
Bachelor Thesis
Software Development Optimization through Integrated Information
Management: Conceptual Framework and Practical Implementation

for the Degree of

Bachelor of Science

submitted to the Department of Mathematics, Natural Sciences, and Computer Science
at the Technische Hochschule Mittelhessen (University of Applied Sciences)

by

Benjamin Wirth

October 2, 2024

Referee: Prof. Dr. Dennis Priefer

Co-Referee: Kevin Linne

Declaration of the use of Generative AI

In accordance with the recommendation of the German Research Foundation (DFG
- Deutsche Forschungsgemeinschaft)1 and that of the journal Theoretical Computer
Science2 I (the author) herby declare the use of generative AI.

During the preparation of this work I used ChatGPT 4 in order to improve readability
and language, only. After using ChatGPT 4, I reviewed and edited the content as
needed and take full responsibility for the content of this thesis.

Declaration of Independence

I hereby declare that I have composed the present work independently and have not
used any sources or aids other than those cited, and that all quotations have been clearly
indicated.

Gießen, on October 2, 2024 Benjamin Wirth

1 DFG Formulates Guidelines for Dealing with Generative Models for Text and Image Cre-
ation: https://www.dfg.de/en/news/news-topics/announcements-proposals/2023/
info-wissenschaft-23-72

2 Declaration of generative AI in scientific writing: https://www.sciencedirect.com/journal/
theoretical-computer-science/publish/guide-for-authors

https://www.dfg.de/en/news/news-topics/announcements-proposals/2023/info-wissenschaft-23-72
https://www.dfg.de/en/news/news-topics/announcements-proposals/2023/info-wissenschaft-23-72
https://www.sciencedirect.com/journal/theoretical-computer-science/publish/guide-for-authors
https://www.sciencedirect.com/journal/theoretical-computer-science/publish/guide-for-authors

This bachelor thesis deals with the conception, prototypical development and introduc-
tion of a software solution that optimizes the software development process through
the central aggregation and visualization of process-related data. In today’s digitalized
world, software is becoming increasingly important, while the development of software is
a complex undertaking. The multitude of tools used and the large amount of information
make it difficult to maintain an overview and make well-founded decisions in a timely
manner.

The developed software addresses this problem by normalizing, aggregating and present-
ing data from different sources in a user-friendly way. The concept is based on extensive
literature research and the analysis of existing software solutions in this area.

As part of the practical implementation at Janitza electronics GmbH, the impact of the
software on the development process is examined. A positive influence on the company’s
development process is identified, particularly with regard to the improved overview and
efficiency. This work thus lays a foundation for further research and development in the
area of process optimization through integrated information management in software
engineering.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goal of this work . 3
1.3 Methodology . 3
1.4 Delimitation . 4
1.5 Structure of the Thesis . 4

2 Background 7
2.1 Software Development . 7

2.1.1 Software Development Methods 7
2.1.2 Software Tools used in Software Development 8

2.2 User-centered design . 10
2.2.1 Steps of User-centered design . 10
2.2.2 Tools used in User-centered design 11

2.3 ISO 25000 . 12
2.3.1 ISO 25010 . 12
2.3.2 ISO 25012 . 14

2.4 Data integration . 16
2.5 Information design . 17
2.6 Change management . 18

2.6.1 Lean Change Management . 18
2.6.2 Introduction types . 19

2.7 Empirical methods in software engineering 20

3 Concept 23
3.1 Understand & describe the context of use 23

3.1.1 Context of use . 24
3.1.2 Core aspects of the software . 24
3.1.3 Examination of existing software solutions 24
3.1.4 Personas . 27
3.1.5 User scenarios . 29

3.2 Specify functional & non-functional requirements 31
3.2.1 Functional Requirements . 31

i

Contents

3.2.2 Non-functional requirements . 32
3.3 Justification for Own Software Development 35

3.3.1 Grafana . 35
3.3.2 Monitoror . 35
3.3.3 Decision . 36

3.4 Software Concept . 36
3.4.1 Conceptual design of the backend application 37
3.4.2 Conceptual design of the frontend application 38

3.5 Change Management Concept . 41
3.5.1 Change Management Strategy 41
3.5.2 Strategic team selection for the software launch 42
3.5.3 Training and Support Plan . 42

3.6 Evaluation Concept . 42

4 Implementation 45
4.1 Janitza electronics GmbH . 45
4.2 Technology Stack . 47

4.2.1 Version Control . 48
4.2.2 Data-Persistence . 48
4.2.3 Backend-Service . 48
4.2.4 Data fetchers . 49
4.2.5 Webhooks . 51
4.2.6 Security . 51
4.2.7 Frontend-Service . 51

4.3 Testing Strategies . 53
4.4 Pipelines . 53
4.5 Documentation . 54
4.6 Software Introduction . 54

4.6.1 Realize the change management strategy 54
4.6.2 Determining the fall-back strategy 55
4.6.3 Creation of required dashboards 55

4.7 Determining the influence of the software on the software development
process . 56

5 Implementation Review 57
5.1 Alignment between Concept and Implementation 57

5.1.1 Review of the functional requirements 57
5.1.2 Review of the non-functional requirements 57

5.2 Questionnaire analysis . 58
5.2.1 Frequency of use . 58
5.2.2 Influence on the software development process 58

ii

Contents

5.2.3 Concrete Effects . 58
5.2.4 Demographic Questions . 58
5.2.5 Open questions . 59
5.2.6 Discussion . 59

6 Conclusion 61
6.1 Summary . 61
6.2 Evaluation . 62
6.3 Further Approaches . 65
6.4 Next Steps . 66
6.5 Outlook . 66

Bibliography 67

List of Figures 71

List of Tables 73

A REST routes 75

B Questionnaire - Impact of the software 79

C Documentation 83
C.1 User Manual . 83
C.2 REST Documentation . 84

D DevMon evaluation 85
D.1 Functional requirements . 85
D.2 Non-functional requirements . 87

E Questionnaire results 91

iii

1 Introduction

This thesis deals with the conception, prototypical development and introduction
of a software solution that is intended to make the software development process
more efficient through the aggregation and central visualization of data. This chapter
presents the motivation for the work, formulates the research questions and explains
the methodological approach to developing and introducing the software and answering
the research questions.

1.1 Motivation

Software development has evolved into a significant, important, and highly complex
process that encompasses many different sub-disciplines, all aiming to create high-
quality software [BP20, p. 6]. These disciplines include various software development
methodologies such as Agile, Scrum, each offering different approaches to project
planning and execution [Sar24]. Additionally, quality management and risk management
play a crucial role in ensuring that the software is not only functional but also reliable and
secure. Other important areas include requirements management, which captures the
needs and expectations of users, and software architecture, which defines the structure
and design of the software [BP20, p. 21-32].

Software has become an essential component of nearly every aspect of daily life, serving
a fundamental role in contemporary society. The market value of software solutions
continues to increase, driven by ongoing digitalization and the growing demand for
technological solutions. Figure 1.1 demonstrates a significant increase over the last
few years. This growth is evident in various sectors, including critical infrastructures
such as energy supply, healthcare [Car16], and transportation [Lov21]. The failure or
malfunction of software in these areas can have severe consequences, highlighting the
importance of high-quality software [MG24].

1

1 Introduction

201
6

201
7

201
8

201
9

202
0

202
1

202
2

202
3

202
4

202
5

202
6

202
7

202
8300

400

500

600

700

800

900

422
454

492
518 532

575
610

659
699

739
778

819
858

Year

R
ev

en
ue

(B
ill

io
n

U
S

$)

Figure 1.1: Worldwide Software Revenue from 2016 to 2028 in Billion US $ [Tav23]

However, as software development processes become more intricate, the amount of
information generated and required to manage these processes has increased. Developers
and project managers are often overwhelmed by the sheer amount of data coming from
various tools and platforms used in different stages of development [Ant12]. These tools
and practices, encompassing project tracking, version control, continuous integration,
testing, code review and many more produce a diverse array of information, including
bug reports, build statuses, feedback and many more. Managing and integrating this
information efficiently is a significant challenge.

The complexity of modern software development means that relevant information
must be timely and accessible to the right stakeholders. Developers need up-to-date
information on code changes, test results, and deployment statuses. Project managers
require insights into progress, resource allocation, and potential risks. Without effective
aggregation and distribution of this information, critical data can be missed, leading to
inefficiencies, miscommunications, and errors [Coi14].

Despite the availability of numerous tools to support the development process, challenges
lie in integrating and managing the overwhelming amount of information from disparate
sources. Inefficient information management can result in delayed decision-making,
overlooked issues, and ultimately, a decline in software quality [And02].

2

1.2 Goal of this work

1.2 Goal of this work

The aim of this thesis is to develop a concept for software that enhances the development
process by consolidating information from various tools and practices utilized throughout
the lifecycle. This consolidated information will be presented in a clear and visually
coherent manner, tailored to the needs of the relevant stakeholders. The software
must be flexible and generic enough to handle different types of information and their
structures, allowing for implementations based on this concept to be adaptable to
various development environments.

The following research questions arise from these objectives:

RQ1 What does a concept for software that consolidates and visualizes information
from various tools in the software development process look like?

RQ2 What considerations and steps are necessary for a successful introduction and
integration of such software within an organization?

RQ3 To what extent can the implementation of the proposed concept improve the
efficiency and effectiveness of the software development process?

1.3 Methodology

This thesis follows a deductive and quantitative research approach. The thesis focuses
on the hypothesis that software that aggregates and processes differently structured
information generated during the software development process offers added value for
software developers and other people involved in the software development process.

At the beginning of the thesis, a basic overview of the relevant topics is provided in order
to create the necessary understanding. In particular, this includes modern methods
in software development, data integration and information design, which form the
thematic core of this thesis. In addition, relevant ISO standards in the field of software
development are explained.

