,46	693	261	1,25	23	11	6er-Stern
OF	L5/12-2 Ø6	215	300k	53,4	44,4	40,4	1,17	4,8	6/6/6	6	12	3644	1,96	1443	1,279	1002	1,44	851	261	1,30	28	16	Ger-Stern
PA	L5/12-2 Ø6	215	300k	45,4	37,7	33,7	0,82	4,8	6/6/6	6	12	3644	1,96	1248	1,069	838	1,49	712	261	1,28	25	13	6er-Stern alle Bügel auf unterer Lage der Biegebewehrung
ВМ	L5/12-1Ø6 und L3/12- 1Ø6	205	300k	20,0	16,6	12,6	1,53	4,5	14/20/14	14	14	3519	1,99	1055	0,959	692	1,52	588	302	1,19	22	8	hohe Bügelanzahl im 2. Rundschnitt
EB	L5/12-1 Ø6	135	200k	67,3	55,9	51,9	2,32	7,3	14/18/28	14	14	2325	2,00	996	1,778	558	1,79	474	284	1,31	26	12	geringe Bügelanzahl im 1. Rundschnitt
OP	L5/12-2 Ø6	215	300k	41,2	34,2	30,2	0,82	4,8	8/8/8	8	16	3644	1,96	1284	1,031	808	1,59	686	348	1,24	28	12	8er-Stern mit 16 Bügel je Rundschnitt
OPW	L5/12-2 Ø6	215	300k	41,2	34,2	30,2	0,82	4,8	8/8/8	8	16	3644	1,96	1324	1,031	808	1,64	686	348	1,28	30	14	8er-Stern mit 16 Bügel je Rundschnitt
DQ	L5/12-1 Ø6	205	300k	34,7	28,9	24,9	1,53	4,5	20/22/12	20	20	3519	1,99	1422	1,204	868	1,64	738	431	1,22	32	12	gringe Bügelanzahl im 3. Rundschnitt Halbfertigteildecke ohne Druckfugen
BN	L5/12-1Ø6 und L3/12- 1Ø6	205	300k	18,0	15,0	11,0	1,53	4,5	22/24/28	22	22	3519	1,99	1440	0,917	661	2,18	562	474	1,39	41	19	nahezu gleichmäßige Verteilung der Bleche
BP	L5/12-1 Ø6 und L3/12- 1Ø6	205	300k	27,6	23,0	19,0	1,53	4,5	24/28/30	24	24	3519	1,99	1450	1,100	794	1,83	675	517	1,22	36	12	nahezu gleichmäßige Verteilung der Bleche
BQ	L5/12-1 Ø6	205	300k	28,4	23,6	19,6	1,53	4,5	24/28/8	24	24	3519	1,99	1480	1,112	802	1,85	682	517	1,23	38	14	geringe Bügelanzahl im 3. Rundschnitt

	1 1																						
BU	L3/12-1 Ø6	205	300k	25,6	21,3	17,3	1,53	4,5	24/28/8	24	24	3519	1,99	1185	1,066	769	1,54	654	517	1,01	25	1	geringe Bügelanzahl im 3. Rundschnitt
ED	L5/12-1 Ø6	205	300k	42,0	34,9	30,9	1,53	4,5	28/24/16	24	24	3519	1,99	1773	1,294	933	1,90	793	517	1,35	46	22	geringe Bügelanzahl im 3. Rundschnitt
EE	L5/12-1 Ø6	205	300k	40,7	33,8	29,8	1,53	4,5	28/24/16	24	24	3519	1,99	1819	1,278	922	1,97	784	517	1,40	49	25	geringe Bügelanzahl im 3. Rundschnitt Halbfertigteildecke mit Fugen auf den Gurtstreifen
FD	L5/12-1 Ø6	205	300k	32,7	27,2	23,2	1,53	4,5	24/24/16	24	24	3519	1,99	1619	1,176	848	1,91	721	517	1,31	42	18	geringe Bügelanzahl im 3. Rundschnitt
os	L5/12-2 Ø6	145	300k	48,0	39,9	35,9	1,22	6,4	12/12/12	12	24	2765	2,00	998	1,269	509	1,96	432	491	1,08	28	4	6er-Stern doppelt mit 24 Bügel je Rundschnitt
OD	L5/12-2 Ø6	215	300k	32,5	27,0	23,0	0,82	4,3	12/12/12	12	24	3644	1,96	1280	0,941	737	1,74	627	521	1,11	31	7	6er-Stern doppelt mit 24 Bügel je Rundschnitt
ODW	L5/12-2 Ø6	215	300k	48,5	40,3	36,3	0,82	4,3	12/12/12	12	24	3644	1,96	1436	1,096	859	1,67	730	521	1,15	33	9	6er-Stern doppelt mit 24 Bügel je Rundschnitt
OG	L5/12-2 Ø6	215	300k	53,4	44,4	40,4	1,17	4,8	12/12/12	12	24	3644	1,96	1578	1,279	1002	1,58	851	521	1,15	34	10	6er-Stern doppelt mit 24 Bügel je Rundschnitt
РВ	L5/12-2 Ø6	215	300k	45,4	37,7	33,7	0,82	4,8	12/12/12	12	24	3644	1,96	1374	1,069	838	1,64	712	521	1,11	31	7	6er-Stern doppelt alle Bügel auf unterer Lage der Biegebewehrung
PK	L5/12-2 Ø6	145	300k	37,4	31,1	27,1	1,22	7,2	14/14/12	14	28	2765	2,00	987	1,155	463	2,13	394	573	1,02	29	1	8er-Stern mit 28 Bügel je Rundschnitt
FB	L5/12-2 Ø6	140	300k	40,8	33,9	29,9	1,26	6,6	16/16/20	16	32	2702	2,00	1127	1,207	456	2,47	388	652	1,08	37	5	nahezu gleichmäßige Verteilung der Bleche
GB	L5/12-2 Ø6	140	300k	39,5	32,8	28,8	1,26	7,5	16/16/20	16	32	2702	2,00	952	1,192	451	2,11	383	652	0,92	28	-4	nahezu gleichmäßige Verteilung der Bleche Halbfertigteildecke - hohe Vorbelastung beim 7 ten Lastwechsel
ОТ	L5/12-2 Ø6	215	300k	37,8	31,4	27,4	0,82	4,8	16/16/16	16	32	3644	1,96	1377	0,998	782	1,76	665	695	1,01	33	1	8er-Stern doppelt mit 32 Bügel je Rundschnitt
OTW	L5/12-2 Ø6	215	300k	37,8	31,4	27,4	0,82	4,8	16/16/16	16	32	3644	1,96	1412	0,998	782	1,81	665	695	1,04	35	3	8er-Stern doppelt mit 32 Bügel je Rundschnitt
PD	L5/12-2 Ø6	215	300k	33,8	28,1	24,1	0,82	4,8	16/16/16	16	32	3644	1,96	1377	0,956	749	1,84	637	695	1,03	35	3	8er-Stern doppelt alle Bügel auf unterer Lage der Biegebewehrung
PG	L5/12-2 Ø6	215	300k	47,4	39,4	35,4	0,82	4,8	16/16/16	16	32	3644	1,96	1511	1,087	851	1,77	724	695	1,06	37	5	8er-Stern doppelt alle Bügel auf unterer Lage der Biegebewehrung - Bleche unten auf Mattenbewehrung abgelegt
Aa18er	L5/12-2 Ø6	140	300k	62,2	51,7	47,7	1,26	6,6	16/16/20	16	32	2702	2,00	1005	1,411	534	1,88	454	652	0,91	28	-4	nahezu gleichmäßige Verteilung der Bleche Vergleichsuntersuchungen in Aachen - Versagen außerhalb der Durchstanzbewehrung

NA	L5/12-2 Ø6	205	300k	40,0	33,2	29,2	0,84	4,5	16/24/24	16	32	3519	1,99	1257	1,040	750	1,68	637	689	0,95	29	-3	geringe Bügelanzahl im 1. Rundschnitt mit teilweise zu großem Abstand zur Stütze - Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze 5mm - Fugen zur
NB	L5/12-2 Ø6	205	300k	40,0	33,2	29,2	0,84	4,5	16/20/24	16	32	3519	1,99	1334	1,040	750	1,78	637	689	1,01	33	1	Stütze 40 und Gurtstreifen 40mm geringe Bügelanzahl im 1. Rundschnitt Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze 5mm, Fugen zur Stütze 10 und Gurtstreifen 40mm
NC	L5/12-2 Ø6	200	300k	34,5	28,7	24,7	0,84	4,7	16/20/24	16	32	3456	2,00	995	0,989	684	1,46	581	687	0,78	20	-12	geringe Bügelanzahl im 1. Rundschnitt mit teilweise zu großem Abstand zur Stütze - Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze 10mm - Fugen zur Stütze 40 und Gurtstreifen 40mm
ND	L5/12-2 Ø6	205	300k	33,0	27,4	23,4	0,84	4,5	24/20/20	20	40	3519	1,99	1234	0,966	696	1,77	592	862	0,85	30	-10	nahezu gleichmäßige Verteilung der Bleche - mit teilweise zu großem Absatnd zur Stütze - Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze 5mm - Fugen zur Stütze <10 und Gurtstreifen 40mm
NE	L5/12-2 Ø6	205	300k	30,5	25,4	21,4	0,84	4,5	20/32/36	20	40	3519	1,99	1280	0,937	676	1,89	575	862	0,89	33	-7	geringe Bügelanzahl im 1. Rundschnitt mit teilweise zu großem Abstand zur Stütze - Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze 5mm - Fugen zur Stütze 40 und Gurtstreifen 40mm
NF	L5/12-2 Ø6	210	300k	30,5	25,4	21,4	0,84	4,4	20/32/36	20	40	3581	1,98	1479	0,932	701	2,11	596	865	1,01	41	1	geringe Bügelanzahl im 1. Rundschnitt Halbfertigteildecke - Fugen zur Stütze <20 und Gurtstreifen 40mm
NG	L5/12-2 Ø6	190	300k	39,1	32,5	28,5	0,84	4,9	20/24/28	20	40	3330	2,00	1460	1,038	656	2,22	558	851	1,04	43	3	gleringe Bügelanzahl im 1. Rundschnitt Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze -20mm - Fugen zur Stütze 40 und Gurtstreifen 40mm
EH	L5/12-1 Ø6	205	300k	40,7	33,8	29,8	1,53	4,5	36/48/56	36	36	3519	1,99	1821	1,279	922	1,97	784	776	1,17	49	13	geringe Bügelanzahl im 1. Rundschnitt
IJ	L5/12-2 Ø6	210	300k	41,6	34,6	30,6	0,84	4,4	20/22/24	20	40	3581	1,98	1595	1,050	790	2,02	671	865	1,04	43	3	nahezu gleichmäßige Verteilung der Bleche
км	L5/12-2 Ø6	210	265q	28,6	23,8	19,8	0,84	4,5	22/20/20	20	40	3699	1,98	1480	0,908	706	2,10	600	865	1,01	41	1	nahezu gleichmäßige Verteilung der Bleche
ко	L5/12-2 Ø7	210	355q	28,6	23,8	19,8	0,84	4,3	24/22/22	22	44	4059	1,98	1757	0,908	774	2,27	658	952	1,09	51	7	nahezu gleichmäßige Verteilung der Bleche
FE	L5/12-2 Ø6	210	300k	51,5	42,8	38,8	0,84	4,4	24/24/28	24	48	3581	1,98	2010	1,137	855	2,35	727	1039	1,14	60	12	nahezu gleichmäßige Anordnung der Bleche Halbfertigteildecke mit Fugen auf den Gurtsreifen
GE	L5/12-2 Ø6	210	300k	31,3	26,0	22,0	0,84	5,0	24/24/28	24	48	3581	1,98	1581	0,941	708	2,23	601	1039	0,96	46	-2	nahezu gleichmäßige Anordnung der Bleche Halbfertigteildecke mit Fugen auf den Gurtsreifen
IF	L5/12-2 Ø6	195	300k	38,0	31,6	27,6	1,81	4,8	24/24/20	24	48	3393	2,00	1940	1,326	877	2,21	746	1026	1,10	56	8	nahezu gleichmäßige Verteilung der Bleche
IH	L5/12-2 Ø6	195	300k	35,6	29,6	25,6	1,81	4,8	24/24/20	24	48	3393	2,00	1826	1,293	855	2,13	727	1026	1,04	52	4	nahezu gleichmäßige Verteilung der Bleche
IM	L5/12-2 Ø6	195	265q	40,8	33,9	29,9	1,81	4,9	24/24/20	24	48	3510	2,00	2031	1,362	932	2,18	792	1026	1,12	58	10	nahezu gleichmäßige Verteilung der Bleche
IFw	L5/12-2 Ø6	195	300k	42,5	35,3	31,3	1,81	4,8	24/24/16	24	48	3393	2,00	2005	1,383	915	2,19	778	1026	1,11	58	10	geringe Bügelanzahl im 3. Rundschnitt
Ю	L5/12-2 Ø6	195	355q	24,5	20,4	16,4	1,81	4,6	24/32/20	24	48	3870	2,00	1880	1,115	841	2,23	715	1026	1,08	55	7	größere Bügelanzahl im 2. Rundschnitt