Subsequently, a comprehensive literature review serves as the basis for the software
concept to be developed. Reference software solutions are also identified that can be
assigned to the areas of data integration and information design in order to analyze and
identify possible solutions. The findings from the literature research and the analysis
of the reference software form the basis for the requirements definition of the software,
which is documented using modern software development methods. The resulting
software concept represents the well-founded answer to research question 1.

3

1 Introduction

Since the introduction of the developed software in a company is also the subject of this
thesis, a brief introduction to modern methods of software introduction is given. An
in-depth literature review on this topic forms the basis for the software implementation
concept, which answers research question 2.

The methodology for the quantitative answer to research question 3 is first determined
by a literature review and then developed on this basis.

An exemplary implementation of the software based on the software concept is carried
out at Janitza electronics GmbH. Accordingly, the introduction of the software will
also be based on the developed concept for software introduction. The methodology
previously defined for the third research question will also be carried out there in order
to provide a final answer to the third research question.

1.4 Delimitation

The work focuses exclusively on the software itself, without an in-depth analysis of
the specific data to be displayed in the software or which data could offer the greatest
added value. Due to time constraints, no detailed analysis of the data to be displayed
is carried out. Instead, for the implementation of the software at Janitza electronics
GmbH, the opinions of the employees are used to determine the selection of the data to
be displayed. Further literature research on this aspect will therefore not be carried out.

1.5 Structure of the Thesis

The thesis is structured into a total of six chapters.
The first chapter provides an overview of the topic and situates the work within its
relevant context to enhance understanding of the background. Research questions are
defined here, alongside the methods chosen to address them.
Chapter two provides an overview of the most important topics required to understand
this work. These topics are presented in order to provide a basic understanding, as they
will also subsequently form the core of the software concept, the introduction concept
and the evaluation concept.
The third chapter focuses on elaborating the software concept, including integration
and evaluation strategies aimed at determining whether the software has added value
or improved the software development process in any way.
Chapter four involves implementing these concepts within Janitza electronics GmbH.
Initially, a proof-of-concept is implemented. Subsequently, the software is integrated
into the software development process according to the introduction strategy, and then

4

1.5 Structure of the Thesis

evaluated based on the evaluation framework.
The fifth chapter evaluates the developed software. The first step is to examine the
extent to which the prototype solution implemented at Janitza electronics GmbH meets
the requirements defined in the concept. After that the results of the evaluation of the
software are presented and appropriate conclusions are drawn.
The sixth and final chapter provides a summary of the work carried out. Alternative
approaches and possible future steps are also discussed. A critical reflection of the work,
including an evaluation of the methods used and their implementation, is also provided.
Finally, an outlook is given to round off the work.

5

2 Background

The following chapter provides an overview of the key topics required to understand
this thesis. The focus is on current, modern and widespread practices in software
development as well as on the central topics of data integration and information design,
as these areas are an integral part of the software to be developed. In addition, relevant
ISO standards that are used in software development are presented.

2.1 Software Development

The following section will provide a brief introduction to the topic of software devel-
opment. It will focus on the different development methods and the tools used in the
software development process.

2.1.1 Software Development Methods

Numerous concepts, methods and guidelines for software development have been devel-
oped. These can be divided into different categories: Concepts such as Scrum focus on
project management, while others such as DevOps provide specific recommendations
for action in order to deliver software efficiently and reliably. According to a study
from 2022 [Git22], the DevOps and Scrum methods are used particularly frequently in
software development, which is why they are examined in more detail here.

DevOps

DevOps is an approach that optimizes the collaboration between development, IT
operations and business in order to be able to react more flexible and faster to market
requirements. The central pillars here are corporate culture, automation, lean principles,
measurement and knowledge sharing. The corporate culture, which is characterized by
subsidiarity and leadership by example, plays a central role. Automation is achieved
through CI/CD pipelines, while lean methods promote efficiency and value creation.
Measurable results and a focus on added value increase business benefits. A "blame-free

7

2 Background

culture" enables effective sharing of knowledge and experience [Hal20, p. 5ff].
There is also a particular focus on short feedback loops that enable rapid feedback
to developers. Feedback here refers to the continuous evaluation and improvement
of the software through direct feedback from operations, users, automated tests and,
in particular, the results of automated pipelines. These short feedback loops allow
developers to react quickly to problems and make continuous improvements. This
not only leads to higher software quality, but also to faster adaptation to changing
requirements and thus to increased business benefits [Hal20, p. 13].

Scrum

Scrum is an agile, lightweight approach to project management for software development.
It structures the work in short, manageable units called sprints, which typically last
two to four weeks. The requirements for the product are recorded in a product backlog
as user stories. User stories describe what the product should be able to do from the
customer’s perspective. At the start of a sprint, specific tasks from the product backlog
are transferred to the sprint backlog and implemented during the sprint. Short daily
meetings, the Daily Scrum Meetings, are used to exchange information within the team.
At the end of each sprint, there is an executable product increment or verifiable result.
Important roles in Scrum are the Product Owner, who defines the requirements and
priorities, the Development Team, which builds the product, the Customer, who ensures
that the product meets customer expectations, and the Scrum Master, who guides the
team within the Scrum framework [BP20, p. 31f].

The methods described here, DevOps and Scrum, are just two examples from a wide
range of approaches to software development. In practice, there are many other
methods and concepts that can be used depending on the project requirements and
team dynamics, such as Kanban, Waterfall, V-Modell and many more [BP20, p.23ff].
However, what can often be observed across the board are central concepts such as user
stories and feedback loops, which are integrated into many of these methods [Pre15,
p. 6f][Han17, p. 42ff]. These elements contribute significantly to the successful and
efficient implementation of software development projects by promoting communication
and continuous improvement [Han17, p. 45].

2.1.2 Software Tools used in Software Development

In software development, various software tools play a crucial role in increasing the
efficiency and quality of development processes. Recent statistics from Jetbrains show
the prevalence and use of different software tools in the industry (see Figure 2.1).

8

2.1 Software Development

20 40 60 80 100

Service desk

Static analysis tools

Code review tools

CI/CD tools

Issue tracker

Team collaboration

Source code collaboration tools

Percentage of companies using tools in this category (%)

Figure 2.1: Usage of different tools used in software-development in 2023 [Jet23].

The data shows that most developers use a wide range of specialized tools to optimize
collaboration, project management and quality assurance [Jet23].

9

2 Background

2.2 User-centered design

User-centered design describes an approach to the development of interactive systems
that focuses on the needs and requirements of the user in order to ensure that the
software is as usable and appropriate as possible. This approach is defined in ISO
9241-210, which outlines the principles and practices for implementing user-centered
design in interactive systems [ISO19, p. 5]. Overall, the process can be divided into
several steps, which are shown in Figure 2.2.

Figure 2.2: Illustration showing the whole process of UCD [ISO19, Based on Fig. 1].

2.2.1 Steps of User-centered design

A. Planning the user-centered design process
User-centered design requires comprehensive planning for all phases of the product
life cycle. This includes in particular the conception, design, implementation and
testing phases [ISO19, p. 13f].

1. Understanding and describing the context of use
The first step involves a detailed analysis of the application’s context of use.
This includes a thorough examination of all relevant influencing factors of the
system environment. The aim is to gain a precise understanding of the conditions
under which the system will be operated. A comprehensive description of these

10

2.2 User-centered design

conditions ensures that the end product meets the specific requirements and needs
of the users [ISO19, p. 16f].

2. Specifying the user requirements
In the second step, the specifications of the usage requirements and the definitions
of the requirements are determined on the basis of the information collected in
the first step [ISO19, p. 17f].

3. Designing of solutions
The third step involves the design of solution concepts that fulfill the previously
identified usage requirements. This phase includes the development of prototypes
and design sketches, which are then iteratively tested and evaluated to ensure that
they meet the defined requirements. The design solutions should take into account
both functional and aesthetic aspects and be characterized by user-friendliness
and efficiency [ISO19, p. 18ff].

4. Testing and evaluating the solutions
The fourth step involves the systematic evaluation of the design solutions by
users to check their suitability for use. This is done to ensure that the developed
solutions meet the needs and expectations of the users. The iterative approach
allows problems to be identified and rectified at an early stage, thereby continuously
improving the usability of the end product [ISO19, p. 26ff].

2.2.2 Tools used in User-centered design

In the individual steps of user-centered design, various modern tools can be used to
document specific information [Rog23, sec. 10, sec. 11]:

• Personas
A persona is a fictitious but detailed representation of a typical user or user group
of a product or service. It is based on extensive user research and data analysis
to give the development team a precise and empathetic understanding of the
target group. Personas help to illustrate the needs, behaviors, goals and challenges
of users, which supports the development of user-centric solutions [Rog23, sec.
11.5.1].

• User scenarios
A user scenario is a narrative description of a situation in which a persona achieves
a specific task or goal with a product or service. It serves to describe the context
of use and the persona’s interactions with the system in detail. User scenarios
are closely linked to user stories, as they are based on the specific needs and
goals of the persona and embed the user story in a realistic context of use. The

11

2 Background

combination of persona and user story enables a more comprehensive understanding
of user requirements and application scenarios, which supports the development
of user-friendly and targeted solutions [Rog23, sec. 11.5.2].

• User stories
User stories are a simple informal explanation of a feature from the perspective of
an end user. The role, function and benefit are always specified in more detail.
Example:

As a chef, I would like to set a timer by voice with my voice assistant so that I
don’t have to put my knife down.

User stories are a popular tool due to their user-centered focus. Instead of just
processing tickets, developers focus on solving actual problems. This encourages a
critical and creative approach to the question of which solutions are most effective
in helping users achieve their goals. However, it is important to note that not
all requirements can be defined by user stories. This method is particularly
suitable for requirements that can be directly perceived by people. Non-functional
requirements, on the other hand, cannot be mapped in this way [Rog23, sec. 11.3].