IP	L5/12-2 Ø6	195	400k	27,7	23,0	19,0	1,81	4,5	24/24/32	24	48	3707	2,00	1920	1,171	846	2,27	719	1026	1,10	57	9	größere Bügelanzahl im 3. Rundschnitt
IR	L5/12-2 Ø6	210	400k	34,7	28,9	24,9	0,84	4,2	24/24/32	24	48	3896	1,98	1755	0,980	802	2,19	681	1039	1,02	50	2	größere Bügelanzahl im 3. Rundschnitt
VK1	L5/12-2 Ø6	210	300k	21,0	17,5	13,5	0,84	4,4	24/24/26	24	48	3581	1,98	1764	0,799	601	2,94	511	1039	1,14	58	10	nahezu gleichmäßige Verteilung der Bleche mit gleichmäßiger Flächenbelastung
VK2	L5/12-2 Ø6	210	300k	21,0	17,5	13,5	0,84	4,4	24/24/26	24	48	3581	1,98	1572	0,799	601	2,62	511	1039	1,01	50	2	nahezu gleichmäßige Verteilung der Bleche mit gleichmäßiger Flächenbelastung
ОВ	L5/12-2 Ø6	205	300k	50,6	42,0	38,0	0,86	4,5	24/24/24	24	48	3519	1,99	1826	1,144	825	2,21	701	1034	1,05	53	5	gleichmäßige Verteilung der Bleche 48 Bügel je Rundschnitt
OBW	L5/12-2 Ø6	205	300k	44,2	36,7	32,7	0,86	4,5	24/24/24	24	48	3519	1,99	1712	1,088	785	2,18	667	1034	1,01	49	1	gleichmäßige Verteilung der Bleche 48 Bügel je Rundschnitt
ок	L5/12-2 Ø6	210	300k	49,8	41,4	37,4	0,84	4,4	24/24/24	24	48	3581	1,98	1845	1,122	844	2,19	717	1039	1,05	53	5	zwei Bereiche ohne L-Bleche ca. 25% der Fläche auf einem Gurtstreifen
OKW2	L5/12-2 Ø6	215	300k	43,5	36,2	32,2	0,82	4,3	24/24/24	24	48	3644	1,96	1784	1,053	825	2,16	701	1043	1,02	50	2	zwei Bereiche ohne Bleche ca. 25% der Fläche auf einem Gurtstreifen
ОКW3	L5/12-2 Ø6	215	300k	48,9	40,6	36,6	0,82	4,3	24/24/24	24	48	3644	1,96	1904	1,099	861	2,21	732	1043	1,07	54	6	zwei Bereiche ohne Bleche ca. 25% der Fläche auf einem Gurtstreifen
OL	L5/12-2 Ø6	215	300k	49,1	40,8	36,8	0,82	4,3	24/24/24	24	48	3644	1,96	1884	1,101	863	2,18	733	1043	1,06	53	5	vier Bereiche ohne Bleche ca. 50% der Fläche auf beiden Gurtstreifen
OLW	L5/12-2 Ø6	215	300k	48,7	40,5	36,5	0,82	4,3	24/24/24	24	48	3644	1,96	1937	1,098	860	2,25	731	1043	1,09	56	8	vier Bereiche ohne Bleche ca. 50% der Fläche auf beiden Gurtstreifen
ОМ	L5/12-2 Ø6	215	300k	43,5	36,2	32,2	0,82	4,3	24/24/24	24	48	3644	1,96	1715	1,053	825	2,08	701	1043	0,98	47	-1	vier Bereiche ohne Bleche ca. 60% der Fläche zwischen den Gurtstreifen
омw	L5/12-2 Ø6	215	300k	49,7	41,3	37,3	0,82	4,3	24/24/24	24	48	3644	1,96	1800	1,106	866	2,08	736	1043	1,01	49	1	vier Bereiche ohne Bleche ca. 60% der Fläche zwischen den Gurtstreifen
OMW2	L5/12-2 Ø6	215	300k	48,9	40,6	36,6	0,82	4,3	24/24/24	24	48	3644	1,96	1932	1,099	861	2,24	732	1043	1,09	56	8	vier Bereiche ohne Bleche ca. 60% der Fläche zwischen den Gurtstreifen
ON	L5/12-2 Ø6	210	300k	55,7	46,3	42,3	0,84	4,4	24/24/24	24	48	3581	1,98	1733	1,169	879	1,97	747	1039	0,97	46	-2	vier Bereiche ohne Bleche ca. 75% der Fläche, Bleche auf Gurtstreifen verlegt
ONW	L5/12-2 Ø6	215	300k	45,0	37,4	33,4	0,82	4,3	24/24/24	24	48	3644	1,96	1707	1,066	835	2,04	710	1043	0,97	46	-2	vier Bereiche ohne L-Bleche ca. 75% der Fläche, Bleche auf Gurtstreifen verlegt
OBSA	L5/12-2 Ø6	210	300kS	51,9	43,1	39,1	0,84	4,4	24/24/24	24	48	3581	1,98	1675	1,139	857	1,96	728	1040	0,95	44	-4	gleichmäßige Verteilung der Bleche kreisrunde Stahlplatte mit Lagerung auf Betonoberfläche - Fuge unzureichend vergossen
OBSAW	L5/12-2 Ø6	215	300kS	43,7	36,3	32,3	0,82	4,3	24/24/24	24	48	3644	1,96	1592	1,054	826	1,93	702	1044	0,91	41	-7	gleichmäßige Verteilung der Bleche kreisrunde Stahlplatte mit Lagerung auf Betonoberfläche - Fuge unzureichend vergossen

OBSI	L5/12-2 Ø6	185	300kS	51,9	43,1	39,1	0,84	5,0	24/24/24	24	48	3267	2,00	1639	1,153	697	2,35	592	1018	1,02	50	2	gleichmäßige Verteilung der Bleche kreisrunde Stahlplatte auf unterer Bewehrung mit d _{red}
OBSIW	L5/12-2 Ø6	190	300kS	51,4	42,7	38,7	0,82	4,9	24/24/24	24	48	3330	2,00	1657	1,140	721	2,30	613	1022	1,01	50	2	gleichmäßige Verteilung der Bleche kreisrunde Stahlplatte auf unterer Bewehrung mit d _{red}
OBSIW2	L5/12-2 Ø6	190	300kS	48,7	40,5	36,5	0,82	4,9	24/24/24	24	48	3330	2,00	1727	1,118	707	2,44	601	1022	1,06	53	5	gleichmäßige Verteilung der Bleche kreisrunde Stahlplatte auf unterer Bewehrung mit d _{red}
NH	L5/12-2 Ø6	190	300k	39,1	32,5	28,5	0,84	4,9	24/24/24	24	48	3330	2,00	1657	1,038	656	2,52	558	1022	1,05	52	4	gleichmäßigen Verteilung der Bleche Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze -20mm -Fugen zur Stütze 5 und Gurtstreifen 40mm
NI	L5/12-2 Ø6	210	300k	42,0	34,9	30,9	0,84	4,4	24/24/24	24	48	3581	1,98	1650	1,054	792	2,08	674	1040	0,96	46	-2	gleichmäßigen Verteilung der Bleche Halbfertigteildecke -Fugen Gurtstreifen 40mm
NJ	L5/12-2 Ø6	210	300k	42,0	34,9	30,9	0,84	4,4	24/24/24	24	48	3581	1,98	1543	1,054	792	1,95	674	1040	0,90	41	-7	gleichmäßigen Verteilung der Bleche mit teilweise zu großem Abstand zur Stütze - Halbfertigteildecke - Fugen Gurtstreifen 40mm
LE	L3/12-1 Ø6	360	300k	44,9	37,3	33,3	0,49	2,6	80/56/52	56	56	5466	1,75	3861	0,687	1351	2,86	1148	1362	1,54	112	56	größere Bügelanzahl im 1. Rundschnitt
LF	L3/12-1 Ø6	360	300k	45,7	38,0	34,0	0,49	2,6	80/56/52	56	56	5466	1,75	3856	0,691	1361	2,83	1156	1362	1,53	112	56	größere Bügelanzahl im 1. Rundschnitt
OI	L5/12-2 Ø6	205	300k	47,6	39,6	35,6	0,86	4,5	36/36/36	36	72	3519	1,99	1901	1,119	807	2,35	686	1551	0,85	57	-15	gleichmäßige Verteilung der Bleche deutlich überbewehrt mit Blechen - außerhalb des Bemessungskonzept - Versagen außerhalb der Durchstanzbewehrung
ОА	L5/12-2 Ø6	205	300k	50,4	41,9	37,9	0,86	4,5	36/36/36	36	72	3519	1,99	2034	1,143	824	2,47	701	1551	0,90	62	-10	gleichmäßige Verteilung der Bleche deutlich überbewehrt mit Blechen - außerhalb des Bernessungskonzept - Versagen außerhalb der Durchstanzbewehrung
OAW	L5/12-2 Ø6	205	300k	44,2	36,7	32,7	0,86	4,5	36/36/36	36	72	3519	1,99	1904	1,088	785	2,43	667	1551	0,86	58	-14	gleichmäßige Verteilung der Bleche deutlich überbewehrt mit Blechen - außerhalb des Bemessungskonzept - Versagen außerhalb der Durchstanzbewehrung
Aa40er	L5/12-2 Ø6	360	300k	39,8	33,1	29,1	0,49	2,6	40/40/64	40	80	5466	1,75	3450	0,656	1292	2,67	1098	1945	1,13	97	17	größere Blechanzahl im 3. Rundschnitt Vergleichsuntersuchungen in Aachen
LA	L5/12-2 Ø6	360	300k	57,1	47,4	43,4	0,49	2,6	44/44/36	44	88	5466	1,75	4333	0,750	1476	2,94	1254	2140	1,28	127	39	nahezu gleichmäßige Verteilung der Bleche
LB	L5/12-2 Ø6	360	380k	45,9	38,1	34,1	0,49	2,5	52/48/36	48	96	5718	1,75	4246	0,749	1541	2,76	1310	2335	1,17	121	25	geringe Bügelanzahl im 3. Rundschnitt
МА	L5/12-2Ø6	560	300k	27,9	23,2	19,2	0,32	1,7	56/52/38	52	104	7980	1,60	5220	0,437	1952	2,67	1659	2901	1,14	128	24	geringe Bügelanzahl im 3. Rundschnitt
МВ	L5/12-2 Ø6	560	300k	28,8	24,0	20,0	0,32	1,7	56/52/38	52	104	7980	1,60	5220	0,443	1979	2,64	1682	2901	1,14	127	23	geringe Bügelanzahl im 3. Rundschnitt
LC	L5/12-2 Ø6 und L3/12-1 Ø6	360	300k	50,8	42,2	38,2	0,98	2,6	60/64/74	60	120	5466	1,75	5119	0,905	1781	2,87	1514	2918	1,16	149	29	größere Bügelanzahl im 3. Rundschnitt

											Links	-14-	D1		40 -	D A			-l 0				
					1	T		1			Linien	elemente	- Bewel	nrung d	l _s = 12 n	ım - Bü	gelbewe	hrung	d _s = 8 n	nm		T	
PH	L5/12-1 Ø8	215	300k	41,9	34,8	30,8	0,82	4,9	8/8/8	8	8	3644	1,96	1247	1,037	813	1,53	691	309	1,25	15	7	8er Stern
OE	L5/12-1 Ø8	205	300k	51,8	43,0	39,0	0,86	4,5	24/24/24	24	24	3519	1,99	1700	1,154	832	2,04	707	920	1,04	26	2	gleichmäßige Verteilung der Bleche
OEW	L5/12-1 Ø8	205	300k	43,7	36,3	32,3	0,86	4,5	24/24/24	24	24	3519	1,99	1599	1,084	782	2,05	664	920	1,01	25	1	gleichmäßige Verteilung der Bleche
PI	L5/12-1 Ø8	215	300k	41,9	34,8	30,8	0,82	4,9	28/28/28	28	28	3644	1,96	1635	1,037	813	2,01	691	1082	0,92	25	-3	gleichmäßige Verteilung der Bleche Versagen außerhalb des mit Blechen bewehrten Bereichs
PJ	L5/12-1 Ø8	215	300k	37,4	31,1	27,1	0,82	4,9	28/28/28	28	28	3644	1,96	1666	0,994	779	2,14	662	1082	0,96	26	-2	gleichmäßige Verteilung der Bleche wie PI jedoch zusätzlich 28 Bleche im 4. Rundschni tt
	Linienelemente - Bewehrung d _s = 16 mm - Bügelbewehrung d _s = 6 mm																						
IG	L5/ 16 -2 Ø6 und L3/ 16 -1 Ø6	195	300k	36,3	30,1	26,1	1,81	4,8	24/24/20	24	48	3393	2,00	1902	1,302	862	2,21	732	1026	1,08	55	7	nahezu gleichmäßige Verteilung der Bleche
IK	L5/ 16 -2 Ø6 und L3/ 16 -1 Ø7	210	300k	41,6	34,6	30,6	0,84	4,4	20/22/24	20	40	3581	1,98	1728	1,050	790	2,19	671	865	1,12	49	9	nahezu gleichmäßige Verteilung der Bleche
							•	•	•			Ve	rsuchsk	örper o	hne Du	rchstan	zbeweh	rung					
A	-	205	300k	60,1	49,9	45,9	1,53	4,5	0/0/0	-	-	3519	1,99	1253	1,477	1065	1,18	-	-	-	-	-	Vergleichskörper ohne Durchstanzbewehrung
В	-	205	300k	58,0	48,2	44,2	1,53	4,5	0/0/0	-	-	3519	1,99	1190	1,458	1052	1,13	-	-	-	-	-	Vergleichskörper ohne Durchstanzbewehrung
												Ver	gleichs	- Versu	chskörp	er mit D	oppelk	öpfen					
0	IDA 2/12/195	205	300k	37,0	30,8	26,8	1,53	4,5	9/9/9			3519	1,99	1380	1,234	890	1,55	-	-	-	-	-	Vergleichskörper mit Doppelkopfankern 9er-Stern
Bezeich	nung der Du	rchstan	zbeweh	rung: L-	förmige	s Blech	mit eine	er Dicke	von 3 o	der 5 m	m / Dur	chmesser	der Bev	vehrung	der Lin	ienelem	ente 10	, 12 ode	er 16 mr	n - Büge	elanzahl	1 oder 2	2 mit einem Durchmesser von 6 oder 8 mm
Bezeich	nung der Stü	tzen: k	= kreisr	und, q =	quadra	atisch, k	S = kreis	srunde S	Stahlplat	te , Ber	essung	der Bügel	anzahl:	Bewehr	ung der	Linienel	emente	wird ni	cht unte	erschied	en		

Zuordnung der Körper: FB30A A,B,O und B-,C-u.D-Reihe; FB30B E-,F-u.G-Reihe; FB30C I-Reihe; FB30F L-Reihe; FB30F L-Reihe; FB30D M-Reihe; FB30D