2.3 ISO 25000

The ISO 25000 series of standards, also known as SQuaRE (System and Software Quality
Requirements and Evaluation), is a comprehensive collection of standards dealing with
the quality requirements and evaluation of software and systems. The series of standards
consists of several parts, each of which covers different aspects of software and system
quality [ISO23]. Some of these parts are of direct relevance to this thesis, as they have
an active impact on the concept of the software to be developed. The most important
parts are briefly presented below.

2.3.1 ISO 25010

The ISO 25010 standard, one of the most central elements of the ISO 25000 series,
defines a detailed quality model for software products. This model comprises a total of
eight different main characteristics:

• Functional Suitability
The functional suitability describes the extent to which the software fulfills the
specified tasks and requirements. It also includes the correctness of the results
provided and the appropriateness of the functions for the intended tasks.

12

2.3 ISO 25000

• Reliability
Reliability here refers to the ability of the software to function error-free under
defined conditions. This includes the maturity of the system, i.e. error-free
operation over longer periods of time, availability, fault tolerance in the event of
faults and recoverability after faults.

• Usability
Usability measures how easily and efficiently the software can be learned and used
by certain users. The focus here is particularly on learnability, operability and
protection against user errors, as well as accessibility for different user groups.

• Performance Efficiency
Performance efficiency evaluates the performance of the software in terms of time
behavior and resource usage. The focus is on the response time of the software to
requests and how efficiently system resources such as CPU and memory are used.

• Compatibility
The compatibility refers to the ability of the software to interact with other
software products, i.e. the extent to which it is able to communicate and work
together with other software products. In addition, a certain "coexistence" is
evaluated, e.g. the ability of the software to run alongside other software products
on the same hardware without influencing each other.

• Security
Security describes the protection of the software against unauthorized access
and data manipulation. Important aspects here are confidentiality, integrity, the
traceability of user interaction and the authentication of users.

• Maintainability
Maintainability assesses how easy it is to maintain and further develop the software.
Certain key aspects here are the modularity of software components, reusability,
the ability to diagnose (analyzability), modifiability and testability.

• Portability
Portability measures the ability of the software to be installed and operated on dif-
ferent environments. This also includes the adaptability to different environments
and the installability of the software.

This quality model allows for a systematic and thorough evaluation of a software
product’s quality. Therefore, it is crucial to consider these characteristics throughout
the software development process. All eight points should be factored in during the
planning phase, as this is where important non-functional features are established
[ISO23].

13

2 Background

2.3.2 ISO 25012

The ISO 25012 standard defines a detailed quality model for data used in software.
The standard defines 15 dimensions, which can be divided into two main categories:
inherent1 and system-dependent2 Data-Quality. Some of these dimensions can also be
assigned to both categories, as shown in Figure 2.3.

Figure 2.3: Venn diagram showing blue for inherent data quality dimensions, orange
for system-dependent data quality dimensions, and the overlap for dimensions belonging
to both categories.

• Accuracy
The correspondence of the data with the real world.

• Completeness
The extent to which data has all necessary parts.

• Consistency
The degree to which data is consistent internally and externally. Internally consis-
tent data does not contain contradictions within itself, and externally consistent
data aligns with related data sets.

• Credibility
The extent to which data is regarded as true and credible by users. Credible data
comes from trusted sources and is perceived as reliable.

• Currentness
The extent to which data is up-to-date.

1 Regardless of the use-case
2 Dependent on the context of use

14

2.3 ISO 25000

• Accessibility
The degree to which data is easily retrievable and usable by authorized users.

• Compliance
The extent to which data complies with relevant standards, rules, and regulations.
Compliant data meets all legal and organizational requirements.

• Confidentiality
The degree to which data is protected from unauthorized access. Confidential
data is safeguarded to maintain privacy and security.

• Efficiency
The extent to which data management operations perform optimally with minimal
resources. Efficient data processing minimizes delays and costs.

• Precision
The level of detail in the data. Precise data is specific and granular enough for
the intended purpose.

• Traceability
The extent to which data lineage can be traced to its origins. Traceable data
allows users to track data back to its source.

• Understandability
The degree to which data is comprehensible and interpretable by users. Under-
standable data is clearly defined and easily interpretable.

• Availability
The degree to which data is present and ready for use when needed. Available
data can be accessed without excessive delays.

• Portability
The extent to which data can be transferred from one system or context to another
without loss of quality. Portable data is easily adaptable to different environments.

• Recoverability
The degree to which data can be restored in case of loss or corruption. Recoverable
data is backed up and can be recovered quickly and completely.

The quality model enables a systematic and comprehensive evaluation of data in the
software. Consideration of the dimensions of ISO 25012 is essential, especially for
data-intensive applications whose functionality depends heavily on the data used. ISO
25012 should therefore be taken into account when planning software and presenting
data to the user [ISO08].

15

2 Background

2.4 Data integration

Data integration is a central process in modern data processing that makes it possible
to combine different data sources into a coherent and usable data base [Sta17, p. 23ff].
This integration is of crucial importance as it forms the basis for well-founded decisions,
efficient business processes and progressive analyses [Sta17, p. V].

Before working with data from different data sources, the data must first be standardized.
This can be divided into a total of three steps (see Figure 2.4).

Figure 2.4: Illustration showing the increasing standardization of data [Sta17, Based on
Fig. 4.2].

1. The first step is logical centralization. This involves collecting the data from the
various data sources in a central system. This system then represents a central
access point for all users.

2. The second step, uniform data modeling, is about structurally aligning the data.
This includes standardized concepts, terms and methods to consistently classify
and describe data.

3. The final step, semantic alignment, involves defining the meaning of terms and
data in a standardized way so that everyone involved has the same understanding
of the content used.

Once this standardization of the initially differently structured data has taken place
and a uniform data structure is now available, the next steps in data integration can be
carried out (see Figure 2.5).

16

2.5 Information design

Figure 2.5: Illustration showing the whole process of data integration [Sta17, Based on
Fig. 4.3].

Standardized data with a uniform structure enables the creation of a high-quality data
collection. This standardization facilitates the integration and linking of data, which in
turn offers the opportunity to gain new insights. By linking data, complex relationships
can be uncovered that would not be recognizable if viewed in isolation. This linked data
can be effectively visualized and presented, for example through the use of dashboards
or other forms of presentation that enable a simplified yet informative presentation of
the results [Sta17, p. 23ff].

2.5 Information design

Information design is the process of planning and designing information to make it
understandable, accessible and effectively communicable. It integrates various disciplines
such as graphic design, typography, user experience and data visualization to present
complex data and content in a way that is easy to grasp and interpret. The aim of
information design is to optimize the transfer of information and help users to understand
the information presented efficiently and correctly [Bla17, p. XIf].
Dashboards are a widely used tool for the clear and quick presentation of information
[Few06, p. 12] [Wex17, p. 3ff]. However, when developing such dashboards, several key
aspects must be taken into account to ensure their effectiveness and user-friendliness:

• Personalize Dashboards
Personalization of dashboards increases the relevance of the data presented to
individual users. Tailoring the information to the specific needs and interests of
users encourages their engagement and optimizes the effective use of data [Wex17,
p. 338ff] [Few06, p. 30ff].

17

2 Background

• Clarity
A dashboard must present data clearly and concisely to enable users to quickly and
precisely absorb information. Unclear or cluttered dashboards make data analysis
more difficult. This also includes things such as avoiding useless decoration,
unnecessary variety in the presentation of data or the inconsistent arrangement of
data [Few06, p. 51f, 56f, 58f]

• Usage of colors
The use of color should be targeted and considered. Colors have different visual
and psychological effects; warm colors attract more attention, while cooler colors
are less noticeable. In designs, such as dashboards, colors can be interpreted
as carrying meaning in different areas, which can lead to misunderstandings,
especially for about 10% of men and 1% of women who are colorblind. Therefore,
it is crucial to choose colors that are understandable to all user groups [Few06,
p.61f] [Wex17, p. 390ff].

• Interactivity and drilldown
Interactive dashboards allow users to filter and click to get more detailed infor-
mation and explore specific data. Drill-down capabilities provide the ability to
switch from aggregated to detailed data views, allowing for deeper analysis and a
better understanding of the underlying data. These features promote targeted
and efficient data analysis and support informed decision making [Few06, p. 82f]
[Wex17, p. 44].

2.6 Change management

Change management is a systematic approach to designing and supporting change
processes within organizations. It is primarily concerned with the human aspects of
change and aims to ensure the acceptance and successful completion of change projects
[Hag19, p. 13ff].

2.6.1 Lean Change Management

Lean change management is a contemporary methodology that applies the principles of
lean management to change management in order to enable more efficient and sustainable
adjustments within organizations [Kus22, p. 433].

The aim of lean change management is to optimize change processes through continuous
improvement, transparent communication and close involvement of employees. This
methodology is particularly relevant in software development, an area characterized

18

2.6 Change management

by rapid technological developments and constantly changing customer requirements
[Geo23]. The iterative nature of lean change management allows for flexible and
continuous adjustments, which is of central importance in software development [Lit16].

The essential core aspects of lean change management can be summarized as follows:

• Feedback driven: Feedback from users is continuously collected and actively
integrated into the development process. An open communication channel must
be maintained at all times in order to be able to respond to feedback promptly
[Lit16, p. 35ff][Geo23, p. 33f].

• User centricity: The focus of development is on the needs of end users in order
to increase acceptance of the changes [Lit16, p. 23ff][Geo23, p. 20ff].

• Empowerment of users: Employees and users are involved in the change
process and are given responsibility and authority to identify problems and
propose solutions. This promotes both acceptance and commitment [Lit16, p.
114ff][Geo23, p. 41].

• Iterative planning and implementation: Changes are implemented in short,
manageable cycles. This enables regular evaluation of progress and adaptation of
the strategy based on the knowledge gained. Iterative planning supports a flexible
response to new challenges and changes [Lit16][Geo23, p. 33f][Kus22, p. 434].

The principles of lean change management are particularly suitable for the introduction
of new software in existing processes [Geo23, p. 7].