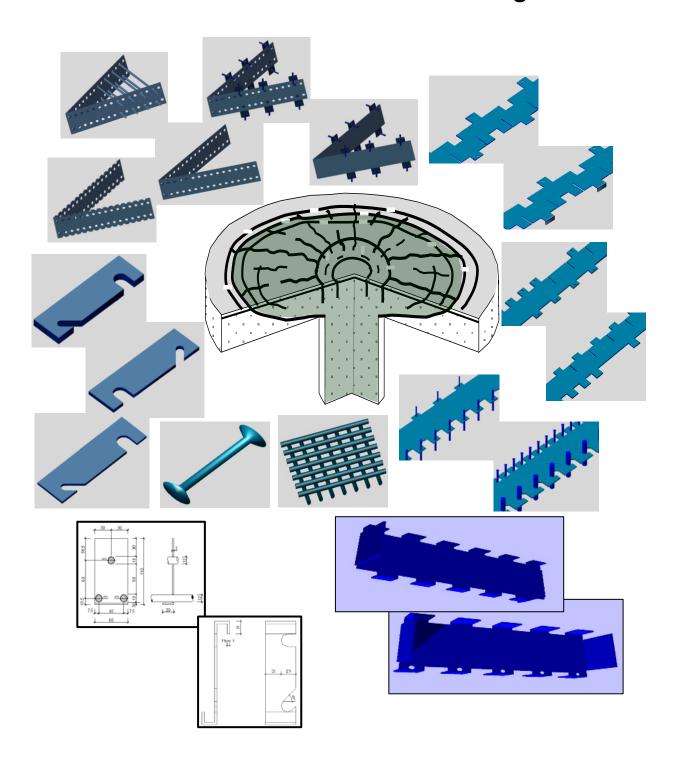
und Aa40er

B Durchstanz- und Verbundbewehrung mit Z-Blechen nach ETA 2/22

B1. Abbildung der Z- Bleche

Experimente

Zusammenstellung der Experimente mit Z- Blechen im Durchstanzbereich - Bemessung nach Europäisch Technischer Bewertung ETA-19/0310 vom 21. Februar 2022 Abstand Umfang Stützenn_{erf,Z-} Blech-Maß-Bruch statische rand zum Blechanzah 0,85 x anzahl stabs-V_{Test} V_{Test} n_{erf,Z-} Blech schnitt Höhe Stütze Radius last $V_{Rk,s}$ $f_{c,cube}$ Rundschnitte $V_{Rk,c,u1}$ $V_{\mathsf{Rk},\mathsf{cs}}$ $f_{c,cube}$ V_{Rk,c} . oder V_{Rk.c.u1} $V_{Rk,c,u}$ $V_{Rk,cs}$ der Belas Blech n_{vorh.Z} 1/2/3 V_{Test} Bauweise / Anmerkungen Körper x 0,83 2. Rund 2,0 d_{u1} tung schnitt [N/mm²] [N/mm²] [MN/m²] [-] [-] [-] [kN] [MN/m²] [-] [kN] [kN] [kN] [-] [-] [-] Z -Bleche mit Dicken t = 3 und 5 mm und untere Bewehrung Ø = 12 mm Z Bleche: t = 3 und 5 mm, $b_{min} = 32$ mm - untere Bewehrung $\emptyset =$ 16,6 12,6 1,53 14 3519 692 589 15 205 300k 20 4,5 14/20/18 1,99 1000 0,960 1,44 391 980 1,02 12mm, Berechnung nach Blechdicken - Anteilen gewichtet Z Bleche: t = 3 und 5 mm, $b_{min} = 32$ mm - untere Bewehrung $\emptyset = 12$ 300k 18 15,0 11,0 1,53 4,5 14/20/18 14 3519 1,99 1030 0,917 662 1,56 562 391 954 1,08 17 3 BL 205 mm, Berechnung nach Blechdicken - Anteilen gewichtet Z Bleche: t = 3 mm, $b_{min} = 32$ mm - untere Bewehrung $\emptyset = 12$ mm, DU-B 205 300k 35,1 29,2 25,2 1,53 4,5 20/22/12 20 3519 1,99 1475 1,209 872 1,69 741 451 1193 1,24 33 13 Halbfertigteildecke EF 300k 43,2 35,9 31,9 1,53 4,5 28/24/16 24 3519 1,99 1864 1,308 944 1,98 802 1100 1902 0,98 24 205 Z Bleche: t = 5 mm, $b_{min} = 39$ mm - untere Bewehrung $\emptyset = 12$ mm 24/24/28 1836 1,007 758 1100 1744 27 FF 210 300k 37,3 31,0 27,0 0,84 4,4 24 3581 1,98 2,42 644 1,05 3 Z Bleche: t = 5 mm, $b_{min} = 39$ mm - untere Bewehrung $\emptyset = 12$ mm 300k 24/24/28 FG 210 36,1 30,0 26,0 0,84 4,4 24 3581 1,98 1608 0,995 748 2,15 636 660 1296 1,24 36 Z Bleche: t = 3 mm, b_{min} = 39 mm - untere Bewehrung Ø = 12 mm Z Bleche: t = 5 mm, $b_{min} = 39$ mm - untere Bewehrung $\emptyset = 12$ mm, 38.6 1.459 1052 1.91 895 1100 25 205 300k 46,4 34,6 1,96 4,5 24/24/28 24 3519 1.99 2011 1994 1,01 Abbruch durch maximale Belastung der Zylinder 400k 35,7 29,7 25,7 0,84 34/17/12 17 3896 1,98 1668 0,991 811 2,06 689 779 1468 1,14 22 5 210 4,2 Z Bleche: t = 5 mm, $b_{min} = 39$ mm - untere Bewehrung $\emptyset = 12$ mm Z Bleche: t = 5 mm, $b_{min} = 40$ mm - untere Bewehrung $\emptyset = 12$ mm, 210 300k 21 17,5 13,5 1,03 4,4 20/14/16 14 3581 1,98 1117 0,855 643 1,74 547 658 1205 0,93 13 -1 JA Versagen außerhalb der Durchstabzbewehrung Z Bleche: t = 5 mm, $b_{min} = 40$ mm - untere Bewehrung Ø = 12 mm, 210 300k 20 16,6 12,6 1,03 4,4 20/14/16 14 3581 1,98 951 0,836 629 1,51 534 658 1192 0,80 10 Versagen außerhalb der Durchstabzbewehrung 50,3 41,8 37,8 0,49 44/44/36 44 5466 1,75 3168 0,717 1410 2,25 1199 1810 3008 1,05 48 LD 360 300k 2,6 Z Bleche: t = 5 mm, $b_{min} = 35$ mm - untere Bewehrung $\emptyset = 12$ mm MC 300k 25,6 21,3 17,3 0,32 108/100/84 100 7980 1,60 4202 0,422 1886 2,23 1603 2468 4070 1,03 106 560 1,9 Z Bleche: t = 3 mm, $b_{min} = 35$ mm - untere Bewehrung $\emptyset = 12$ mm Z Bleche: t = 5 mm, $b_{min} = 35$ mm - untere Bewehrung $\emptyset = 12$ mm, 300k 25,6 21,3 17,3 0,32 1,9 92/92/76 92 7980 1,60 4206 0,422 1886 2.23 1603 3784 5386 0.78 64 -28 deutlich überbewehrt mit Blechen


Bezeichnung der Stützen: k = kreisrund, Streckgrenze der Bleche: $f_{y,k} > 280 \text{ N/mm}^2$: rechnerische Streckgrenze der Bleche: $f_{y,k} = 235 \text{ N/mm}^2$

Zuordnung der Körper zu den Forschungsberichten: FB30A B-u. D-Reihe; FB30B E-u. F-Reihe; FB30F J-Reihe; FB30F L-Reihe; FB30G M-Reihe

λ: Schubschlankheit a/d mit a = Abstand vom Stützenrand zum Belastungsradius, b_{min}: kleinste Breite des Z-Bleches

C Voruntersuchungen der Durchstanz- und Verbund-Bewehrungen mit kurzen und langen Blechen

C1. Überblick der untersuchten kurzen und langen Bleche

C2. Tabellarische Zusammenstellung der experimentellen

Voruntersuchungen

Zusar	nmens	tellung	g der gi	rundle	gende	n Tra			rsuchu	ngen n	nit lange	en und	kurze	n Blechen im Durchstanzbereich - Berechi	nungen nach EC 2 - 2015			
Körper	sta. Höhe d	Stütze c	f _{c,cube}	f _{cm} = f _{c,cube} x 0,83	f _{ck} = f _{cm} -4	Ρι	Ab- stand Stütze zur Belast- ung λ x d	Umfang Rund- schnitt im Abstan d 2,0	Maß- stabs- faktor k	Bruch- last V _{Test}	V _{Rk,c}	V _{Rk,c,u1}	V _{Test} / V _{Rk,c,u1}	Bauweise	Ausführung der Bleche als Einbauteile	Anordnung der Einbauteile	Ifdm Bleche bzw. Anzahl	Blech- dicken
	mm	mm	N/mm²	N/mm²	N/mm²	%	-	mm	mm	kN	N/mm²	KN	-					
Α	205	300k	60,0	49,8	45,8	1,53	4,5	3519	1,99	1253	1,476	1065	1,18	Reverenzkörper ohne Bewehrung	•	-	-	
В	205	300k	58,0	48,2	44,2	1,53	4,5	3519	1,99	1190	1,458	1052	1,13	Reverenzkörper ohne Bewehrung	-	-	-	
С	205	300k	42,0	34,9	30,9	1,53	4,5	3519	1,99	1231	1,294	934	1,32			Screamentung Screamentung Screamentung Screamentung Screamentung Screamentung Screamentung	4,6	3,0 mm
D	205	300k	26,0	21,6	17,6	1,53	4,5	3519	1,99	786	1,073	774	1,02			Stockedewehring Stockedewehrin	4,6	3,0 mm
E	205	300k	52,0	43,2	39,2	1,53	4,5	3519	1,99	1321	1,401	1011	1,31			Erden, falls Gradi (term of the control of term o	4,6	3,0 mm
F	205	300k	49,0	40,7	36,7	1,53	4,5	3519	1,99	1610	1,371	989	1,63			Suizerdowehrung 6500 Suizerdow	4,6	3,0 mm
G	205	300k	51,0	42,4	38,4	1,53	4,5	3519	1,99	1200	1,392	1004	1,20			Suzeniswehrung 9020 1 gg 1	80,0	3,0 mm

н	205	300k	45,0	37,4	33,4	1,53	4,5	3519	1,99	969	1,328	958	1,01	Stützenbewei 8020 Bügel 910/8cm	30,0	3,0 mm
I	205	300k	51,0	42,4	38,4	1,53	4,5	3519	1,99	1499	1,392	1004	1,49	Blech I mit Bevertrungs 4 88 - 2500/2006 4 88	20,0	5,0 mm
J	205	300k	27,0	22,5	18,5	1,53	4,5	3519	1,99	1300	1,091	787	1,65	Black in part Beneforing or 15% - 2007/2005 10	25,0	5,0 mm
K	205	300k	32,0	26,6	22,6	1,53	4,5	3519	1,99	1095	1,166	841	1,30	1.5xd	53	10,0 mm
L	205	300k	33,0	27,4	23,4	1,53	4,5	3519	1,99	1371	1,180	851	1,61		12,0	5,0 mm
M	205	300k	35,0	29,1	25,1	1,53	4,5	3519	1,99	1084	1,208	871	1,24	1.5xd	53	10,0 mm
N	205	300k	32,0	26,6	22,6	1,53	4,5	3519	1,99	1264	1,166	841	1,50	1.5xd	100	3,0 mm

0	205	300k	37,0	30,8	26,8	1,53	4,5	3519	1,99	1380	1,234	890	1,55	54	d=12mm
PP	205	300k	40,0	33,2	29,2	1,53	4,5	3519	1,99	1120	1,270	916	1,22	10,0	3,0 mm
Q	205	300k	62,0	51,5	47,5	1,53	4,5	3519	1,99	1600	1,494	1078	1,48	109	3,0 mm
RR	205	300k	40,3	33,5	29,5	1,53	4,5	3519	1,99	1380	1,275	919	1,50	16,5	3,0 mm
S	205	300k	48,0	39,9	35,9	1,53	4,5	3519	1,99	1505	1,361	982	1,53	3 44/50	5,0 mm innen / 3,0 mm außen
Т	205	300k	48,0	39,9	35,9	1,53	4,5	3519	1,99	1550	1,361	982	1,58	15xd	3,0 mm
U	205	300k	37,0	30,8	26,8	0,91	4,5	3519	1,99	1100	1,038	748	1,47		3,0 mm

V	205	300k	30,0	24,9	20,9	0,91	4,5	3519	1,99	1000	0,955	689	1,45	1.5 x d	I3,1 m	3,0 mm
w	205	300k	31,0	25,8	21,8	0,91	4,5	3519	1,99	1058	0,969	699	1,51		12 / 98	5,0 mm innen 3,0 mm außen
x	135	300k	37,0	30,8	26,8	1,49	6,9	2639	2,00	635	1,230	438	1,45	5 5 3	28 / 44	5,0 mm innen 3,0 mm außen
Y	205	300k	53,5	44,5	40,5	1,53	4,5	3519	1,99	1700	1,416	1021	1,66	fe by	Halb- fertig- teil - Decke 15,9	3,0 mm
Z	205	300k	45,5	37,8	33,8	1,53	4,5	3519	1,99	1581	1,333	962	1,64	fe to Do	Halb- fertig- teil - Decke 15,9	3,0 mm
ВА	205	300k	33,1	27,5	23,5	1,17	4,5	3519	1,99	1180	1,080	779	1,51	3 S S S S S S S S S S S S S S S S S S S	4 / 42 / 25	5,0 mm innen 3,0 mm Mitte 1,0 mm außen
ВВ	135	300k	40,8	33,9	29,9	2,10	6,9	2639	2,00	840	1,431	510	1,65	5 5 72	72 / 21	5,0 mm innen 3,0 mm außen

вс	205	300k	36,4	30,3	26,3	1,17	4,5	3519	1,99	1230	1,121	809	1,52	"""	######################################	40 / 60	5,0 mm innen 3,0 mm außen
BD	205	300k	43,7	36,3	32,3	1,53	4,5	3519	1,99	1750	1,314	948	1,85		The state of the s	50 / 80	5,0 mm innen 3,0 mm außen
BE	205	300k	27,7	23,0	19,0	1,53	4,5	3519	1,99	1240	1,101	794	1,56		Part Barre	34 / 46	5,0 mm innen 3,0 mm außen
BF	205	300k	29,5	24,5	20,5	1,53	4,5	3519	1,99	1100	1,129	814	1,35			34 / 46	5,0 mm innen 3,0 mm außen
ВG	205	300k	23,0	19,1	15,1	1,53	4,5	3519	1,99	1190	1,020	735	1,62			28 / 50	5,0 mm innen 3,0 mm außen
вн	205	300k	23,2	19,3	15,3	1,53	4,5	3519	1,99	1170	1,024	739	1,58			28 / 50	5,0 mm innen 3,0 mm außen
ВІ	205	300k	21,3	17,7	13,7	1,53	4,5	3519	1,99	1215	0,987	712	1,71			28 / 50	5,0 mm innen 3,0 mm außen

вЈ	205	300k	23,8	19,8	15,8	1,53	4,5	3519	1,99	985	1,035	747	1,32	28/	/ 50	5,0 mm innen 3,0 mm außen
HF	210	300k	37,0	30,8	26,8	0,84	4,4	3581	1,98	1220	1,004	755	1,62	Mr. and Mr. an	',8 :	3,0 mm
HG	210	300k	39,5	32,8	28,8	0,84	4,4	3581	1,98	1011	1,029	774	1,31		1,3	3,0 mm
нн	210	300k	47,2	39,2	35,2	0,84	4,4	3581	1,98	1323	1,100	827	1,60	9,	1,3	3,0 mm
НІ	210	300k						3581	1,98	1540	1,094	822	1,87	9,	1,3	3,0 mm

\(\lambda\): Schubschlankheit a/d mit a = Abstand vom Stützenrand zum Belastungsradius
Zuordnung der K\(\tilde{G}\)reg zu den Forschungsberichten: \(\frac{FB 11}{B}\) A bisT- Anhang A; \(\frac{FB 13 bis FB 21}{B}\) U,W,X, BA bis BJ; \(\frac{FB 29}{B}\) P,R,V,Y,Z HF, HG, HH, HI- Anhang B;

D Anhang: Durchstanz- und Verbundbewehrung mit L-Blechen

nach ETA 2/22 und k_{2,mod} nach Gutachten 8/23

D1. Bemessungsbeispiel

nach der ETA-19/0310 vom Februar 2022 mit erheblichen Einsparungen der Anzahl der Bleche gegenüber der vorherigen ETA

und dem modifizierten Verbundfaktor k_{2L,mod} sowie dem 8er Stern

Die Bemessung des CLIXS Bewehrungssystems bei ständigen und quasi-ständigen Einwirkungen erfolgt nach Eurocode 2, Abschnitt 6.4 [1] und den Anhängen C.1 und C.2 der ETA [2], sowie dem Gutachten vom Büro Hegger + Partner zum Verbundvorfaktor k_{2L,mod} und der Ergänzung zum 8er Stern vom August und Oktober 2023 [6].

Die Weiterentwicklungen des Systems [3], [4] und [6] mit erheblichen Reduzierungen der Anzahl der Bleche gegenüber der vorherigen ETA werden zahlenmäßig in der Gegenüberstellung am Ende des Beispiels besonders deutlich.

In dem folgenden Beispiel werden leicht verständlich zur Nachvollziehbarkeit der Bemessung die einzelnen Schritte per Handrechnung ausführlich beschrieben. Alle Schritte sind ebenfalls im Ergebnisausdruck der Bemessungssoftware dargestellt.

Durchstanznachweis

Der **Bemessungswert der einwirkenden Querkraft** v_{Ed} entlang des kritischen Rundschnitts u₁ im Abstand von 2 d vom Stützenrand wird wie folgt bestimmt:

$$v_{Ed} = \frac{\beta \cdot V_{Ed}}{u_1 \cdot d} \tag{1}$$

 V_{Ed} einwirkende Bemessungsquerkraft u_1 Umfang des kritischen Rundschnitts im Abstand von 2 d vom Stützenrand d mittlere statische Nutzhöhe β Lasterhöhungsfaktor zur Berücksichtigung von Lastexzentrizitäten (Abb. 1)

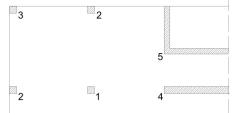


Abb. 4: Vereinfachte Lasterhöhungsfaktoren

 1. Innenstütze
 $\beta = 1,10$

 2. Randstütze
 $\beta = 1,40$

 3. Eckstütze
 $\beta = 1,50$

 4. Wandecke
 $\beta = 1,20$

 5. Wandende
 $\beta = 1,35$

Alternativ kann der Lasterhöhungsfaktor β nach dem Verfahren der plastischen Schubspannungsverteilung mit der Bemessungssoftware berechnet werden.

Eine Durchstanzbewehrung ist erforderlich, wenn die einwirkende Querkraft je Flächeneinheit entlang des kritischen Rundschnitts u₁ größer ist als der in Gleichung (2) beschriebene **Durchstanzwiderstand des Betons** v_{Rd.c.}

$$V_{Rd,c} = C_{Rd,c} \cdot k \cdot \left(100 \cdot \rho_{l} \cdot f_{ck}\right)^{1/3} \geq V_{min} \tag{2}$$

$$C_{Rd,c} \qquad \text{empirischer Faktor, } C_{Rd,c} = 0,18/\gamma_{c}$$

$$k \qquad \qquad Faktor zur \ \text{Berücksichtigung des Maßstabseffekts}$$

$$k = 1 + \sqrt{\frac{200}{d}} \leq 2,0 \ \text{mit d in [mm]}$$

$$f_{ck} \qquad \text{charakteristische Zylinderdruckfestigkeit des Betons}$$

$$\rho_{l} \qquad \text{gemittelter Bewehrungsgrad in y- und z- Richtung}$$

$$\rho_{l} = \sqrt{\rho_{lz} \cdot \rho_{ly}} \leq \begin{cases} 2,0\\ 0,5 \cdot f_{cd}/f_{yd} \end{cases}$$

$$f_{cd} \qquad = \alpha_{cc} \cdot f_{ck}/\gamma_{c} \quad \text{Bemessungswert der Betondruckfestigkeit}$$

$$f_{yd} \qquad = f_{yk}/\gamma_{s} \quad \text{Bemessungswert der Streckgrenze des}$$

$$\text{Bewehrungsstahls}$$

$$V_{min} \qquad (0,0525/\gamma_{c}) \cdot k^{3/2} \cdot f_{ck}^{1/2} \text{ für d} \leq 600 \ \text{mm}$$

$$(0,0375/\gamma_{c}) \cdot k^{3/2} \cdot f_{ck}^{1/2} \text{ für d} > 800 \ \text{mm}$$

$$\text{Zwischenwerte dürfen linear interpoliert werden}$$

Für Innenstützen bei Flachdecken mit kleinen Verhältnissen von Stützenumfang zu statischer Nutzhöhe gilt:

$$\frac{u_0}{d} < 4,0$$
: $C_{Rd,c} = \frac{0,18}{\gamma_c} \cdot \left(0,1 \cdot \frac{u_0}{d} + 0,6\right) \ge \frac{0,15}{\gamma_c}$

Umfang der Stützenlasteinleitungsfläche

Teilsicherheitsbeiwert für Beton ($\gamma_c = 1,5$)

U0

Yc

Die äußere Bewehrungsreihe ist im Abstand 1,5 d nach innen vom **äußeren Rundschnitt** u_{out} nach Gleichung (3) vorzusehen.

$$u_{out} = \frac{\beta_{red} \cdot V_{Ed}}{V_{Rd,c} \cdot d} \tag{3}$$

β_{red} reduzierter Faktor zur Berücksichtigung von Einflüssen aus Lastexzentrizitäten entlang des äußeren Rundschnitts u_{out}

$$\beta_{red} = \kappa_{\beta} \cdot \beta \ge 1,10 \tag{4}$$

Randstütze
$$\kappa_{\beta} = \frac{1}{1,2 + \frac{\beta}{20} \cdot \frac{l_s}{d}}$$
 $\kappa_{\beta} = \frac{1}{1,2 + \frac{\beta}{15} \cdot \frac{l_s}{d}}$

Wandecke $\kappa_{\beta} = 1,0$

Wandende $\kappa_{\beta} = 1,0$
 l_s Abstand zwischen der Stützenoberfläche und dem äußersten Durchstanzbewehrungselement

 $k_{\beta} = 1,0$

Lasterhöhungsfaktor (vollplastische Schubspannungsverteilung)

Der *reduzierte Faktor* β_{red} kann bei der Bestimmung des Durchstanzwiderstandes des äußeren Rundschnitts u_{out} bei Rand- und Eckstützen nach Gleichung (4) berechnet werden.

Die *Maximaltragfähigkeit* v_{Rd,max} wird im kritischen Rundschnitt u₁ im Abstand von 2,0 d vom Stützenrand nach Gleichung (5) berechnet.

$$v_{Rd,max} = k_{pu,sl} \cdot v_{Rd,c} \tag{5}$$

V_{Rd,max} maximale Durchstanztragfähigkeit

 $k_{pu,sl}$ Erhöhungsfaktor für den Durchstanzwiderstand

= 2,05 für L-Bleche mit einem oder zwei Bügel Ø6

= 1,90 für L-Bleche mit einem Bügel Ø8

v_{Rd,c} Bemessungswert des Durchstanzwiderstandes nach Gleichung (2) mit

 $C_{Rd,c} = 0.18 / \gamma_c$ unabhängig vom Verhältnis u₀ / d

Der Nachweis erfolgt nach Gleichung (6).

$$\frac{\beta \cdot V_{Ed}}{u_1 \cdot d} \le V_{Rd,max} \tag{6}$$

v_{Rd,max} maximale Durchstanztragfähigkeit

Die sehr hohe Maximaltragfähigkeit der L-Bleche ist insbesondere bei dünnen Stützen und hohen Decken mit u_0 / d < 4 durch den konstanten Faktor für $C_{Rd,c}$ wesentlich höher als bei allen anderen bekannten Durchstanzbewehrungssystemen.

Die *Bemessung der Durchstanzbewehrung* erfolgt im kritischen Rundschnitt u₁. Die Anzahl der Durchstanzbewehrungselemente muss so groß sein, dass folgende Ungleichung erfüllt ist.

$$\beta \cdot V_{Ed} \le V_{Rd.cs.L-Bleche} \tag{7}$$

V_{Rd,cs,L-Bleche} Durchstanzwiderstand der L-Bleche

Der **Durchstanzwiderstand** V_{Rd,cs,L-Bleche} setzt sich aus dem Traganteil der Durchstanzbewehrungselemente und dem Betontraganteil zusammen. Die erforderliche Anzahl von Bewehrungselementen ist für jede der ersten drei Reihen bis zu einem Abstand von 2,0 d zur Stütze einzubauen und kann mit der Gleichung (8) ermittelt werden.

$$V_{Rd,cs,L-Bleche} = k_1 \cdot v_{Rd,c} \cdot u_1 \cdot d + k_{2,L,mod} \cdot n_{B\ddot{u}gel} \cdot 2 A_{s,B\ddot{u}gel} \cdot f_{ywd,ef} \cdot n_{Bleche} \cdot 1,5 d/s_r$$
 (8)

 k_1 = 0,85 Wirkungsbeiwert für die Betontragfähigkeit u_1 Rundschnitt im Abstand 2 d vom Stützenrand $n_{B\ddot{u}qel}$ Anzahl der Bügel je L-Blech (1 oder 2 Bügel)

 $k_{2,L,mod}$ = 1,1 - 0,55 * (2,05 / (V_{Ed} / $V_{Rd,c}$))^{-1,3} Wirkungsbeiwert für den Verbund

A_{s,Bügel} Querschnittsfläche eines Bügelschenkels

 $f_{ywd,ef}$ = 250 + 0,25 d \leq f_{yd} , effektiver Bemessungswert der Streckgrenze der Bügel, mittlere statische Nutzhöhe d in mm, f_{yd} = 435 N/mm²

n_{Bleche} Anzahl der L-Bleche im Rundschnitt

 s_r radialer Abstand der Durchstanzbewehrung, empfohlen $s_r = 0.75$ d

Überschreitet der Abstand der Bewehrungsreihen 2,0 d zum Stützenrand wird der Wirkungsbeiwert für den Verbund ab der vierten Bewehrungsreihe auf k2,L,mod = 1,0 erhöht.

Verbundnachweis in der Fuge im Durchstanzbereich

Bei der abschnittsweisen Herstellung von Betonbauteilen, wie Halbfertigteildecken mit Ortbetonergänzung, grenzen Betone unterschiedlichen Alters aneinander. Die Bauteile sollen das Tragverhalten von monolithischen Körpern aufweisen. Deshalb müssen die Fugen kraftschlüssig ausgeführt werden.

Der **Bemessungswert der Einwirkung** v_{Ed,ui} für jeden Rundschnitt, ab einem Abstand von 1,25 d vom Stützenrand, kann mit Gleichung (9) bestimmt werden.

$$v_{Ed,ui} = \frac{\beta \cdot (V_{Ed} - \Delta V_{Ed,i})}{u_i \cdot z} \tag{9}$$

$$\Delta V_{Ed,i} \qquad \text{Abzugswert der Belastung vom jeweiligen Rundschnitt bis zur Stütze}$$

$$= A_i \cdot (g_d + q_d), \text{ mit } A_i \text{ als Fläche des Durchstanzbereichs bis zum jeweiligen Rundschnitt}$$

$$u_i \qquad \text{Umfang des jeweiligen Rundschnitts}$$

$$z \qquad \text{Hebelarm der inneren Kräfte,}$$

$$= 0,9 \text{ d}$$

$$oder geringerer Hebelarm bei gleichzeitiger Querkraftbeanspruchung,}$$

oder geringerer Hebelarm bei gleichzeitiger Querkraftbeanspruchu $= max \begin{cases} d - c_{unten} - 0.03 \text{ m} \\ d - 2 \cdot c_{unten} \end{cases}$ c_{unten} c_{unten}

Im Abstand von 0,5 d ist kein Nachweis erforderlich, da dort die Querkraft direkt in die Stütze eingeleitet wird.

Die **Verbundtragfähigkeit** v_{Rdi} setzt sich additiv aus einem Betonverzahnungstraganteil $v_{Rd,c}$, einem Reibungsanteil $v_{Rd,r}$ infolge einer Normalkraft und aus den die Fuge kreuzenden Bewehrungsanteilen $v_{Rd,si}$ zusammen und kann nach Gleichung (10) berechnet werden. Der Reibungsanteil aus dem Eigengewicht des Ortbetons ist bei dünnen Decken gering und kann vernachlässigt werden.

$$v_{Rdi} = v_{Rd,c} + v_{Rd,r} + v_{Rd,si} \leq 0, 5 \cdot v \cdot f_{cd}$$

$$v_{Rdi} = c \cdot f_{ctd} + \mu \cdot \sigma_n + \rho_i \cdot f_{yd} \cdot (1, 2 \cdot \mu \cdot \sin \alpha_i + \cos \alpha_i) \leq 0, 5 \cdot v \cdot f_{cd} = v_{Rd,max}$$

$$f_{ctd} = \alpha_{ct} \cdot 0, 7 \cdot 0, 3 \cdot f_{ck}^{2/3} / \gamma_c \quad \text{Bemessungswert der Betonzugfestigkeit}$$

$$\sigma_n \quad \text{Druckspannungen rechtwinklig zur Fuge, Zugkräfte werden negativeingesetzt}$$

$$\rho_i \quad \text{jeweiliger Bewehrungsgehalt der die Fuge kreuzenden Bewehrungen}$$

$$\alpha_i \quad \text{Neigung der betrachteten Bewehrung zur Fuge}$$

$$c, \mu \text{ und } v \quad \text{Beiwerte in Abhängigkeit von der Oberflächenbeschaffenheit der Fuge des Halbfertigteils,}$$

$$verzahnt, \text{ mit Zahnhöhe} \geq 10 \text{ mm} \quad c = 0,50; \mu = 0,90; v = 0,75$$

$$rau, \text{ mit Rechen aufgeraut} \quad c = 0,40; \mu = 0,70; v = 0,50$$

$$glatt, \text{ abgezogene Fugenfläche} \quad c = 0,20; \mu = 0,60; v = 0,20$$

$$\text{sehr glatt, glatte Schalung} \quad c = 0,00; \mu = 0,50; v = 0,00$$

$$v_{Rd,max} \quad \text{maximale Verbundkraftübertragung}$$

Der Verbundkrafttraganteil des Betons vRd,c ergibt sich nach Gleichung (11).

$$V_{Rd,c} = c \cdot f_{ctd} \tag{11}$$

Der *Verbundkrafttraganteil des Grundgitterträgers* v_{Rd,GT} kann nach Gleichung (12) berechnet werden.

$$v_{Rd,GT} = \frac{n_{Stäbe} \cdot A_{Stab}}{b_{GT} \cdot s_{GT}} \cdot f_{yd} \cdot (1, 2 \cdot \mu \cdot \sin \alpha_{GT} + \cos \alpha_{GT})$$
 (12)

n_{Stäbe} die Fuge kreuzende Diagonalstäbe steigend zum Auflager im Abstand b_{GT}

b_{GT} Abstand der Diagonalstäbe

s_{GT} mittlerer Abstand der Gitterträger

h_{GT} Trägerhöhe

A_{Stab} Querschnittsfläche eines Diagonalstabs steigend zum Auflager

 f_{yd} Bemessungswert der Streckgrenze der Diagonalstäbe α_{GT} Winkel der zwei Diagonalstäbe steigend zum Auflager

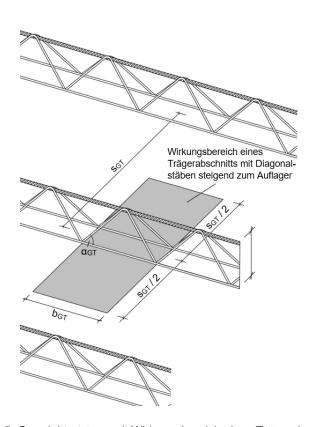


Abb. 5: Grundgitterträger mit Wirkungsbereich eines Trägerabschnitts

Falls Schubgitterträger als Zulage eingebaut werden, kann der **Verbundkrafttraganteil des Schubgitterträgers** v_{Rd,ST} mit Gleichung (13) bestimmt werden.

$$v_{Rd,ST} = \frac{n_{V,St\"{abe}} \cdot A_{VS}}{b_{ST} \cdot s_{ST}} \cdot f_{yd} \cdot 1, 2 \cdot \mu + \frac{n_{D,St\"{abe}} \cdot A_{DS}}{b_{ST} \cdot s_{ST}} \cdot f_{yd} \cdot (1, 2 \cdot \mu \cdot \sin \alpha_{ST} + \cos \alpha_{ST}) \cdot \beta$$

$$(13)$$

die Fuge kreuzende Vertikalstäbe im Abstand b_{ST}

A_{VS}	Querschnittsfläche eines Vertikalstabes
b _{ST}	Abstand der Diagonal- und Vertikalstäbe
S ST	mittlerer Abstand der Schubgitterträger, analog zum Gitterträger
h_{ST}	Trägerhöhe
n _{D,Stäbe}	die Fuge kreuzenden Diagonalstäbe im Abstand b _{ST}
ADS	Querschnittsfläche eines Diagonalstabes
f_{yd}	Bemessungswert der Streckgrenze der Diagonal- und Vertikalstäbe
a_{st}	Winkel der zwei Diagonalstäbe steigend zum Auflager
β	Abminderung, da tangentiale und radiale Verlegung zur Stütze empfohlen $\beta \le 0.7$