2.6.2 Introduction types

There are different approaches to introducing changes to processes (and therefore also
the introduction of software, for example). A distinction is made between the big-bang
approach, the step-by-step approach and the parallel approach.

• Big-Bang Approach
With this approach, the change is introduced in a single step, which means that the
entire process is changed for everyone involved at the same time. This approach
carries a significant risk, as unexpected problems or errors can have a major impact
and require immediate problem solving.

• Step-By-Step Approach
This approach implements the change step by step, starting with selected sub-areas
or departments. The introduction takes place in several phases, with each phase
being based on the experiences and findings of the previous phase. This enables

19

2 Background

gradual adaptation and problem identification, which minimizes risks and errors
during the process.

• Parallel Approach
With the parallel approach, the new solution is operated simultaneously with
the existing solution. This usually leads to higher costs, as both systems have
to be maintained at the same time. The advantage of this approach lies in the
possibility of continuous comparison and ensuring an alternative system in the
event of problems with the new solution (Fallback level).

Depending on the type of project, the type of implementation must be planned and
assessed [Kus22, p. 213f].

2.7 Empirical methods in software engineering

Empirical research methods are used to test hypotheses by either proving or disproving
them [Fel19, p. 3, p. 5]. In the field of software engineering, they are used in particular
to analyze facts and measure the effects of certain measures or phenomena using
collected data [Shu08, p. 11f]. Within empirical research, a distinction is made between
quantitative and qualitative methods [Fel19, p. 4].

Qualitative methods aim to understand the “why” of a phenomenon by attempting
to provide deeper explanations for observed events. These approaches focus on non-
numerical data, such as texts, interviews or observations, which are interpreted in their
entirety [Fel19, p. 4f].

In contrast, quantitative methods strive to quantify phenomena through measurable,
numerical data. They allow information to be recorded in the form of numbers and
thus enable comparisons, statistical evaluations and the testing of hypotheses on a
quantitative level. These two methodological approaches are complementary and each
contribute in their own way to the understanding and validation of research results
[Fel19, p. 5].

Three central empirical methods have become established in software engineering:
Surveys, case studies and experiments [Fel19, p. 5]. These are briefly discussed in more
detail below:

• Surveys
A survey is a systematic approach used to gather data about various topics,
including individuals or projects, with the aim of describing, comparing, or
understanding their knowledge, attitudes, and behaviors [Fel19, p. 6].

20

2.7 Empirical methods in software engineering

Typically, a survey is conducted retrospectively after a tool or technique has
already been in use for a certain period of time [Pfl95]. Data is typically gathered
qualitatively or quantitatively through interviews or questionnaires aimed at a
representative sample of the target group. The data obtained is then analyzed in
order to draw descriptive and explanatory conclusions that can be applied to the
population as a whole [Con03, p. 19].

• Case studies
A case study in software development is an investigation in which one or more
real examples of a particular topic are examined more closely. It is an attempt
to understand how the topic works in its real environment, especially when the
boundaries between the topic and its environment are not clear [Fel19, p. 6]. This
type of research is often called “typical research” because it relates to real projects
and thus provides practical insights. Case studies are used to observe projects or
tasks and collect data to track certain things or find out how different factors are
related. Unlike experiments, which are conducted under controlled conditions, a
case study is more about observing how things develop in the real world. The aim
is often to make predictions, for example how many errors might occur in a test,
and statistical methods are used to do this [Con03, p. 18].

• Experiments
Experiments are methods that aim to investigate causal relationships between dif-
ferent variables of a phenomenon [Fel19, p. 6]. As a rule, one or more independent
variables are deliberately manipulated, while other variables are kept constant in
order to measure their influence on the dependent variables. This makes it possible
to test, validate or refute hypotheses. In controlled experiments, the assignment
of subjects to the various treatments is random, whereas in quasi-experiments
this assignment is not random due to the characteristics of the subjects or ob-
jects. Replication experiments are conducted to verify or compare the findings of
previous experiments in varying contexts. [Con03, p. 18].

21

3 Concept

In this chapter, a concept for a software is developed that supports software developers
in their daily workflow through information aggregation and processing and thus aims to
optimize the software development process as a whole. This concept addresses research
question 1.
Furthermore, strategies for the introduction of the software in companies and for the
evaluation of its influence on the software development process are developed, creating
the basis for answering research question 2 and research question 3.

The procedure for developing the software concept is based on the principles of user-
centered design (see section 2.2), which has proven to be successful in practice [Vre02].
First, the context of use is analyzed in order to determine the specific requirements
for the software. Based on these requirements, it is then evaluated whether in-house
development makes sense. If this is the case, a software concept is created that serves as
the basis for implementation. Otherwise, the most suitable available software solution
is identified.
In contrast to classic user-centered design, however, the development of several prototypes
is avoided. Instead, the software concept is deliberately designed to be so generic that it
is still possible to incorporate user feedback and make appropriate adjustments during
the implementation and introduction phase.

3.1 Understand & describe the context of use

In this step, the application context of the software is first analyzed. In addition, a
detailed examination of the core aspects that the software must take into account is
carried out in order to design the functionality and architecture accordingly. Existing
software solutions are also analyzed on this basis in order to identify potential design
approaches.
Based on these findings, personas and user scenarios (see section 2.2.2) are developed in
order to realistically describe and define the context of use. These methods are central
components and are often used in the context of user-centered design and are intended
to help the developer to better understand and include the user and the context.

23

3 Concept

This approach also specifically focuses on the end user in order to ensure a high level of
benefit from the software.

3.1.1 Context of use

The scope of the software to be developed is primarily aimed at modern software
development teams working in dynamic and iterative environments. Current statistics
show that practices such as DevOps and Scrum are becoming increasingly widespread and
are used intensively in these teams [Git22][Hus09][Dig]. Modern software development
is also characterized by the use of a variety of different software tools, which are essential
for overcoming the many challenges (see section 2.1.2).

For the software to be developed, this means that particular attention must be paid
to pipelines for build and deploy processes in the context of DevOps. In addition, the
software must be designed in such a way that it meets the requirements of modern
structured teams working according to Scrum and offers appropriate added value.

3.1.2 Core aspects of the software

As explained in section 3.1.1, numerous software tools are used in modern software
development. This multitude of tools leads to a fragmented information landscape in
which relevant data and status information is scattered across different systems. This
fragmentation makes it difficult for teams to maintain a comprehensive overview of the
current project status, make quick decisions and identify potential problems at an early
stage. The topic of data integration, which deals with this problem, is discussed in
detail in section 2.4. Another key aspect is the information design of the software. It is
not enough to simply aggregate the information; it must also be presented in a form
that meets the various requirements. Details of these requirements are explained in
more detail in section 2.5.

There are therefore two key requirements for the software to be developed: First,
the aspects of data integration must be taken into account, which includes sourcing,
normalizing, linking and simplifying the data. Secondly, the presentation of the data
must be designed in such a way that it is comprehensible, clear and easily accessible.

3.1.3 Examination of existing software solutions

As part of the analysis of reference software, software solutions are identified that are
used in software development and address the topics of data integration and information

24

3.1 Understand & describe the context of use

design. Particular attention is paid to the functional and non-functional features as
well as the solution approaches that these software solutions offer for solving specific
problems. This analysis forms the basis for the subsequent decision as to whether new
software should be developed or an existing software solution should be used.

Grafana

Grafana is an open-source platform for visualizing and monitoring data, designed
especially for the analysis of time series data. It allows users to create and customize
dashboards to display and monitor metrics and logs from various data sources. Grafana
supports a variety of data sources, including Prometheus, InfluxDB, Elasticsearch
and many others, and offers extensive features for creating interactive charts, graphs
and tables [Gra]. The platform is widely used in the IT and DevOps community to
monitor and analyze system and application metrics [Gra23], and enables the integration
of alerting systems for proactive problem identification and resolution. Grafana is
characterized by its flexible, extensible architecture and a user-friendly interface that
enables complex data analysis to be performed efficiently and intuitively.
The flexible structure of Grafana allows a wide variety of information to be visualized,
including data from all common tools frequently used in software development.
The aspects of information design are fully covered by Grafana. The ability to create
individual dashboards and configure them flexibly enables the independent fulfilment of
the criteria “Clarity” and “Usage of Color”. The drill-down functionality can also be
implemented in theory, but sometimes requires some detours. For example, additional
dashboards may have to be created for more detailed information on individual metrics,
which can be accessed by clicking on the metric.
A significant weakness identified in test implementations is that when querying data
from external APIs, the external APIs are requested again for each update of the
dashboard and for each individual user. This quickly leads to the rate limits of the
external APIs being exceeded. To avoid this problem, an additional backend would
be required to handle data retrieval and storage. When implementing this backend,
attention must be paid to the aspects of data integration[Gra].
Figure 3.1 shows an example of a dashboard created in Grafana that illustrates various
options for displaying figures and metrics. The example shown includes pie charts, ring
charts and bar charts in various forms.

25

3 Concept

Figure 3.1: Example of a dashboard in Grafana [Gra].

Monitoror

Monitoror is a simple open source web application that is specially designed to monitor
various tools. These include Jenkins, GitLab and GitHub. The main function of
Monitoror is to monitor pipelines and build jobs, which is a typical use case in the
DevOps area. The information is displayed on clear dashboards consisting of individual
tiles. These tiles display both metrics and the progress of build jobs, providing a clear
and easy-to-understand visualization of the monitored processes.
Monitoror is strongly designed for fixed applications such as Jenkins, GitLab and
GitHub. The flexible addition of new metrics and data sources is therefore not easily
possible. Due to this specific structure, Monitoror is not generic enough to ensure the
display of differently structured information from different software tools in software
development [Ale].
Figure 3.2 shows an example dashboard from Monitoror, which enables immediate
detection of faulty or problematic areas. The color scheme contributes significantly to
highlighting the sources of errors.