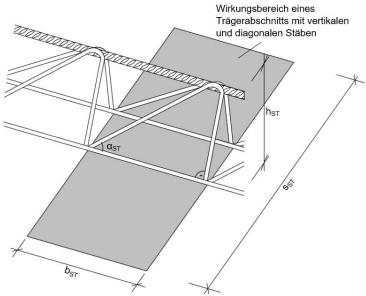


Abb. 6: Kenngrößen des Schubgitterträgers

Der **Verbundkrafttraganteil der L-Bleche** v_{Rd,L-Blech} wird nach Gleichung (14) berechnet. Bei der Berechnung des Verbundtraganteils der L-Bleche wird die Querschnittsfläche der Bügel als Verbundbewehrung angerechnet. Die Bügel dürfen mit einer Neigung von α = 90 ° zur Plattenebene rechnerisch angesetzt werden.

$$V_{Rd,L-Blech} = \frac{A_{L-Blech,i}}{s_{w,i} \cdot u_i} \cdot f_{yd} \cdot (1,2 \cdot \mu \cdot \sin \alpha_{L-Blech} + \cos \alpha_{L-Blech}) \tag{14}$$

$$A_{L-Blech,i} = n_i \cdot n_s \cdot 2 \cdot A_{s,B\ddot{u}gel}$$

$$n_i \qquad Anzahl \ der \ Bleche \ je \ Rundschnitt$$

$$n_s \qquad Anzahl \ der \ B\ddot{u}gel \ je \ Blech \ (1 \ oder \ 2)$$

$$2 \cdot A_{s,B\ddot{u}gel} \qquad zweifache \ Querschnittsfläche, \ da \ zweischnittiger \ B\ddot{u}gel$$

$$s_{w,i} \qquad Breite \ des \ jeweiligen \ Rundschnitts,$$

$$empfohlen \ s_w = 1,25 \ d \ erster \ Rundschnitt, \ s_w = 0,75 \ d \ alle \ weiteren$$

$$Rundschnitte$$

$$u_i \qquad Umfang \ des \ jeweiligen \ Rundschnitts$$

$$f_{yd} \qquad Bemessungswert \ der \ Streckgrenze \ der \ B\ddot{u}gel$$

$$\alpha_{L-Blech} \qquad Neigung \ der \ B\ddot{u}gelschenkel \ zur \ Plattenebene, \ empfohlen \ \alpha = 90 \ ^{\circ}$$

Der gleichzeitige Einsatz von Blechen und Gitterträgern ist entsprechend der ETA [2] möglich. Die größte aus der Fugen- und Durchstanzbemessung ermittelte Bewehrungsmenge ist einzubauen.

Bemessungsbeispiel

Innenstütze einer Halbfertigteilflachdecke

System

Einwirkung: $V_{Ed} = 405 \text{ kN}$

 $g_d = 6.0 \cdot 1.35 = 8.1 \text{ kN/m}^2$, $q_d = 5.0 \cdot 1.5 = 7.5 \text{ kN/m}^2$

Deckenhöhe: h = 20 cm

Stützenabmessungen: a = 30 cm, b = 30 cm

Deckenbeton: C30/37

Betonüberdeckung: $c_{unten} = 2.5 cm$

 $c_{oben} = 2.5 cm$

Deckenbewehrung: Grundbewehrung – kreuzweise,

 $\emptyset 12 - 30 \rightarrow a_s = 3,77 \text{ cm}^2/\text{m}$

Zulagen - Längs- und Querrichtung im Stützbereich,

 $7 \ \text{Ø}12\text{-}10 \rightarrow \text{A}_{\text{s}} = 7,92 \ \text{cm}^2$

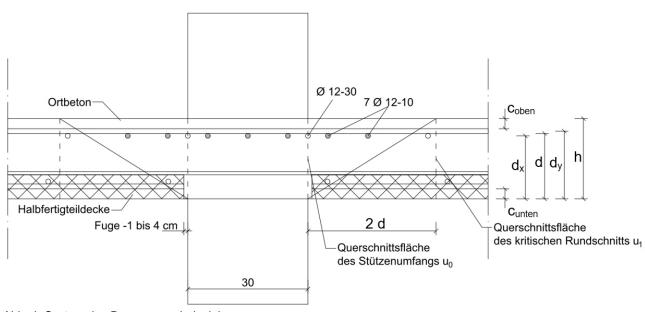


Abb. 4: System des Bemessungsbeispiels

Durchstanznachweis

Bemessungswert der einwirkenden Querkraft

$$v_{Ed} = \frac{\beta \cdot V_{Ed}}{u_1 \cdot d} = \frac{1,1 \cdot 0,405}{3,21 \cdot 0,16} = 0,87 \text{ MN/m}^2$$

$$\beta = 1,1$$

$$V_{Ed} = 0,405 \text{ MN}$$

$$U_{1} = 3,21 \text{ m}$$

$$U_{2} = (a+b) + \pi \cdot 2 \cdot 2 \cdot d = 2 (30 + 30) + \pi \cdot 2 \cdot 2 \cdot 16 = 321 \text{ cm}$$

$$U_{3} = 20 - 2,5 - 0,6 = 16,9 \text{ cm}$$

$$U_{4} = 20 - 2,5 - 1,2 - 0,6 = 15,7 \text{ cm}$$

$$U_{5} = (a+b) + a+b + a+b$$

Durchstanzwiderstand ohne Querkraftbewehrung

$$v_{Rd,c} = C_{Rd,c} \cdot k \cdot \left(100 \cdot \rho_{l} \cdot f_{ck}\right)^{1/3} \ge v_{min}$$

$$v_{Rd,c} = 0,12 \cdot 2 \cdot \left(100 \cdot 0,0063 \cdot 30\right)^{1/3} = 0,64 \text{ MN/m}^{2} \ge 0,54 \text{ MN/m}^{2}$$

$$c_{Rd,c} = 0,12$$

$$c_{Rd,c} = 0,12$$

$$c_{Rd,c} = \frac{2(a+b)}{d} = \frac{2(30+30)}{16} = 7,5 \ge 4,0$$

$$c_{Rd,c} = \frac{0,18}{\gamma_{c}} = \frac{0,18}{\gamma_{c}} = 0,12$$

$$c_{Rd,c} = \frac{0}{\gamma_{c}} = \frac{1+\sqrt{\frac{200}{160}}}{1} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{ck} = 30 \text{ N/mm}^{2}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{rd} = 1+\sqrt{\frac{200}{160}} = 2,12 > 2,0 \text{ mit d in [mm]}$$

$$c_{$$

 $(0.0525 / \gamma_c) \cdot k^{3/2} \cdot f_{ck}^{1/2} = (0.0525 / 1.5) \cdot 2^{3/2} \cdot 30^{1/2} = 0.54 \text{ MN/m}^2$ Vergleich der einwirkenden Querkraft zum Durchstanzwiderstand ohne Bewehrung

$$V_{Ed} = 0.87 \text{ MN/m}^2 > V_{Rd,c} = 0.64 \text{ MN/m}^2$$

→ Durchstanzbewehrung ist erforderlich

Maximale Tragfähigkeit der Durchstanzbewehrung

$$v_{Rd,max} = 2,05 \cdot v_{Rd,c} = 2,05 \cdot 0,64 = 1,31 \text{ MN/m}^2$$
 (5)

 $V_{Rd,c}$ = 0,64MN/m² Bemessungswert des Durchstanzwiderstands des Betons mit $C_{Rd,c}$ = 0,18 / γ_c , gilt auch für Decken mit u_0 / d < 4

 $v_{Ed} = 0.87 \text{ MN/m}^2 < v_{Rd,max} 1.31 \text{ MN/m}^2$

Äußerer Rundschnitt

$$u_{out} = \frac{\beta_{red} \cdot V_{Ed}}{V_{Rd,C} \cdot d} = \frac{1.1 \cdot 0.405}{0.64 \cdot 0.16} = 4.35 \, m \tag{3}$$

 $\beta_{red} = 1,1$

reduzierter Faktor zur Berücksichtigung von Einflüssen aus Lastexzentrizitäten entlang des äußeren Rundschnitts u_{out}

 $V_{Rd,c} = 0.64 MN/m^2$

Bemessungswert des Durchstanzwiderstands des Betons mit $C_{Rd,c} = 0.18 / \gamma_c$

$$r_{out} = \frac{u_{out} - u_0}{2\pi} = \frac{4,35 - 1,20}{2\pi} = 0,50 \text{ m} \triangleq 3,13 \text{ d}$$

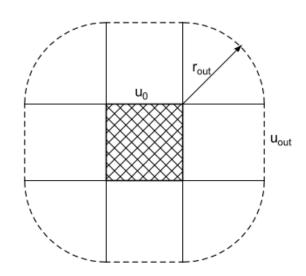


Abb. 5: Stützenumfang uo und äußerer Rundschnitt uout

Äußere Bewehrungsreihe

Die äußere Bewehrungsreihe ist im Abstand von 1,5 d nach innen vom äußeren Rundschnitt festgelegt.

$$r = r_{out} - 1.5 d = 3.13 d - 1.5 d = 1.63 d$$

→ 3 Bewehrungsreihen im Abstand von 0,5 d, 1,25 d und 2,0 d vom Stützenrand sind erforderlich

Bemessung der Durchstanzbewehrung mit L-Blechen

$$\beta \cdot V_{Ed} \le V_{Rd.cs.L-Bleche} \tag{7}$$

$$V_{Rd,cs,L-Bleche} = k_1 \cdot v_{Rd,c} \cdot u_1 \cdot d + k_{2L,mod} \cdot f_{ywd,ef} \cdot \frac{1,5 d}{s_r} \cdot n_{B\ddot{u}gel} \cdot 2 A_{s,B\ddot{u}gel} \cdot n_{Bleche}$$

$$k_1 = 0,85 \qquad Wirkungsbeiwert für die Betontragfähigkeit$$
(8)

 $u_1 = 3,21 \text{ m}$ Rundschnitt im Abstand 2 d vom Stützenrand $n_{B\ddot{u}gel} = 2$ Anzahl der Bügel je L-Blech (1 oder 2 Bügel)

 $k_{2L,mod} = 0,78$ Wirkungsbeiwert für den Verbund für die Rundschnitte bis 2,0 d, $k_{2L,mod} = 1,1-0,55 * (2,05 / (V_{Ed} / V_{Rd,c}))^{-1,3} = 1,1-0,55 * (2,05 / (0,87 / 0,64))^{-1,3} = 0,78$, ab 2,0 d kann der Wirkungsbeiwert für die

äußeren Reihen auf k_{2L} = 1,00 erhöht werden

 $A_{s,B\ddot{u}gel}$ Querschnittsfläche der Bügelbewehrung, gewählt: $d_s = 6 \text{ mm}$

 $= 28,27 \cdot 10^{-6} m^2$

 $f_{ywd,ef}$ $f_{ywd,ef} = 250 + 0.25 d = 250 + 0.25 \cdot 160 = 290 MN/m^2$

 $= 290 \ MN/m^2 \le f_{yd} = 435 \ N/mm^2$

n_{Bleche} Anzahl der L-Bleche im Rundschnitt

 $s_r = 0.75 d$ radialer Abstand der Durchstanzbewehrung, empfohlen $s_r = 0.75 d$

Einsetzen von Gleichung (8) in Gleichung (7) und umstellen nach n_{Bleche} ergibt die erforderliche Blechanzahl:

$$1,10 \cdot 0,405 \le 0,85 \cdot 0,64 \cdot 3,21 \cdot 0,16 + 0,78 \cdot 290 \cdot \frac{1,5 \text{ d}}{0,75 \text{ d}} \cdot 2 \cdot 2 \cdot 28,27 \cdot 10^{-6} \cdot n_{Bleche}$$

$$0,45 \le 0,28 + 0,051 \cdot n_{Bleche}$$

$$n_{Bleche} = \frac{0,45 - 0,28}{0.051} = 3,3$$

für die ersten drei Bewehrungsreihen sind statisch jeweils 4 Bleche mit zwei Bügeln erforderlich

Mindestblechanzahl je Rundschnitt

Folgende tangentiale Abstände müssen beim Verlegen der Bleche berücksichtig werden:

$$a_{t} \leq \begin{cases} \max(140 \text{ mm}; 0, 6 \cdot d \cdot i) & \text{für } i=1 \\ 0, 6 \cdot d \cdot i & \text{für } i \geq 2 \end{cases}$$

$$a_{t,u0,50d} \leq \max(140 \text{mm}; 0, 6 \cdot 160 \cdot 1) = 140 \text{ mm}$$

$$a_{t,u1,25d} \leq 0, 6 \cdot 160 \cdot 2 = 192 \text{ mm}$$

$$a_{t,u2,00d} \leq 0, 6 \cdot 160 \cdot 3 = 288 \text{ mm}$$

Aus dem tangentialen Abschnitt und dem Umfang der jeweiligen Rundschnitte ergibt sich die Mindestblechanzahl je Rundschnitt bei einfach symmetrischer Blechanordnung:

$$n_i = u_i / a_{t,ui}$$

$$n_1 = \frac{u_{0,50d}}{a_{t,u0,50d}} = \frac{170}{14.0} = 12,1 \rightarrow 14 \text{ Bleche}$$

$$n_2 = \frac{u_{1,25d}}{a_{t,u1,25d}} = \frac{246}{19.2} = 12,8 \rightarrow 14 \text{ Bleche}$$

$$n_3 = \frac{u_{2,00d}}{a_{t,u2,00d}} = \frac{321}{28,8} = 11,1 \rightarrow 12 \text{ Bleche}$$

insgesamt werden 40 L-Bleche benötigt

Überprüfung der Anordnung als 6er Stern für die Innenstütze

$$v_{Ed} = 0.87 \text{ MN/m}^2 < 1.46 \cdot v_{Rd,c} = 1.46 \cdot 0.64 = 0.93 \text{ MN/m}^2$$

→ die L-Bleche können als 6er Stern mit 2 Bügeln angeordnet werden insgesamt werden nur 3 · 6 = 18 L-Bleche mit 2 Bügeln benötigt

alternativ

Überprüfung der Anordnung als 8er Stern für die Innenstütze

$$v_{Ed} = 0.87 \; MN/m^2 < 1.70 \cdot v_{Rd,c} = 1.70 \cdot 0.64 = 1.09 \; MN/m^2$$

→ die L-Bleche können als 8er Stern mit nur einem Bügel angeordnet werden

insgesamt werden nur 3 · 8 = 24 L-Bleche mit einem Bügel benötigt

Verbundnachweis in der Fuge im Durchstanzbereich

Bemessungswert der Einwirkung zum Verbundnachweis

$$v_{Ed,1,25d} = \frac{\beta \cdot (V_{Ed} - \Delta V_{Ed,i})}{u_i \cdot z}$$
 (9)
$$v_{Ed,1,25d} = 1,1 \cdot (0,405 - 0,0071) / (2,46 \cdot 0,11) = 1,62 \, MN/m^2$$

$$v_{Ed,2,00d} = 1,1 \cdot (0,405 - 0,0124) / (3,21 \cdot 0,11) = 1,22 \, MN/m^2$$

$$v_{Ed,2,75d} = 1,1 \cdot (0,405 - 0,0191) / (3,96 \cdot 0,11) = 0,97 \, MN/m^2$$

$$\Delta V_{Ed,i} = \frac{\lambda}{2} \sum_{i=1}^{n} \frac{\lambda}{2} \sum_{i=1}$$

Verbundtragfähigkeit

c = 0.40

 $\mu = 0.70$

v = 0.50

$$V_{Rdi} = V_{Rd,c} + V_{Rd,r} + V_{Rd,s,i} \le 0.5 \cdot V \cdot f_{cd} = V_{Rd,max}$$
 (10)

Beiwerte für raue Fugen von Halbfertigteildecken,
raue Fugen werden bei der Herstellung durch automatisierte
Rechen im Fertigteilwerk erzeugt

Maximale Verbundkraftübertragung

$$v_{Rd,max} = 0.5 \cdot v \cdot f_{cd} = 0.5 \cdot 0.5 \cdot 20 = 5.00 \text{ N/mm}^2$$
 $f_{cd} = 20 \text{ N/mm}^2$ $f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c$ Bemessungswert der Betonzugfestigkeit mit $\alpha_{cc} = 1.00 \text{ und } \gamma_c = 1.5$
 $v_{Ed~1.25~d} = 1.62 \text{ N/mm}^2 < v_{Rd~max} = 5.00 \text{ N/mm}^2$

Verbundkraftanteil des Betons

$$v_{Rd,c} = c \cdot f_{ctd}$$
 (11)
$$f_{ctd} = 1,35 \text{ N/mm}^2 \qquad f_{ctd} = \alpha_{ct} \cdot 0,7 \cdot 0,3 \qquad \text{Bemessungswert der Betonzugfestigkeit mit}$$

$$\cdot f_{ck}^{2/3} / \gamma_c \qquad \qquad \alpha_{ct} = 1,00 \text{ und } \gamma_c = 1,5$$

$$v_{Rd,c} = 0,40 \cdot 1,35 = 0,54 \text{ N/mm}^2$$

Verbundkraftanteil infolge einer Normalkraft

$$v_{Rd,r} = \mu \cdot \sigma_n = 0$$

Die geringe Druckspannung rechtwinklig zur Fuge aus Eigengewicht des Ortbetons wird vernachlässigt.