26

3.1 Understand & describe the context of use

Figure 3.2: Example of a dashboard in Monitoror [Ale].

3.1.4 Personas

Based on the analysis, personas are developed for better visualization. Attention is paid
to representing all relevant groups of people in a modern software development team.
The personas created therefore represent different user groups that will use the new
software.
Niklas (see figure 3.3) represents a new employee in the company who has relatively
little prior knowledge. The software is particularly important for him as it enables
him to get to know the tools used in the company better. The software should also
help Niklas to plan his day-to-day work more efficiently and quickly become aware of
errors or upcoming tasks. These functions of the software are crucial for shortening the
induction period for new employees and increasing their productivity right from the
start. By using the software in a targeted way, Niklas can understand the operational
procedures and processes more quickly and integrate more seamlessly into the existing
team.

27

3 Concept

Figure 3.3: Representation of the persona "Niklas"

Jonathan (see figure 3.4) represents a long-standing employee with extensive experience.
He strives to integrate the software effectively into his day-to-day work and is generally
open to using it. It is particularly important to him that the software only displays
relevant information that directly affects him. This allows Jonathan to plan and prioritize
his day-to-day work more efficiently and maintain a clear overview of upcoming tasks
and potential challenges. This targeted information processing is essential in order to
maximize the work performance of experienced employees and make the best possible
use of their expertise.

Figure 3.4: Representation of the persona "Jonathan"

Luis (see figure 3.5) represents a very experienced software developer who has only
been working for the company for a short time. For him, it is crucial that the metrics
and information in the software are transparent and comprehensible. A key concern
for Luis is to minimize the overhead in the software development process to ensure a
more effective and efficient way of working. His focus is on high efficiency, which should
also be reflected in the software used. This includes a clear and concise presentation
of relevant data and the provision of tools that optimize the development process and

28

3.1 Understand & describe the context of use

reduce unnecessary complexities. By using such software, Luis can make the most of
his expertise and contribute to increasing productivity within the company.

Figure 3.5: Representation of the persona "Luis"

Brenda (see figure 3.6) represents an experienced developer in a leadership position who
has been with the company for a long time and is familiar with all the tools used. Her
focus is on analyzing aggregated team metrics to better assess where action is needed
within the team or department. For Brenda, it is very important that the software
uses robust and up-to-date technologies and meets high security standards, as it works
with very sensitive data. These requirements are essential to ensure the integrity and
confidentiality of the data. By using such software, Brenda can make informed strategic
decisions and increase the efficiency of the team.

Figure 3.6: Representation of the persona "Brenda"

3.1.5 User scenarios

In the following, user scenarios are developed based on the personas defined in section
3.1.4. These scenarios are intended to illustrate the various application and interaction

29

3 Concept

contexts in which the defined user profiles could interact with the system or product.
The aim is to create a sound basis for further system design and evaluation by taking
into account the specific needs and behaviors of the personas.

Efficient Daily Error Management and Task Organization for Niklas

Niklas opens the software in the morning and logs in. The software immediately shows
him an overview of the current errors for which his team is responsible. The errors are
presented clearly and comprehensibly so that Niklas can quickly see which problems
need to be solved urgently. Thanks to the intuitive user interface, he can work directly
on the problems in a targeted manner. Niklas uses the software to retrieve the necessary
information about the errors and take appropriate action. By processing the problems
efficiently, he is able to resolve them quickly and then move on to other tasks. The
software has helped him to organize his working day in a structured and effective way,
which facilitates his integration into the team and increases his productivity.

Streamlined Code Commit Review and Error Detection for Niklas

Niklas commits source code to a repository and then opens the software to check the
status of his commit. In the software, he can see directly whether his commit has led
to errors. The software aggregates the results from various tools, such as pipelines
and static code analyses, and displays them clearly. As Niklas is not yet familiar with
all the tools used in detail and is still in the familiarization phase, it is particularly
advantageous for him that he does not have to go through every single tool to identify
potential problems. Instead, they immediately receive all relevant results in the software
and can react to any errors in a targeted manner. This integration of the results in a
central view saves him time and makes it easier for him to find his way around, which
speeds up his integration into the team and increases his productivity.

Prioritization of tasks by Brenda based on team metrics

Brenda, as head of department, opens the software and the view of the individual teams
and immediately notices that a large number of complaints and code reviews are open
for a specific team. The aggregated metrics in the software clearly show that these
tasks are currently a high priority. Based on this insight, Brenda recommends that the
team pause work on the new feature for the time being and focus on processing the
open complaints and code reviews. By making this decision, she optimizes resource
allocation and ensures that urgent tasks are prioritized to improve team performance
and minimize potential risks. Using the software allows Brenda to make such strategic

30

3.2 Specify functional & non-functional requirements

decisions efficiently and based on data, increasing the team’s effectiveness while ensuring
the quality of work.

3.2 Specify functional & non-functional requirements

The functional and non-functional requirements are defined on the basis of the analysis
of the context of use. Accordingly, the following aspects form the basis on which the
requirements for the software are built:

• The central aspects of ISO 25000 (see section 2.3)

• The core components of the concept of data integration (see section 2.4)

• The important aspects of information design with regard to the presentation and
creation of dashboards (see section 2.5)

• The findings and proposed solutions of the software analyzed in section 3.1.3

• The personas and user scenarios (see section 3.1.4 and 3.1.5)

3.2.1 Functional Requirements

Functional requirements are now defined and recorded with the help of user stories.

US1 As a user, I want to be able to see all the current information from the tools I use
during software development that concerns me on a dashboard so that I can plan
my day-to-day work better.

US2 As a user, I would like to see all the current buildjobs from my CI/CD Tool, to
quickly identify failed buildjobs.

US3 As a user, I would like to be forwarded directly from each metric to the corre-
sponding place in the tool in order to minimize unnecessary interaction with the
tool.

US4 As a user, I would like to be able to mark a favorite dashboard that opens directly
when the software is called up so that I spend less time starting the software.

US5 As a user, I would like to be able to join a team so that all team-relevant information
is displayed on the team dashboard.

31

3 Concept

US6 As a user, I would like to be able to click on a metric to get all the necessary
information about the individual data.

US7 As a user with personnel responsibility, I would like to be able to view team-
aggregated metrics in order to better plan where there is an acute need for
action.

US8 As an administrator, I would like to be able to freely configure the dashboards for
the users in order to be able to respond to the wishes and requirements of the
users.

US9 As an administrator, I want to be able to add new metrics and data sources
without much effort in order to be able to continuously expand the functionality
of the software.

US10 As an administrator, I would like to be able to define individual thresholds when
adding metrics, above which the metric is displayed as a warning or error in order
to better symbolize the need for action for users.

US11 As an administrator, I would like to be able to determine different algorithms
that are used when calculating the values of metrics in order to better take into
account the different types of metrics.

3.2.2 Non-functional requirements

The non-functional requirements for the software are described and documented in
detail below. These requirements relate to the quality attributes of the system and are
crucial for its successful implementation and use.
As it has not yet been decided whether a ready-made software solution will be imple-
mented or custom software developed, general requirements are highlighted in blue,
requirements for ready-made software in magenta and specific requirements for custom
software are highlighted in orange.

Usability

• Requirement 1 - Comprehensive documentation on the use of the software must
be provided in order to offer users a first point of contact for reference purposes
in the event of uncertainties.

• Requirement 2 - The structure of the dashboards must be in line with the
principles of information design (see section 2.5).

32

3.2 Specify functional & non-functional requirements

Compatibility

• Requirement 3 - The software have to be compatible with all common software
products in the categories listed in section 2.1.1. It must be able to receive and
process data from these software products.

• Requirement 4 - A relational database is to be used, as this enables the
relationships between metrics, teams and users to be optimally represented.

• Requirement 5 - The database structure should be designed in a generic way in
order to take appropriate account of the different structures of the information.

Security

• Requirement 6 - The software have to support OAuth2 to ensure a high level of
security and enable the use of company accounts.

• Requirement 7 - The development team that develops the software should
be large enough to ensure continuous further development of the software, in
particular to be able to fix security gaps and other problems promptly.

• Requirement 8 - When developing the front end, back end and database, modern
and up-to-date frameworks should be used that are actively developed further.

Maintainability

• Requirement 9 - The architecture of the backend should correspond to modern
software architecture patterns in order to ensure a high level of maintainability.

• Requirement 10 - The business logic of the application should have a test
coverage of more than 75%.

• Requirement 11 - A pipeline is to be implemented that enables the direct
deployment process of the application in the live environment. This pipeline
should also include testing and linting of the software.

Functional Suitablity

• Requirement 12 - The software should not contain significantly more functions
than necessary.

33

3 Concept

Credibility

• Requirement 13 - The data must originate directly from the original data source.

Currentness

• Requirement 14 - The data should be updated regularly and automatically, at
least once a day.

Confidentiality

• Requirement 15 - Access to the data should be restricted to authorized users
only.

Traceability

• Requirement 16 - The traceability of the data to the origin of the information
must always be guaranteed. Exceptions are only permitted in special cases.

Understandability

• Requirement 17 - Data should always be provided with detailed and meaningful
descriptions.

Portability

• Requirement 18 - Data must also be made available in JSON format indepen-
dently of the dashboard.

Accessibility

• Requirement 19 - All data must be stored on the same system.

34

3.3 Justification for Own Software Development

3.3 Justification for Own Software Development

This chapter examines whether an existing software solution meets the requirements
or whether an own software development is preferable. For this purpose, the software
solutions presented in section 3.1.3 are analyzed in detail and evaluated based on the
requirements defined in section 3.2. If none of the existing software solutions meet
the requirements, the decision in favor of an own software development is justified in
this chapter. Both the shortcomings of the existing solutions and the advantages and
potential of individual development are presented. The aim is to create a sound basis
for selecting the optimal software strategy.

3.3.1 Grafana

Grafana could in theory be considered as a front end for the application, but it is not
suitable as the sole solution. A separate backend is required to make the application
functional. The main reason for this is the need to retrieve data from external APIs,
which will definitely be the case in the application. This data must be stored persistently
in some form by a separate application. If this is not taken into account and Grafana
is used directly to retrieve data from the external APIs, this would quickly lead to
rate limiting issues as each loading of a dashboard triggers API calls. This also scales
poorly with a larger number of users. In addition, the APIs would have to be queried
continuously to ensure that the data on the dashboard is updated automatically.
Consequently, Grafana could only be considered as a pure front-end, if at all. However,
the question arises as to whether the use of Grafana would not be oversized for this
application. Non-functional requirement 12 states that the software should only contain
the functions that are actually needed. In addition, the use of Grafana would create a
dependency on external software and thus on a third-party company.
As the requirements for the frontend of the software are not overly complex, it is decided
not to use Grafana.

3.3.2 Monitoror

Monitoror is quickly ruled out as a possible software solution because, among other
things, the following requirements are not met:

• User-Story 1, 2, 4, 8: Monitoror does not offer any functionality for the specific
assignment of metrics and information to individual persons or teams. The system
only provides a single dashboard.

35

3 Concept

• User-Story 9: There is no way to add new metrics or new data sources without
a lot of effort and changes to the source code.

• Requirement 7: Monitoror was developed by two developers, with the last
changes to the main branch being made on 26.07.2020 [Ale24]. This indicates a
possible discontinuation of active development and maintenance.

Although Monitoror is not considered a suitable software solution, valuable insights
can be gained for the further course of the work. In particular, the presentation of the
information is extremely simple and clearly laid out. The information is presented in
the form of individual boxes, which correspond to the principles of information design
(see section 2.5).

3.3.3 Decision

As Grafana could only be considered as a front-end solution, but appears oversized
due to its comprehensive range of functions and Monitoror does not sufficiently fulfill
both functional and non-functional requirements, the development of a custom software
solution is being considered.

3.4 Software Concept

The conceptual designs for the front end and back end are developed on the basis of the
requirements (see section 3.2) and the general context of use (see section 3.1). Figure 2.3
shows the pictorial representation of the conceptual software structure, which consists
of the backend (see section 3.4.1) and the frontend (see section 3.4.2).

Figure 3.7: Pictorial representation of the conceptual software structure

36

3.4 Software Concept

3.4.1 Conceptual design of the backend application

The functions of the backend are divided into a total of three main components:

Database

The database has a relational structure, but also supports a generic data structure.
The structure of the database is shown in Figure 3.8. The tables highlighted in cyan
represent the real entities, while the tables highlighted in red represent m:n relationships
(junctiontables). In general, the developed database schema enables the creation of
metrics and the assignment of individual data records, which are assigned to these
metrics, to users, repositories and other relevant entities. The metrics are then assigned
to the corresponding dashboards via junctiontables. It should be noted that, for example,
there are three different junctiontables between the entities "Dashboard" and "Team",
each of which has a different semantic meaning. This differentiation makes it possible,
for example, to distinguish between the display of team member metrics, the metrics of
the team repositories and the build jobs of the team repositories on the dashboards.

Figure 3.8: Entity-Relationship diagram of the database-schema

37

3 Concept

Backend Service

The backend service forms the central unit of the backend and enables general commu-
nication via a REST interface. It receives data and stores it accordingly in the database.
The routes required for communication with the frontend are secured by OAuth2, while
the routes required for communication with the data fetchers are protected by HMACs.
This ensures both the integrity of the data and the authenticity of the sender.
A complete overview of all REST routes, including a brief description and details of the
security measures, can be found in the appendix under point A.

Datafetcher

The data fetchers are independent programs that retrieve data from various sources,
adapt it to the specified structure of the database and then transfer it to the backend
service using suitable REST routes. The data is assigned to the users and repositories
in the backend service.
The separation of the data fetcher from the backend service is necessary in order to
reduce the complexity of the backend service. Integrating the fetcher functionality into
the backend service would require a generic structure that enables access to different
data sources and adapts the data according to the database structure, which would
mean a considerable amount of additional work.
This architecture allows individual data fetchers to be developed independently of
the source code of the backend service, which then send data to the backend service
autonomously.

3.4.2 Conceptual design of the frontend application

Wireframes are created for the front-end concept, which illustrate the basic functions of
the software. Particular emphasis is placed on the principles of information design (see
section 2.5). Dashboards are particularly suitable for displaying the relevant information.
Care should be taken to ensure that these dashboards are clearly structured and not
overloaded. The choice of colors should enable a quick interpretation of the current
metrics, taking into account the challenges of color blindness. In addition, specific
wireframes should be developed for the drill-downs of the metrics to provide detailed
views.

Figure 3.9 illustrates the wireframe for the design of the dashboards. A horizontal
navigation bar is integrated in the upper area, which offers conventional navigation
options within the software. Three buttons are placed directly below this bar, which

38

3.4 Software Concept

make it possible to favor the current dashboard, select another dashboard or hide the
display of build jobs. In the section below, there are two main areas that are intended
for displaying the metrics and the build jobs. Both elements, metrics and build jobs, are
visualized in the form of cards, which are shown in more detail in Figures 3.10 and 3.11.

Figure 3.9: Wireframe of the structure of the dashboards

Figure 3.10 illustrates the structure of a metric card. The name of the metric is displayed
on the left-hand side, while the current value of the metric is displayed on the right-hand
side. When implementing the metric cards, it is essential to consider the principles of
information design (see section 2.5) and to select suitable colors for the metric cards
and for the various status states accordingly.

Figure 3.10: Wireframe of the structure of the metric cards

Figure 3.11 shows the structure of a build job card. The name of the repository in which
the build job is executed, the type of pipeline, the associated branch and a timestamp
are displayed on this card. The build number is displayed in the bottom right-hand
corner, while the status of the build job is displayed in the top right-hand corner. For
the status display in particular, it is important to observe the principles of information
design (see section 2.5) and to use suitable colors to differentiate the statuses.

39

3 Concept

Figure 3.11: Wireframe of the structure of the buildjob card

Figure 3.12 shows the structure of the detailed view of a metric. All metric data is
presented in a table. The threshold values above which a metric is flagged as a warning
or failure are shown above the table to provide additional context for interpreting the
metric value.

Figure 3.12: Wireframe of the structure of the metric details

Figure 3.13 shows the structure for configuring dashboards. There are two buttons
in the top right-hand corner that allow you to either load an existing dashboard for
configuration or create a new one. Seven boxes are displayed in the lower area, each
representing the seven link tables in the database. Each box shows the entries of the
associated table, including repositories, teams, metrics and individual data. There is a
search field above the entries that allows users to search for specific information. By
selecting an entry, the corresponding information is displayed on the dashboard. In
addition, each box has a button in the top right-hand corner that opens a help window
and provides a brief explanation of how to configure the respective box.

40

3.5 Change Management Concept

Figure 3.13: Wireframe of the structure of the dashboard configuration

3.5 Change Management Concept

This section explains the concept of introducing the software in more detail.

3.5.1 Change Management Strategy

Modern software development teams are already familiar with iterative processes (see
sections 2.1.1 and 3.1.1). An iterative approach is therefore also chosen for the in-
troduction of the software. The principles of lean change management (see section
2.6.1) serve as the basis, as these harmonize well with modern development methods.
Particular emphasis is placed on continuous user feedback. The end user’s perspective
was already taken into account during the development of the software concept, and
this user-centered approach is to be continued during the introduction of the software.

The software is introduced step by step in accordance with the step-by-step approach
(see section 2.6.2), with implementation being carried out in teams within the company.
A continuous, open communication channel enables user feedback to be recorded and
integrated promptly. In this way, errors, bugs or necessary adjustments can be identified
and implemented more quickly. The active involvement of users also promotes greater
acceptance of the software, which further supports the gradual introduction process.

41

3 Concept

3.5.2 Strategic team selection for the software launch

As the software is to be introduced iteratively, it is first necessary to determine the
order in which the software will be introduced among the various development teams
(or individuals in the case of smaller companies). It is recommended that teams with
particularly experienced developers and a long period of service are selected first, as this
will allow a higher level of feedback to be generated during implementation. In addition,
care should be taken to ensure that the general acceptance of the software within the
first teams is initially high in order to minimize resistance to the introduction [Kot96,
p. 41ff]. In the further course of the project, the software is gradually introduced to
other teams until finally all participants are actively using the software.

3.5.3 Training and Support Plan

To ensure maximum support during the introduction of the software and to maintain a
high level of user acceptance and satisfaction, even in the event of errors, it is necessary
to provide suitable documentation. This documentation should enable users to look up
the operation of the software. In addition, a continuously open communication channel
should be set up in order to be able to respond promptly to feedback, problems and
suggestions for improvement.

3.6 Evaluation Concept

An empirical quantitative method is used to evaluate the influence of the software on the
software development process and on the way users work (see section 2.7). According
to Pfleeger, questionnaires are particularly suitable in this context, as the software is
introduced in accordance with the implementation concept (see section 3.5) and the
evaluation can be carried out after the software has been in use for a certain period of
time [Pfl95].

By using questionnaires, it is possible to make statements about a larger number of
software developers. According to Conradi, for example, the opinions of 100 software
developers can be inferred if 25 of them have completed a questionnaire on a new process.
The aim of such questionnaires is therefore to provide generalizable results [Con03, p.
29].

In addition, questionnaires are particularly suitable for this work, as they are an efficient
and time-saving method in the context of a time-limited research project [Shu08, p. 23].

42

3.6 Evaluation Concept

When creating the questionnaires, the following aspects are taken into account in
accordance with the recommendations of Groves et al. in order to capture the respondents
precise attitudes [Gro09, p. 362ff]:

• The attitude object is clearly defined.

• Double-barreled questions are avoided.

• If necessary, the intensity of the attitude is measured by separate items.