Verbundkraftanteil des Grundgitterträgers

$$v_{Rd,GT} = \rho_{GT} \cdot f_{yd} \cdot (1.2 \cdot \mu \cdot \sin \alpha_{GT} + \cos \alpha_{GT})$$
 (12)

$$v_{Rd,GT} = 0.00062 \cdot 434.8 \cdot (1.2 \cdot 0.7 \cdot \sin 56.3 + \cos 56.3) = 0.34 \text{ N/mm}^2$$

Kennwerte des Grundgitterträgers:

Durchmesser Diagonalstab mit f_{yk} = 500 N/mm ²
Trägerbreite
Trägerhöhe
Abstand der Diagonalstäbe
mittlerer Abstand der Gitterträger
Winkel des Diagonalstabes
tan α_{GT} = Gegenkathete / Ankathete = 120 / 80 = 56,3°, mit
Gegenkathete = h_{GT} = 120 mm und
Ankathete = $(b_{GT}/2)$ – Biegeradien = 80 mm
$\rho_{GT} = 2 \cdot \pi / 4 \cdot d_{s,D,GT}^2 / (b_{GT} \cdot s_{GT}) = 2 \cdot \pi / 4 \cdot 7^2 / (200 \cdot 625)$ = 0,00062

Verbundkraftanteil der L-Bleche

$$v_{Rd,L-Blech} = \frac{A_{L-Blech,i}}{s_{w,i} \cdot u_i} \cdot f_{yd} \cdot (1,2 \cdot \mu \cdot \sin \alpha_{L-Blech} + \cos \alpha_{L-Blech}) \tag{14}$$

$$v_{Rd,L-Blech} = \frac{n_i \cdot 2 \cdot 0,565}{s_{w,i} \cdot u_i} \cdot 434,8 \cdot (1,2 \cdot 0,70 \cdot \sin 90 + \cos 90)$$

$$v_{Rd,L-Blech} = \frac{n_i \cdot 412,7}{s_{w,i} \cdot u_i}$$

$$A_{L-Blech,i} = n_i \cdot n_s \cdot 2 \cdot A_{s,Bügel}$$

$$n_i \qquad Anzahl \ der \ Bleche \ je \ Rundschnitt,$$

$$n_s = 2 \qquad gewählt, \ Anzahl \ der \ Bügel \ je \ Blech$$

$$(1 \ oder \ 2)$$

$$2 \ A_{s,Bügel} = 2 \cdot \pi \cdot 0,3^2 \qquad zweifache \ Querschnittsfläche, \ da$$

$$= 0,565 \ cm^2 \qquad zweischnittiger \ Bügel$$

$$s_{w,i} \qquad Breite \ des \ jeweilligen \ Rundschnitts$$

$$s_w = 1,25 \ d = 1,25 \cdot 16 = 20 \ cm \ erster \ Rundschnitt$$

$$s_w = 0,75 \ d = 0,75 \cdot 16 = 12 \ cm \ alle \ weiteren \ Rundschnitte$$

$$Neigung \ der \ Bügelschenkel \ zur \ Plattenebene$$

Erforderliche Anzahl von L-Blechen zur Verbundkraftübertragung

Das Einsetzen der Verbundtraganteile in Gleichung (10) und die Umstellung nach ni ergibt die erforderliche Blechanzahl des jeweiligen Rundschnitts.

$$v_{Rdi} = v_{Rd,c} + v_{Rd,r} + v_{Rd,GT} + v_{Rd,L-Blech} = v_{Ed,ui}$$

$$v_{Rdi} = 0.54 + 0 + 0.34 + \frac{n_i \cdot 412.7}{s_{w,i} \cdot u_i} = v_{Ed,ui}$$

$$n_i = (v_{Ed,ui} - 0.88) \cdot (s_{w,i} \cdot u_i) / 412.7$$

$$n_{1,25d} = (1.62 - 0.88) \cdot (20 \cdot 246) / 412.7 = 8.82 \rightarrow 9 \text{ L-Bleche}$$

$$n_{2,00d} = (1.22 - 0.88) \cdot (12 \cdot 321) / 412.7 = 3.17 \rightarrow 4 \text{ L-Bleche}$$

$$n_{2,75d} = (0.97 - 0.88) \cdot (12 \cdot 396) / 412.7 = 1.04 \rightarrow 2 \text{ L-Bleche}$$

Erforderliche Bügelhöhe

$$h_{B\ddot{u}gel} = (h - c_{oben} - c_{unten} - 7,5) \cdot 1,06$$

mit h und c in [cm]
 $h_{B\ddot{u}gel} = (20 - 2,5 - 2,5 - 7,5) \cdot 1,06 = 8,0 \text{ cm}$

Einbauverteilung als 6 er Stern mit 2 Bügeln

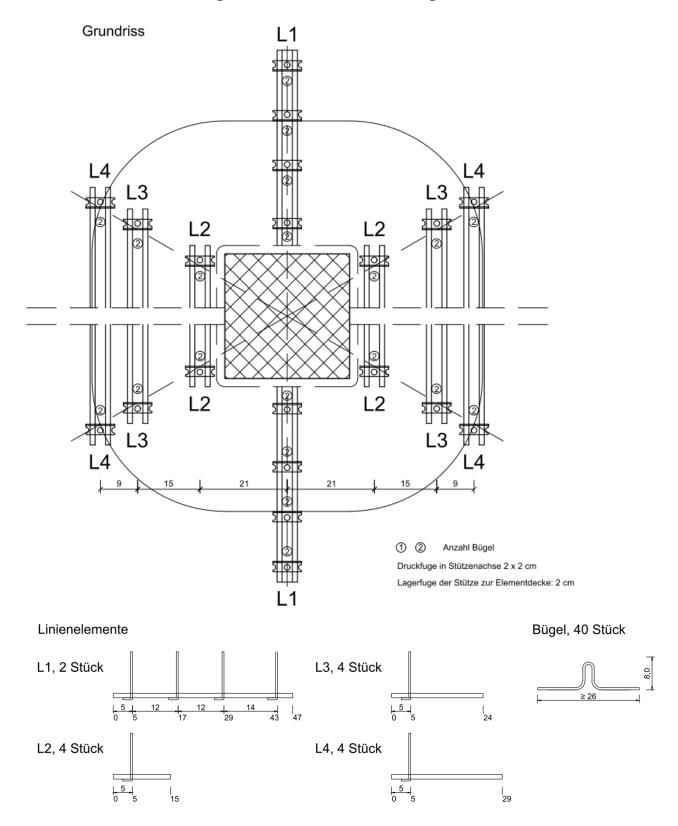


Abb. 6: Vom CLIXS®-Berechnungsprogramm von BETOMAX® systems [5] ermittelte Anordnung der Einbauteile mit verlängerten Längseisen zur vereinfachten Verlegung der Durchstanzbewehrung

Gegenüberstellung der erforderlichen Anzahl von L-Blechen

nach ETA-19/0310 vom 28.Mai 2019:

A	nzahl der	L- Bleche	mit einem l	Bügel
Rund- schnitt	Durch- stanzen	Verbund	Mindest- anzahl	einzubauen
0,50d	10	10	14	14
1,25d	10	18	14	14
2,00d	10	8	12	12
2,75d		4		4

nach ETA-19/0310 vom 21.Februar 2022:

A	ınzahl der	L- Bleche	mit zwei Bi	ügeln
Rund- schnitt	Durch- stanzen	Verbund	6er Stern	einzubauen
0,50d	5	0	6	6
1,25d	5	9	6	6
2,00d	5	4	6	6
2,75d		2		2

nach ETA-19/0310 vom 21.Februar 2022 und den gutachterlichen Stellungnahmen vom August und Oktober 2023:

Д	ınzahl der	L- Bleche	mit zwei Bi	ügeln
Rund- schnitt	Durch- stanzen	Verbund	6er Stern	einzubauen
0,50d	4	9	6	6
1,25d	4	9	6	6
2,00d	4	4	6	6
2,75d		2		2

alternativ:

Aı	nzahl der l	L- Bleche ı	mit einem E	Bügeln
Rund- schnitt	Durch- stanzen	Verbund	8er Stern	einzubauen
0,50d	8	10	10	10
1,25d	8	18	8	8
2,00d	8	8	8	8
2,75d		4		4

Gegenüber den vorherigen Europäischen Technischen Bewertungen aus den Jahr 2019 konnte mit den Weiterentwicklungen [3] und [4], die in die ETA 2022 [2] aufgenommen wurden, die Anzahl der Bleche um mehr als die Hälfte reduziert werden.

Alternativ kann ein 8er Stern mit nur einem Bügel eingebaut werden.

Literaturverzeichnis

- [1] DIN EN 1992-1-1/A1 Eurocode 2, Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken Teil 1-1: Allgemeine Bemessungsregeln für den Hochbau. Deutsche Fassung EN 1992-1-1:2004/A1: 2014
- [2] Europäische Technische Bewertung ETA-19/0310 vom 21. Februar 2022 für die Durchstanzbewehrung, Deutsches Institut für Bautechnik, 2022
- [3] Günther, G. et al.: Untersuchung des Durchstanzwiderstands von Stahlbetondecken infolge von Blechen als Einbauteile, THM-Versuchsberichte 30 A bis 30 O, 2006 bis 2023
- [4] Hegger, J.; Sieburg, C.: Gutachterliche Stellungnahme zu Anpassungen von Anwendungsregeln der CLIXS Durchstanzbewehrung, 2021
- [5] Berechnungsprogramm, www.betomax.com, 2022
- [6] Hegger, J.; Sieburg, C.: Gutachterliche Stellungnahmen zu Anpassungen von Anwendungsregeln der CLIXS Durchstanzbewehrung, 2023

Zusar	nmenste	llung o	der Ex	perim	ente	mit L-	Blech	en im	n Durc	hstan	zberei	ich - Be	messi	ung na	ach Eu	ıropä	isch T	echnis	scher I	Bewe	rtung	ETA-1	9/031	.0 vom 21. Februar 2022 und k2L,mod > 0,55
Körper	Bleche	statische Höhe d	Stütze C	f _{c,cube}	f _{cm} = f _{c,cube} x 0,83	f _{ck} = f _{cm} - 4	ρι	Abstand Stützen- rand zum Radius der Belas tung λ	Rund-		Bügel- anzahl im maßge- benden Rund- schnitt n _{voh,Bü}	Umfang Rund-schnitt Abstand 2,0 d _{u1}	Maß- stabs- faktor k	Bruch- last V _{Test}	V _{Rk,c}	V _{Rk,c,u1}	V _{Test} / V _{Rk,c,u1}	0,85 x V _{Rk,c,u1}	Verbund- faktor k _{2L,mod}	V _{Rk,s}	V _{Test} / V _{Rk,cs}	n _{erf,Bü}	n _{erf,Bü} - n _{vorh,Bü}	Bauweise / Anordnung der Bleche
		[mm]	[mm]	[N/mm²]	[N/mm²]	[MN/m²]	[%]	[-]	[-]	[-]	[-]	[mm]	[mm]	[kN]	[MN/m²]	[KN]	[-]	[kN]	[-]	[kN]	[-]	[-]	[-]	
							L	inienele	mente -	Beweh	rung d	_s = 10 mm	- Büge	lbewehi	rung d	, = 6 mn	n - nach	Anzahi	der Bü	gel pro	Schnitt	aufstei	gend so	ortiert
вх	L3/10-1 Ø6	205	300k	52,9	44,0	40,0	1,53	4,5	12/8/12	8	8	3519	1,99	1210	1,411	1018	1,19	865	0,829	260	1,08	11	3	8er-Stern
сх	L3/10-1 Ø6	205	300k	36,8	30,6	26,6	1,53	4,5	12/8/12	8	8	3519	1,99	1100	1,231	888	1,24	755	0,814	255	1,09	11	3	8er-Stern
во	L5/10-1Ø6 und L3/10- 1Ø6	205	300k	23,0	19,1	15,1	1,53	4,5	20/24/28	20	20	3519	1,99	1280	1,020	735	1,74	625	0,655	514	1,12	26	6	nahezu gleichmäßige Verteilung der Bleche
ВТ	L5/10-1 Ø6	205	300k	28,6	23,8	19,8	1,53	4,5	24/28/8	24	24	3519	1,99	1350	1,116	805	1,68	684	0,676	636	1,02	26	2	geringe Bügelanzahl im 3. Rundschnitt mit 75 % der Fläche ohne Bleche
BV	L3/10-1 Ø6	210	300k	28,4	23,6	19,6	0,73	4,4	24/28/8	24	24	3581	1,98	945	0,865	650	1,45	553	0,748	707	0,75	14	-10	geringe Bügelanzahl im 3. Rundschnitt mit 75 % der Fläche ohne Bleche
cv	L3/10-1 Ø6	210	300k	37,4	31,1	27,1	0,73	4,4	24/28/8	24	24	3581	1,98	1075	0,963	724	1,48	616	0,739	697	0,82	16	-8	geringe Bügelanzahl im 3. Rundschnitt mit 75 % der Fläche ohne Bleche
BW	L3/10-1 Ø6	205	300k	27,8	23,1	19,1	1,53	4,5	24/28/8	24	24	3519	1,99	1070	1,103	795	1,35	676	0,782	735	0,76	13	-11	geringe Bügelanzahl im 3. Rundschnitt mit 75 % der Fläche ohne Bleche
CW	L3/10-1 Ø6	205	300k	37,2	30,9	26,9	1,53	4,5	24/28/8	24	24	3519	1,99	1220	1,236	892	1,37	758	0,775	728	0,82	16	-8	geringe Bügelanzahl im 3. Rundschnitt mit 75 % der Fläche ohne Bleche