• Closed questions are used to record attitudes.

• Five- to seven-point response scales are used, with each scale point clearly labeled.

• The scales are started with the least popular end.

The final questionnaire can be found in the appendix under point B.

When conducting the questionnaire, it must be ensured that it is completed anonymously.
This serves to avoid distortions in the answers that could arise if participants deviate
from their actual opinion due to social desirability or fear of negative evaluation [Gro09,
p. 256f].

43

4 Implementation

This chapter covers the exemplary implementation of the software based on the previously
developed concept (see section 3). The software, named "DevMon"—a combination of
the words Development and Monitoring—is implemented and introduced as an example
in the company "Janitza Electronics GmbH".

4.1 Janitza electronics GmbH

Janitza electronics GmbH, based in Lahnau, Mittelhessen, employs around 400 people
and is active in the field of energy management. It offers comprehensive solutions ranging
from measuring devices to software named "GridVis" that enables the configuration
of the measuring devices and evaluates the collected data. The software is currently
developed by around 40 employees in a total of 8 teams.

Buildmonitor

The “Research and Development - Software” department currently uses a self-developed
tool called “Buildmonitor”, which already covers similar functions as the planned new
software. The Buildmonitor is used to collect and display relevant information and pass
it on to the developers.

A major limitation of the Buildmonitor is the fact that the dashboard is neither
configurable nor customizable. This means that all teams have to use the same view,
making it impossible to distribute information to specific people. In addition, new
metrics can only be added by making direct changes to the source code.

Technologically, the Buildmonitor is based on a React application that displays data
from a Firebase application. This data is stored in a Firestore database, whereby the
structure of the database is not generic. Each metric has its own predefined table, which
means that both the source code and the database structure have to be adapted to add
new metrics.

45

4 Implementation

In order to address the challenge of targeted information distribution, the role of the
“Monitor-Pate” was introduced. This task is rotated between the teams as part of
sprints. The main responsibility of the Monitor-Pate is to monitor the Buildmonitor on
a daily basis and to forward relevant information via Microsoft Teams to the responsible
persons or teams.

Figure 4.1 shows the structure of the Buildmonitor, with the various metrics shown in
the upper section and build jobs from Jenkins integrated in the lower section using an
iFrame. Table 4.1 lists the available metrics and provides a brief explanation of each
metric.

Figure 4.1: Example screenshot showing the interface of the "Buildmonitor" (sensitive
data has been made unrecognizable).

46

4.2 Technology Stack

Metric Source Description
GridVis Translations Internal translation

server
Translation progress broken down by
GridVis module

Sonar Criticals SonarCloud SonarCloud issues classified as "Criti-
cal"

Sonar Blockers SonarCloud SonarCloud issues classified as "Block-
ers"

Sonar Bugs SonarCloud SonarCloud issues classified as "Bugs"
Open Code Reviews Fisheye & Crucible Currently open Code-Reviews
Closeable Reviews Fisheye & Crucible Code-Reviews that meet the require-

ments to be closed
Pull Requests Bitbucket Cloud Currently open Pull-Requests
Reklamation Alle Jira Currently open Jira issues that are clas-

sified as complaint
Reklamation Unassigned Jira Currently open Jira issues that are clas-

sified as complaint and got no assignee
Needs Work Tickets Jira Jira issues where information is miss-

ing (e.g. no registered version or no
assigned sprint)

Open Modules Bitbucket Cloud Maven modules that are "open" (ready
to be edited)

Repo1 Free Disk Size Internal server Current free disk space on the Repo1
server

Monitor-Pate Check Bitbucket Cloud A check to see whether the current
monitor-pate has already become ac-
tive today (similar to a dead man’s
switch)

Arch Unit Bitbucket Cloud Architecture check - turns red for ar-
chitecture violations

Java Version Check Bitbucket Cloud Checks whether a newer Java version
is available than the one currently in
use.

Pom Quality Bitbucket Cloud POM quality check - turns red if POM
files with "errors" exist

Table 4.1: Metrics used in "Buildmonitor"

4.2 Technology Stack

This section describes the technological stack of the software in detail. Both functional
and non-functional requirements (see section 3.2) were taken into account.

47

4 Implementation

4.2.1 Version Control

During development, version control is carried out via "Bitbucket Cloud", as this platform
is already established in the company. The "Feature-based Branching Strategy" is used
to ensure a structured and clear development of the software components and individual
features.

4.2.2 Data-Persistence

Based on the non-functional requirements (see section 3.2.2), the implementation of the
database is realized with PostgreSQL. PostgreSQL is selected because it is a relational
database system, as required in Requirement 4. In addition, PostgreSQL supports the
JSONB data format, which enables a flexible and generic data structure in order to
support the different structures of the information, as specified in Requirement 5. These
features make PostgreSQL a suitable choice for implementing the defined requirements.
Moreover, PostgreSQL is the most widely used database system [Sta23][Sta24], which
increases the likelihood that many employees are familiar with it. This widespread use
positively impacts maintainability, as it facilitates easier support and development due
to the larger pool of skilled professionals and resources available.

4.2.3 Backend-Service

The backend is implemented using SpringBoot, which is a suitable choice for several
reasons:

• The structure of SpringBoot encourages the use of the "controller service repository"
architectural pattern, which improves the maintainability of the code and thus
meets Requirement 9.

• The use of JPA1 considerably simplifies the entire communication with the
database.

• The author already has a solid knowledge of the Java programming language.

• As SpringBoot is already in use in the company, this contributes to better main-
tainability of the software, as several employees are able to further develop and
maintain the software after the initial implementation.

1 Jakarta Persistence API - Interface for transferring data to database systems

48

4.2 Technology Stack

• SpringBoot is the most commonly used Java web framework [Jet23][Sta23][Sta24],
which means that new employees are very likely to already have prior knowledge
and can immediately apply their knowledge in practice.

The standard HTTP methods GET, POST and PUT are used for all REST routes.
However, dashboard subscriptions are an exception. Here it is essential that new data
is sent to the open dashboards as soon as it arrives. Server-Sent Events (SSE) are
implemented for this purpose, as they are easy to handle and are well suited to this
requirement.

4.2.4 Data fetchers

The data fetchers are programmed in JavaScript and executed with Node.js. JavaScript
is a logical choice, as it is the most widely used programming language in the world
[Jet23][Sta23][Sta24]. A dedicated data fetcher is created for each data source. These
data fetchers are divided into two categories: those that are executed hourly and those
that are executed daily. The execution of the data fetcher is scheduled via separate
Bitbucket pipelines. The foundation for the data fetchers (or rather the metrics) is
based on the metrics provided by the software "Buildmonitor" that is already used by
Janitza electronics GmbH. In total, the following data fetchers are implemented for the
initial use of the software:

• Daily

– Bitbucket repositories: This fetcher retrieves all repositories from Bit-
bucket and sends the data directly to the backend, where it is either recreated
or updated.

– Team Repository Responsibilities: This fetcher extracts the team re-
sponsibilities for repositories from an online Excel spreadsheet and transmits
this information to the backend.

• Hourly

– FeCru Code Reviews: This fetcher extracts code reviews from the code
review portal FishEye & Crucible. Two metrics are fed: Firstly, the number
of open code reviews and secondly, the number of code reviews that meet
the requirements for closure.

– Jira Issues: This data fetcher extracts data from the Jira ticket management
system and feeds three metrics: The number of all open complaints assigned
to an agent, the number of all open complaints without an agent and the

49

4 Implementation

number of tickets with errors, such as missing sprint assignments or missing
solution versions.

– SonarCloud Issues: This data fetcher retrieves data from the code analysis
tool SonarCloud and records the metrics of the SonarCloud blockers, i.e.
particularly serious errors in the source code. It would also be possible to
record other types of issues if this is considered useful.

– SonarCloud Coverage: This data fetcher also retrieves data from the
SonarCloud code analysis tool and captures the SonarCloud coverage metric
for each repository. Other potential metrics could also be considered, such
as the number of lines of code, code duplications and other relevant metrics.

– GridVis Translation: This data fetcher retrieves data from the company’s
own translation server and records the metrics of the missing translations.

– Bitbucket Cloud Pull-Requests: This data fetcher retrieves data from
Bitbucket Cloud and captures all open pull-requests.

– Deployment server diskspace: No datafetcher is used directly here;
instead, the deployment server reports the available disk space independently
via webhook and sends it to the backend.

The metrics are created and configured in the software on a separate page. Once a
metric has been created in the web interface, it is linked to the data fetcher by storing
the corresponding metric ID in the data fetcher.

Figure 4.2: Example configuration of the "Open Code-Reviews" metric

50

4.2 Technology Stack

4.2.5 Webhooks

Webhooks are set up in all repositories to enable the display of build jobs on the
dashboards. These webhooks automatically forward data from running pipelines and
transmit them to the backend service via the corresponding REST interfaces. In this
way, updates, such as error messages or interruptions to build jobs, are also transmitted
to the service.

4.2.6 Security

Various security mechanisms are implemented within the SpringBoot application:

• All REST routes that are relevant for the front end are protected by OAuth2
(Spring Security), with Bitbucket being used as the OAuth2 consumer. This means
that only logged-in users from the Janitza workgroup have access to these routes
and therefore to the frontend.

• The REST routes that are relevant for the data fetchers and the webhooks are
secured by HMACs. These routes can only be used if a specific secret is used.

• Cross-Origin Resource Sharing (CORS) is implemented and configured to control
how resources on the server are shared with external origins, further enhancing
security by restricting which domains can access the application’s resources.

In addition to the security implemented by Spring Security, an Apache reverse proxy
is used to further restrict access to the frontend and backend. Access is only possible
for devices from the internal Janitza network or via VPN. In addition, the IP range
of Bitbucket Cloud is unlocked to enable the data fetchers to reach the backend and
transmit the data.