							Li	nienelei	mente -	Beweh	rung d	s = 12 mm	- Büge	lbeweh	rung d	_s = 6 mr	n - nach	Anzah	ıl der Bü	gel pro	Schnitt	aufste	igend s	ortiert
EA	L5/12-1 Ø6	130	200k	61,4	51,0	47,0	1,55	7,5	8/14/20	8	8	2262	2,00	760	1,502	442	1,72	376	0,662	195	1,33	16	8	geringe Bügelanzahl im 1. Rundschnitt
BS	L5/12-1 Ø6	205	300k	45,1	37,5	33,5	1,53	4,5	10/20/24	10	10	3519	1,99	1620	1,330	959	1,69	815	0,672	263	1,50	31	21	geringe Bügelanzahl im 1. Rundschnitt
DU	L3/12-1 Ø6	205	300k	35,0	29,1	25,1	1,53	4,5	12/22/20	12	12	3519	1,99	1347	1,208	871	1,55	741	0,719	338	1,25	22	10	geringe Bügelanzahl im 1. Rundschnitt
DU - F	L3/12-1 Ø6	205	300k	35,0	29,1	25,1	1,53	4,5	12/22/20	12	12	3519	1,99	1383	1,208	871	1,59	741	0,706	332	1,29	24	12	geringe Bügelanzahl im 1. Rundschnitt Halbfertigteildecke ohne Druckfugen - Fugenbreite zur Stütze 50 mm
OR	L5/12-2 Ø6	145	300k	48,0	39,9	35,9	1,22	6,4	6/6/6	6	12	2765	2,00	832	1,269	509	1,64	432	0,690	308	1,12	16	4	6er-Stern
ос	L5/12-2 Ø6	215	300k	32,9	27,4	23,4	0,82	4,3	6/6/6	6	12	3644	1,96	1245	0,947	742	1,68	630	0,676	320	1,31	24	12	6er-Stern
ocw	L5/12-2 Ø6	215	300k	42,2	35,1	31,1	0,82	4,3	6/6/6	6	12	3644	1,96	1190	1,041	816	1,46	693	0,746	354	1,14	17	5	6er-Stern
OF	L5/12-2 Ø6	215	300k	53,4	44,4	40,4	1,17	4,8	6/6/6	6	12	3644	1,96	1443	1,279	1002	1,44	851	0,752	357	1,19	20	8	6er-Stern
PA	L5/12-2 Ø6	215	300k	45,4	37,7	33,7	0,82	4,8	6/6/6	6	12	3644	1,96	1248	1,069	838	1,49	712	0,737	349	1,18	19	7	6er-Stern alle Bûgel auf unterer Lage der Biegebewehrung
вм	L5/12-1Ø6 und L3/12- 1Ø6	205	300k	20,0	16,6	12,6	1,53	4,5	14/20/14	14	14	3519	1,99	1055	0,959	692	1,52	588	0,726	398	1,07	17	3	hohe Bügelanzahl im 2. Rundschnitt
EB	L5/12-1 Ø6	135	200k	67,3	55,9	51,9	2,32	7,3	14/18/28	14	14	2325	2,00	996	1,778	558	1,79	474	0,641	331	1,24	23	9	geringe Bügelanzahl im 1. Rundschnitt
OP	L5/12-2 Ø6	215	300k	41,2	34,2	30,2	0,82	4,8	8/8/8	8	16	3644	1,96	1284	1,031	808	1,59	686	0,705	445	1,13	22	6	8er-Stern mit 16 Bügel je Rundschnitt
OPW	L5/12-2 Ø6	215	300k	41,2	34,2	30,2	0,82	4,8	8/8/8	8	16	3644	1,96	1324	1,031	808	1,64	686	0,689	435	1,18	24	8	8er-Stern mit 16 Bügel je Rundschnitt
DQ	L5/12-1 Ø6	205	300k	34,7	28,9	24,9	1,53	4,5	20/22/12	20	20	3519	1,99	1422	1,204	868	1,64	738	0,689	540	1,11	26	6	gringe Bügelanzahl im 3. Rundschnitt Halbfertigteildecke ohne Druckfugen
BN	L5/12-1Ø6 und L3/12- 1Ø6	205	300k	18,0	15,0	11,0	1,53	4,5	22/24/28	22	22	3519	1,99	1440	0,917	661	2,18	562	0,550	474	1,39	41	19	nahezu gleichmäßige Verteilung der Bleche
BP	L5/12-1 Ø6 und L3/12- 1Ø6	205	300k	27,6	23,0	19,0	1,53	4,5	24/28/30	24	24	3519	1,99	1450	1,100	794	1,83	675	0,626	589	1,15	32	8	nahezu gleichmäßige Verteilung der Bleche
BQ	L5/12-1 Ø6	205	300k	28,4	23,6	19,6	1,53	4,5	24/28/8	24	24	3519	1,99	1480	1,112	802	1,85	682	0,620	583	1,17	33	9	geringe Bügelanzahl im 3. Rundschnitt

BU	L3/12-1 Ø6	205	300k	25,6	21,3	17,3	1,53	4,5	24/28/8	24	24	3519	1,99	1185	1,066	769	1,54	654	0,721	677	0,89	19	-5	geringe Bügelanzahl im 3. Rundschnitt
ED	L5/12-1 Ø6	205	300k	42,0	34,9	30,9	1,53	4,5	28/24/16	24	24	3519	1,99	1773	1,294	933	1,90	793	0,602	566	1,30	42	18	geringe Bügelanzahl im 3. Rundschnitt
EE	L5/12-1 Ø6	205	300k	40,7	33,8	29,8	1,53	4,5	28/24/16	24	24	3519	1,99	1819	1,278	922	1,97	784	0,577	542	1,37	46	22	geringe Bügelanzahl im 3. Rundschnitt Halbfertigteildecke mit Fugen auf den Gurtstreifen
FD	L5/12-1 Ø6	205	300k	32,7	27,2	23,2	1,53	4,5	24/24/16	24	24	3519	1,99	1619	1,176	848	1,91	721	0,599	563	1,26	39	15	geringe Bügelanzahl im 3. Rundschnitt
os	L5/12-2 Ø6	145	300k	48,0	39,9	35,9	1,22	6,4	12/12/12	12	24	2765	2,00	998	1,269	509	1,96	432	0,581	519	1,05	27	3	6er-Stern doppelt mit 24 Bügel je Rundschnitt
OD	L5/12-2 Ø6	215	300k	32,5	27,0	23,0	0,82	4,3	12/12/12	12	24	3644	1,96	1280	0,941	737	1,74	627	0,657	623	1,02	26	2	6er-Stern doppelt mit 24 Bügel je Rundschnitt
ODW	L5/12-2 Ø6	215	300k	48,5	40,3	36,3	0,82	4,3	12/12/12	12	24	3644	1,96	1436	1,096	859	1,67	730	0,678	643	1,05	27	3	6er-Stern doppelt mit 24 Bügel je Rundschnitt
OG	L5/12-2 Ø6	215	300k	53,4	44,4	40,4	1,17	4,8	12/12/12	12	24	3644	1,96	1578	1,279	1002	1,58	851	0,709	673	1,04	26	2	6er-Stern doppelt mit 24 Bügel je Rundschnitt
РВ	L5/12-2 Ø6	215	300k	45,4	37,7	33,7	0,82	4,8	12/12/12	12	24	3644	1,96	1374	1,069	838	1,64	712	0,688	653	1,01	25	1	6er-Stern doppelt alle Bügel auf unterer Lage der Biegebewehrung
PK	L5/12-2 Ø6	145	300k	37,4	31,1	27,1	1,22	7,2	14/14/12	14	28	2765	2,00	987	1,155	463	2,13	394	0,550	573	1,02	29	1	8er-Stern mit 28 Bügel je Rundschnitt
FB	L5/12-2 Ø6	140	300k	40,8	33,9	29,9	1,26	6,6	16/16/20	16	32	2702	2,00	1127	1,207	456	2,47	388	0,550	652	1,08	37	5	nahezu gleichmäßige Verteilung der Bleche
GB	L5/12-2 Ø6	140	300k	39,5	32,8	28,8	1,26	7,5	16/16/20	16	32	2702	2,00	952	1,192	451	2,11	383	0,550	652	0,92	28	-4	nahezu gleichmäßige Verteilung der Bleche Halbfertigteildecke - hohe Vorbelastung beim 7 ten Lastwechsel
ОТ	L5/12-2 Ø6	215	300k	37,8	31,4	27,4	0,82	4,8	16/16/16	16	32	3644	1,96	1377	0,998	782	1,76	665	0,648	820	0,93	28	-4	8er-Stern doppelt mit 32 Bügel je Rundschnitt
отw	L5/12-2 Ø6	215	300k	37,8	31,4	27,4	0,82	4,8	16/16/16	16	32	3644	1,96	1412	0,998	782	1,81	665	0,633	801	0,96	30	-2	8er-Stern doppelt mit 32 Bügel je Rundschnitt
PD	L5/12-2 Ø6	215	300k	33,8	28,1	24,1	0,82	4,8	16/16/16	16	32	3644	1,96	1377	0,956	749	1,84	637	0,623	787	0,97	31	-1	8er-Stern doppelt alle Bügel auf unterer Lage der Biegebewehrung
PG	L5/12-2 Ø6	215	300k	47,4	39,4	35,4	0,82	4,8	16/16/16	16	32	3644	1,96	1511	1,087	851	1,77	724	0,644	814	0,98	31	-1	8er-Stern doppelt alle Bügel auf unterer Lage der Biegebewehrung - Bleche unten auf Mattenbewehrung abgelegt
Aa18er	L5/12-2 Ø6	140	300k	62,2	51,7	47,7	1,26	6,6	16/16/20	16	32	2702	2,00	1005	1,411	534	1,88	454	0,607	720	0,86	25	-7	nahezu gleichmäßige Verteilung der Bleche Vergleichsuntersuchungen in Aachen - Versagen außerhalb der Durchstanzbewehrung

NA	L5/12-2 Ø6	205	300k	40,0	33,2	29,2	0,84	4,5	16/24/24	16	32	3519	1,99	1257	1,040	750	1,68	637	0,677	848	0,85	24	-8	geringe Bügelanzahl im 1. Rundschnitt mit teilweise zu großem Abstand zur Stütze - Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze 5mm - Fugen zur Stütze 40 und Gurtstreifen 40mm
NB	L5/12-2 Ø6	205	300k	40,0	33,2	29,2	0,84	4,5	16/20/24	16	32	3519	1,99	1334	1,040	750	1,78	637	0,643	806	0,92	28	-4	geringe Bügelanzahl im 1. Rundschnitt Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze 5mm, Fugen zur Stütze 10 und Gurtstreifen 40mm
NC	L5/12-2 Ø6	200	300k	34,5	28,7	24,7	0,84	4,7	16/20/24	16	32	3456	2,00	995	0,989	684	1,46	581	0,748	933	0,66	15	-17	geringe Bügelanzahl im 1. Rundschnitt mit teilweise zu großem Abstand zur Stütze - Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze 10mm - Fugen zur Stütze 40 und Gurtstreifen 40mm
ND	L5/12-2 Ø6	205	300k	33,0	27,4	23,4	0,84	4,5	24/20/20	20	40	3519	1,99	1234	0,966	696	1,77	592	0,645	1011	0,77	26	-14	nahezu gleichmäßige Verteilung der Bleche - mit teilweise zu großem Absatnd zur Stütze - Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze 5mm - Fugen zur Stütze <10 und Gurtstreifen 40mm
NE	L5/12-2 Ø6	205	300k	30,5	25,4	21,4	0,84	4,5	20/32/36	20	40	3519	1,99	1280	0,937	676	1,89	575	0,604	946	0,84	30	-10	geringe Bügelanzahl im 1. Rundschnitt mit teilweise zu großem Abstand zur Stütze - Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze 5mm - Fugen zur Stütze 40 und Gurtstreifen 40mm
NF	L5/12-2 Ø6	210	300k	30,5	25,4	21,4	0,84	4,4	20/32/36	20	40	3581	1,98	1479	0,932	701	2,11	596	0,550	865	1,01	41	1	geringe Bügelanzahl im 1. Rundschnitt Halbfertigteildecke - Fugen zur Stütze <20 und Gurtstreifen 40mm
NG	L5/12-2 Ø6	190	300k	39,1	32,5	28,5	0,84	4,9	20/24/28	20	40	3330	2,00	1460	1,038	656	2,22	558	0,550	851	1,04	43	3	gleringe Bügelanzahl im 1. Rundschnitt Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze -20mm - Fugen zur Stütze 40 und Gurtstreifen 40mm
EH	L5/12-1 Ø6	205	300k	40,7	33,8	29,8	1,53	4,5	36/48/56	36	36	3519	1,99	1821	1,279	922	1,97	784	0,576	813	1,14	46	10	geringe Bügelanzahl im 1. Rundschnitt
IJ	L5/12-2 Ø6	210	300k	41,6	34,6	30,6	0,84	4,4	20/22/24	20	40	3581	1,98	1595	1,050	790	2,02	671	0,561	882	1,03	42	2	nahezu gleichmäßige Verteilung der Bleche
KM	L5/12-2 Ø6	210	265q	28,6	23,8	19,8	0,84	4,5	22/20/20	20	40	3699	1,98	1480	0,908	706	2,10	600	0,550	865	1,01	41	1	nahezu gleichmäßige Verteilung der Bleche
ко	L5/12-2 Ø7	210	355q	28,6	23,8	19,8	0,84	4,3	24/22/22	22	44	4059	1,98	1757	0,908	774	2,27	658	0,550	952	1,09	51	7	nahezu gleichmäßige Verteilung der Bleche
FE	L5/12-2 Ø6	210	300k	51,5	42,8	38,8	0,84	4,4	24/24/28	24	48	3581	1,98	2010	1,137	855	2,35	727	0,550	1039	1,14	60	12	nahezu gleichmäßige Anordnung der Bleche Halbfertigteildecke mit Fugen auf den Gurtsreifen
GE	L5/12-2 Ø6	210	300k	31,3	26,0	22,0	0,84	5,0	24/24/28	24	48	3581	1,98	1581	0,941	708	2,23	601	0,550	1039	0,96	46	-2	nahezu gleichmäßige Anordnung der Bleche Halbfertigteildecke mit Fugen auf den Gurtsreifen
IF	L5/12-2 Ø6	195	300k	38,0	31,6	27,6	1,81	4,8	24/24/20	24	48	3393	2,00	1940	1,326	877	2,21	746	0,550	1026	1,10	56	8	nahezu gleichmäßige Verteilung der Bleche
IH	L5/12-2 Ø6	195	300k	35,6	29,6	25,6	1,81	4,8	24/24/20	24	48	3393	2,00	1826	1,293	855	2,13	727	0,550	1026	1,04	52	4	nahezu gleichmäßige Verteilung der Bleche
IM	L5/12-2 Ø6	195	265q	40,8	33,9	29,9	1,81	4,9	24/24/20	24	48	3510	2,00	2031	1,362	932	2,18	792	0,550	1026	1,12	58	10	nahezu gleichmäßige Verteilung der Bleche
IFw	L5/12-2 Ø6	195	300k	42,5	35,3	31,3	1,81	4,8	24/24/16	24	48	3393	2,00	2005	1,383	915	2,19	778	0,550	1026	1,11	58	10	geringe Bügelanzahl im 3. Rundschnitt
Ю	L5/12-2 Ø6	195	355q	24,5	20,4	16,4	1,81	4,6	24/32/20	24	48	3870	2,00	1880	1,115	841	2,23	715	0,550	1026	1,08	55	7	größere Bügelanzahl im 2. Rundschnitt

					ĺ																			
IP	L5/12-2 Ø6	195	400k	27,7	23,0	19,0	1,81	4,5	24/24/32	24	48	3707	2,00	1920	1,171	846	2,27	719	0,550	1026	1,10	57	9	größere Bügelanzahl im 3. Rundschnitt
IR	L5/12-2 Ø6	210	400k	34,7	28,9	24,9	0,84	4,2	24/24/32	24	48	3896	1,98	1755	0,980	802	2,19	681	0,550	1039	1,02	50	2	größere Bügelanzahl im 3. Rundschnitt
VK1	L5/12-2 Ø6	210	300k	21,0	17,5	13,5	0,84	4,4	24/24/26	24	48	3581	1,98	1764	0,799	601	2,94	511	0,550	1039	1,14	58	10	nahezu gleichmäßige Verteilung der Bleche mit gleichmäßiger Flächenbelastung
VK2	L5/12-2 Ø6	210	300k	21,0	17,5	13,5	0,84	4,4	24/24/26	24	48	3581	1,98	1572	0,799	601	2,62	511	0,550	1039	1,01	50	2	nahezu gleichmäßige Verteilung der Bleche mit gleichmäßiger Flächenbelastung
ОВ	L5/12-2 Ø6	205	300k	50,6	42,0	38,0	0,86	4,5	24/24/24	24	48	3519	1,99	1826	1,144	825	2,21	701	0,550	1034	1,05	53	5	gleichmäßige Verteilung der Bleche 48 Bügel je Rundschnitt
OBW	L5/12-2 Ø6	205	300k	44,2	36,7	32,7	0,86	4,5	24/24/24	24	48	3519	1,99	1712	1,088	785	2,18	667	0,550	1034	1,01	49	1	gleichmäßige Verteilung der Bleche 48 Bügel je Rundschnitt
ок	L5/12-2 Ø6	210	300k	49,8	41,4	37,4	0,84	4,4	24/24/24	24	48	3581	1,98	1845	1,122	844	2,19	717	0,550	1039	1,05	53	5	zwei Bereiche ohne L-Bleche ca. 25% der Fläche auf einem Gurtstreifen
OKW2	L5/12-2 Ø6	215	300k	43,5	36,2	32,2	0,82	4,3	24/24/24	24	48	3644	1,96	1784	1,053	825	2,16	701	0,550	1043	1,02	50	2	zwei Bereiche ohne Bleche ca. 25% der Fläche auf einem Gurtstreifen
OKW3	L5/12-2 Ø6	215	300k	48,9	40,6	36,6	0,82	4,3	24/24/24	24	48	3644	1,96	1904	1,099	861	2,21	732	0,550	1043	1,07	54	6	zwei Bereiche ohne Bleche ca. 25% der Fläche auf einem Gurtstreifen
OL	L5/12-2 Ø6	215	300k	49,1	40,8	36,8	0,82	4,3	24/24/24	24	48	3644	1,96	1884	1,101	863	2,18	733	0,550	1043	1,06	53	5	vier Bereiche ohne Bleche ca. 50% der Fläche auf beiden Gurtstreifen
OLW	L5/12-2 Ø6	215	300k	48,7	40,5	36,5	0,82	4,3	24/24/24	24	48	3644	1,96	1937	1,098	860	2,25	731	0,550	1043	1,09	56	8	vier Bereiche ohne Bleche ca. 50% der Fläche auf beiden Gurtstreifen
ОМ	L5/12-2 Ø6	215	300k	43,5	36,2	32,2	0,82	4,3	24/24/24	24	48	3644	1,96	1715	1,053	825	2,08	701	0,550	1043	0,98	47	-1	vier Bereiche ohne Bleche ca. 60% der Fläche zwischen den Gurtstreifen
OMW	L5/12-2 Ø6	215	300k	49,7	41,3	37,3	0,82	4,3	24/24/24	24	48	3644	1,96	1800	1,106	866	2,08	736	0,550	1043	1,01	49	1	vier Bereiche ohne Bleche ca. 60% der Fläche zwischen den Gurtstreifen
OMW2	L5/12-2 Ø6	215	300k	48,9	40,6	36,6	0,82	4,3	24/24/24	24	48	3644	1,96	1932	1,099	861	2,24	732	0,550	1043	1,09	56	8	vier Bereiche ohne Bleche ca. 60% der Fläche zwischen den Gurtstreifen
ON	L5/12-2 Ø6	210	300k	55,7	46,3	42,3	0,84	4,4	24/24/24	24	48	3581	1,98	1733	1,169	879	1,97	747	0,578	1090	0,94	44	-4	vier Bereiche ohne Bleche ca. 75% der Fläche, Bleche auf Gurtstreifen verlegt
ONW	L5/12-2 Ø6	215	300k	45,0	37,4	33,4	0,82	4,3	24/24/24	24	48	3644	1,96	1707	1,066	835	2,04	710	0,552	1047	0,97	46	-2	vier Bereiche ohne L-Bleche ca. 75% der Fläche, Bleche auf Gurtstreifen verlegt
OBSA	L5/12-2 Ø6	210	300kS	51,9	43,1	39,1	0,84	4,4	24/24/24	24	48	3581	1,98	1675	1,139	857	1,96	728	0,583	1100	0,92	42	-6	gleichmäßige Verteilung der Bleche kreisrunde Stahlplatte mit Lagerung auf Betonoberfläche - Fuge unzureichend vergossen
OBSAW	L5/12-2 Ø6	215	300kS	43,7	36,3	32,3	0,82	4,3	24/24/24	24	48	3644	1,96	1592	1,054	826	1,93	702	0,592	1123	0,87	39	-9	gleichmäßige Verteilung der Bleche kreisrunde Stahlplatte mit Lagerung auf Betonoberfläche - Fuge unzureichend vergossen

						I		1					I											
OBSI	L5/12-2 Ø6	185	300kS	51,9	43,1	39,1	0,84	5,0	24/24/24	24	48	3267	2,00	1639	1,153	697	2,35	592	0,550	1017	1,02	50	2	gleichmäßige Verteilung der Bleche kreisrunde Stahlplatte auf unterer Bewehrung mit d _{red}
OBSIW	L5/12-2 Ø6	190	300kS	51,4	42,7	38,7	0,82	4,9	24/24/24	24	48	3330	2,00	1657	1,140	721	2,30	613	0,550	1021	1,01	50	2	gleichmäßige Verteilung der Bleche kreisrunde Stahlplatte auf unterer Bewehrung mit d _{red}
OBSIW2	L5/12-2 Ø6	190	300kS	48,7	40,5	36,5	0,82	4,9	24/24/24	24	48	3330	2,00	1727	1,118	707	2,44	601	0,550	1021	1,06	53	5	gleichmäßige Verteilung der Bleche kreisrunde Stahlplatte auf unterer Bewehrung mit d _{red}
NH	L5/12-2 Ø6	190	300k	39,1	32,5	28,5	0,84	4,9	24/24/24	24	48	3330	2,00	1657	1,038	656	2,52	558	0,550	1021	1,05	52	4	gleichmäßigen Verteilung der Bleche Halbfertigteildecke mit d _{red} für Einbindetiefe Stütze -20mm -Fugen zur Stütze 5 und Gurtstreifen 40mm
NI	L5/12-2 Ø6	210	300k	42,0	34,9	30,9	0,84	4,4	24/24/24	24	48	3581	1,98	1650	1,054	792	2,08	674	0,550	1039	0,96	46	-2	gleichmäßigen Verteilung der Bleche Halbfertigteildecke -Fugen Gurtstreifen 40mm
NJ	L5/12-2 Ø6	210	300k	42,0	34,9	30,9	0,84	4,4	24/24/24	24	48	3581	1,98	1543	1,054	792	1,95	674	0,586	1106	0,87	38	-10	gleichmäßigen Verteilung der Bleche mit teilweise zu großem Abstand zur Stütze - Halbfertigteildecke - Fugen Gurtstreifen 40mm
LE	L3/12-1 Ø6	360	300k	44,9	37,3	33,3	0,49	2,6	80/56/52	56	56	5466	1,75	3861	0,687	1351	2,86	1148	0,550	1362	1,54	112	56	größere Bügelanzahl im 1. Rundschnitt
LF	L3/12-1 Ø6	360	300k	45,7	38,0	34,0	0,49	2,6	80/56/52	56	56	5466	1,75	3856	0,691	1361	2,83	1156	0,550	1362	1,53	112	56	größere Bügelanzahl im 1. Rundschnitt
OI	L5/12-2 Ø6	205	300k	47,6	39,6	35,6	0,86	4,5	36/36/36	36	72	3519	1,99	1901	1,119	807	2,35	686	0,550	1551	0,85	57	-15	gleichmäßige Verteilung der Bleche deutlich überbewehrt mit Blechen - außerhalb des Bemessungskonzept - Versagen außerhalb der Durchstanzbewehrung
OA	L5/12-2 Ø6	205	300k	50,4	41,9	37,9	0,86	4,5	36/36/36	36	72	3519	1,99	2034	1,143	824	2,47	701	0,550	1551	0,90	62	-10	gleichmäßige Verteilung der Bleche deutlich überbewehrt mit Blechen - außerhalb des Bemessungskonzept - Versagen außerhalb der Durchstanzbewehrung
OAW	L5/12-2 Ø6	205	300k	44,2	36,7	32,7	0,86	4,5	36/36/36	36	72	3519	1,99	1904	1,088	785	2,43	667	0,550	1551	0,86	58	-14	gleichmäßige Verteilung der Bleche deutlich überbewehrt mit Blechen - außerhalb des Bemessungskonzept - Versagen außerhalb der Durchstanzbewehrung
Aa40er	L5/12-2 Ø6	360	300k	39,8	33,1	29,1	0,49	2,6	40/40/64	40	80	5466	1,75	3450	0,656	1292	2,67	1098	0,550	1945	1,13	97	17	größere Blechanzahl im 3. Rundschnitt Vergleichsuntersuchungen in Aachen
LA	L5/12-2 Ø6	360	300k	57,1	47,4	43,4	0,49	2,6	44/44/36	44	88	5466	1,75	4333	0,750	1476	2,94	1254	0,550	2140	1,28	127	39	nahezu gleichmäßige Verteilung der Bleche
LB	L5/12-2 Ø6	360	380k	45,9	38,1	34,1	0,49	2,5	52/48/36	48	96	5718	1,75	4246	0,749	1541	2,76	1310	0,550	2335	1,17	121	25	geringe Bügelanzahl im 3. Rundschnitt
MA	L5/12-2Ø6	560	300k	27,9	23,2	19,2	0,32	1,7	56/52/38	52	104	7980	1,60	5220	0,437	1952	2,67	1659	0,550	2901	1,14	128	24	geringe Bügelanzahl im 3. Rundschnitt
МВ	L5/12-2 Ø6	560	300k	28,8	24,0	20,0	0,32	1,7	56/52/38	52	104	7980	1,60	5220	0,443	1979	2,64	1682	0,550	2901	1,14	127	23	geringe Bügelanzahl im 3. Rundschnitt
LC	L5/12-2 Ø6 und L3/12-1 Ø6	360	300k	50,8	42,2	38,2	0,98	2,6	60/64/74	60	120	5466	1,75	5119	0,905	1781	2,87	1514	0,550	2918	1,16	149	29	größere Bügelanzahl im 3. Rundschnitt

											Lin	ieneleme	nte - Be	wehrur	ng d _s =	12 mm	- Bügell	oewehr	ung d _s =	8 mm				
PH L5/12-1 08 215 300k 41,9 34,8 30,8 0,82 4,9 8/8/8 8 8 3644 1,96 1247 1,037 813 1,53 691 0,723 406 1,14 11 3 8er Stern OE L5/12-1 08 205 300k 51,8 43,0 39,0 0,86 4,5 24/24/24 24 24 3519 1,99 1700 1,154 832 2,04 707 0,553 924 1,04 26 2 gleichmäßige Verteilung der Bleche															8er Stern									
OE	L5/12-1 Ø8	205	300k	51,8	43,0	39,0	0,86	4,5	24/24/24	24	24	3519	1,99	1700	1,154	832	2,04	707	0,553	924	1,04	26	2	gleichmäßige Verteilung der Bleche
OEW	L5/12-1 Ø8	205	300k	43,7	36,3	32,3	0,86	4,5	24/24/24	24	24	3519	1,99	1599	1,084	782	2,05	664	0,551	923	1,01	25	1	gleichmäßige Verteilung der Bleche
PI	L5/12-1 Ø8	215	300k	41,9	34,8	30,8	0,82	4,9	28/28/28	28	28	3644	1,96	1635	1,037	813	2,01	691	0,563	1109	0,91	24	-4	gleichmäßige Verteilung der Bleche Versagen außerhalb des mit Blechen bewehrten Bereichs
PJ	L5/12-1 Ø8	215	300k	37,4	31,1	27,1	0,82	4,9	28/28/28	28	28	3644	1,96	1666	0,994	779	2,14	662	0,550	1082	0,96	26	-2	gleichmäßige Verteilung der Bleche Wie PI jedoch zusätzlich 28 Bleche im 4. Rundschnitt
	Linienelemente - Bewehrung d _s = 16 mm - Bügelbewehrung d _s = 6 mm																							
IG	Ø6															nahezu gleichmäßige Verteilung der Bleche								
IK	L5/ 16 -2 Ø6 und L3/ 16 -1 Ø7	210	300k	41,6	34,6	30,6	0,84	4,4	20/22/24	20	40	3581	1,98	1728	1,050	790	2,19	671	0,550	865	1,12	49	9	nahezu gleichmäßige Verteilung der Bleche
													Versuc	hskörp	er ohne	Durch	stanzbe	wehrur	ng					
A	-	205	300k	60,1	49,9	45,9	1,53	4,5	0/0/0	-	-	3519	1,99	1253	1,477	1065	1,18	-	-	-	_	-	-	Vergleichskörper ohne Durchstanzbewehrung
В	-	205	300k	58,0	48,2	44,2	1,53	4,5	0/0/0	-	-	3519	1,99	1190	1,458	1052	1,13	-	-	-	-	-	-	Vergleichskörper ohne Durchstanzbewehrung
												,	Vergleio	:hs - Ve	rsuchs	körper ı	mit Dop	pelköpf	en					
0	IDA 2/12/19	205	300k	37,0	30,8	26,8	1,53	4,5	9/9/9			3519	1,99	1380	1,234	890	1,55	-	-	-	-	-	-	Vergleichskörper mit Doppelkopfankern 9er-Stern

Bezeichnung der Durchstanzbewehrung: L-förmiges Blech mit einer Dicke von 3 oder 5 mm / Durchmesser der Bewehrung der Linienelemente 10, 12 oder 16 mm - Bügelanzahl 1 oder 2 mit einem Durchmesser von 6 oder 8 mm

Bezeichnung der Stützen: k = kreisrund, q = quadratisch, kS = kreisrunde Stahlplatte, Bemessung der Bügelanzahl: Bewehrung der Linienelemente wird nicht unterschieden

Zuordnung der Körper: FB30A A,B, O und B-,C-u.D-Reihe; FB30B E-,F-u.G-Reihe; FB30E L-Reihe; FB30F L-Reihe; FB30F L-Reihe; FB30F L-Reihe; FB30D M-Reihe; FB30