4.2.7 Frontend-Service

The frontend is implemented using React, which is a suitable choice for several reasons:

• React is used as the main framework for the "GridVis" software developed within
the company. As a result, many developers already have in-depth prior knowledge,
which facilitates the maintainability of the application and allows more people
to be involved in the further development and maintenance of the software after
initial implementation.

51

4 Implementation

• React is the most commonly used web framework among professional developers
[Sta23][Sta24]. There is therefore a high probability that new employees will
already have prior knowledge of React, which makes it easier for them to quickly
familiarize themselves with the software and contribute productively.

The React Component Library Mantine is used to support front-end development, as it
enables the efficient creation of components and thus saves development time. Mantine
is also available free of charge as an open source solution.
The frontend itself does not contain any business logic, but merely represents the
resources provided by the backend via REST or SSE1.
Figure 4.3 presents the final implementation of a dashboard, using a software development
team as an example. The dashboard clearly visualizes the information relevant to the
team, including open code reviews, tickets that still need to be processed and critical
issues from SonarCloud. In addition, only the build jobs relating to the repositories for
which the team is responsible are displayed in the lower section.

Figure 4.3: Dashboard of a software development team

Figure 4.4 illustrates the detailed view of a metric. It is clear that the display is auto-
matically adapted to the specific details of the metric. The “Status” is not implemented
here as a separate column in the database table, but is stored in the “Details”. Each
piece of information in this view is accessible with a mouse click and leads directly to
the corresponding source.

1 Server Sent Events - The server independently sends data to the “subscribers”

52

4.3 Testing Strategies

Figure 4.4: Detailed view of a metric

4.3 Testing Strategies

As requirement 10 specifies that the business logic of the application must have a test
coverage of at least 75%, particular attention must be paid to this aspect. For this
reason, Test-Driven Development is initially applied during development, in which tests
are first created before the corresponding methods are programmed.
If errors occur during use or development, specific tests are first developed to cover
these errors. The affected methods are then adapted or refactored in order to rectify
the identified problems.
A total of 210 tests are available to check the complete functionality of the implemented
methods.

4.4 Pipelines

According to requirement 11, different pipelines are configured in Bitbucket Cloud to
automate different development and deployment processes:

• One pipeline is executed with every pull request to test the software for errors
and check them by linting.

• Another pipeline is activated when changes are made to the dev branch. Here too,
the software is checked by tests and linting.

• The third pipeline is triggered when changes are made to the main branch. First,
the software is tested and linted. If these tests are successful, the backend and
frontend are built separately and packaged in Docker images. These images

53

4 Implementation

are then uploaded to the company’s own Artifactory server. Finally, a script is
executed on the production server that downloads and starts the new Docker
images. If only changes are made to the data fetchers, the build and deployment
steps for the frontend and backend are skipped.

4.5 Documentation

In accordance with requirement 1, both a user manual and documentation of the REST
interface of the backend are created. The user manual is created in the company’s
internal wiki using Confluence and explains the basic operating elements, the first login,
the metrics and the dashboards. The instructions are illustrated with screenshots. An
exemplary excerpt can be found in the appendix under point C.1.
The documentation of the REST interface is created in accordance with the OpenAPI
specification and provided with SwaggerUI in a web interface. An example screenshot of
this documentation can be found in the appendix under point C.2. The REST interface
is particularly useful for administrators, as it provides a clear overview of the available
routes. In addition, the SwaggerUI is secured by OAuth2, which makes it possible to
try out the routes directly within the SwaggerUI.

4.6 Software Introduction

This section describes the introduction of the software in the company on the basis of
the change management concept developed in section 3.5.

4.6.1 Realize the change management strategy

The first step is to carefully select a suitable team for the initial introduction of the
software. As described in the underlying concept, care is taken to ensure that the
selected team includes both experienced software developers and employees who have
been with the company for some time. This team actively uses the software over a
period of two weeks before other teams are included in the process. The entire process
is carried out in an iterative approach, which is described in detail in the concept.
Maintaining a continuously open communication channel is an essential part of the
change process. This is realized via the “Microsoft Teams” communication platform
used in the company to ensure that feedback and suggestions from employees can be
recorded immediately and without delay.

54

4.6 Software Introduction

4.6.2 Determining the fall-back strategy

During the introduction of the new software, the old Buildmonitor remains in operation.
This ensures that the old Buildmonitor can be accessed at any time in the event of
problems. It also enables the teams to make direct comparisons in order to analyze the
effects of the new software on the development process compared to the previous work
with the old Buildmonitor.

4.6.3 Creation of required dashboards

First, the teams must be created via the web interface (see figure 4.5). A separate
dashboard is then created and configured for each team. This is done via a separate
page for the dashboard configuration (see figure 4.6).

Figure 4.5: Teams can be created, configured and viewed via an extra page

Figure 4.6 illustrates the exemplary configuration of a team dashboard. The individual
tabs on the dashboard setting page represent the corresponding database tables, in
particular the junction tables (see section 3.4.1 - The junction tables are marked in red).

55

4 Implementation

Figure 4.6: Dashboards can be individually configured via an extra page

4.7 Determining the influence of the software on the software
development process

Once the software has been fully implemented and productively introduced in all
software development teams at Janitza electronics GmbH, the extent to which the
software influences the development process will be investigated. The evaluation concept
from section 3.6, which is based on the use of questionnaires, will be implemented to
collect the relevant data.

The questionnaires are provided via Microsoft Forms and allow users to take part in the
survey anonymously and once only. The questions follow exactly the pattern defined in
the concept and were only translated into German.

The evaluation and analysis of the collected data is carried out in section 5.2, where
the results are discussed in detail with regard to the influence of the software on the
development process.

56

5 Implementation Review

This chapter evaluates the implemented “DevMon” software (see chapter 4). First, the
extent to which the software meets the requirements of the originally developed concept
(see chapter 3) is examined. The results of the questionnaires conducted 4.7 are then
analyzed in order to evaluate and discuss the influence of the software on the software
development process.

5.1 Alignment between Concept and Implementation

This section examines the extent to which the implemented “DevMon” software (see
chapter 4) complies with the concept (see chapter 3) and the requirements defined
therein. The functional requirements are checked first, followed by an analysis of the
fulfillment of the non-functional requirements.

5.1.1 Review of the functional requirements

The functional requirements were defined in section 3.2.1 on the basis of user stories.
Each of the user stories is checked with regard to its fulfillment. A complete tabular
representation of the review can be found in the appendix (see section D.1). An expla-
nation with reference to the implementation is provided for each user story. The result
of this analysis shows that the implementation of the “DevMon” software completely
fulfills all functional requirements based on the concept.

5.1.2 Review of the non-functional requirements

The non-functional requirements are documented in section 3.2.2. Each requirement is
checked for fulfillment. A comprehensive tabular overview of the review can be found in
the appendix (see section D.2). An explanation of fulfillment and implementation is
provided for each requirement. The analysis shows that all non-functional requirements
are fulfilled by the “DevMon” software.

57

5 Implementation Review

5.2 Questionnaire analysis

The evaluation of the completed questionnaires is presented in this section. A detailed
overview of the response distributions can be found in the appendix under point E. A
total of 17 employees of Janitza Electronics GmbH took part in the survey.

5.2.1 Frequency of use

The majority of participants stated that they use DevMon several times a week or even
daily. The reason given for less frequent use was that DevMon is not yet fully integrated
into the daily workflow. It was also reported that DevMon is predominantly used
independently; however, use in a team, for example in daily meetings, is not widespread.

5.2.2 Influence on the software development process

The majority of respondents reported that the use of DevMon ensures a better overview
of the development process. In addition, DevMon helps most participants to react more
quickly to problems such as complaints or build errors. The targeted presentation of
information was perceived as a time-saver overall.
The statement that DevMon has improved the way we work was rated positively by
half of the respondents, while the other half remained mostly neutral. Only two people
stated that the use of DevMon had not improved their working methods.

5.2.3 Concrete Effects

When asked whether DevMon had improved work efficiency, more than half of the
respondents answered that there had been a positive change. The remaining participants
stated that efficiency had not changed. No one reported any negative effects. With
regard to communication, it was reported that hardly any changes had taken place
within the teams, but a majority stated that communication with other teams had
improved. This assessment is also confirmed in the free text responses.

5.2.4 Demographic Questions

In the demographic questions, around a third of respondents stated that they had been
with Janitza for less than one year, while another third had been with the company
for more than one year and less than three years. The final third stated that they had

58

5.2 Questionnaire analysis

been with the company for more than three years. All participants worked in the field
of software development, with one person stating that they worked as a student trainee
in software development.

5.2.5 Open questions

In the free text responses, most respondents said that the tool is generally very good
and has great potential. However, it was noted that the full integration of the tool
into everyday working life was still lacking in some areas. Several people also again
positively emphasized the targeted provision of information.

5.2.6 Discussion

Overall, the completed questionnaires indicate that DevMon has a positive influence on
the software development process. The majority of respondents already use the software
on a daily basis and report increased efficiency and a better overview of the development
process.

A comprehensive analysis of the responses shows that the more frequently DevMon is
used, the more positively efficiency and overview are rated. People who have regularly
integrated the tool into their daily work have a more positive effect compared to those
who use it less frequently.

It can be deduced from this that the integration of other important metrics, such as
cyclical tasks, could be useful. It can also be expected that the longer the tool is used,
the better its integration into everyday working life will become, even among less active
users.

However, it should be noted that the questionnaire was only completed by 17 people,
while around 50 people currently use the tool. The reason for this discrepancy remains
unclear and should be taken into account in the further evaluation. It should also be
noted that all respondents work in the field of software development and that the survey
was conducted exclusively at Janitza Electronics GmbH.

59

6 Conclusion

The final chapter summarizes the results of the work. After the final answers to the
research questions, the key findings and the resulting conclusions are presented. In
addition, the next steps are explained and an outlook on possible future developments
is given.

6.1 Summary

The first chapter of the thesis introduces the topic of the thesis and then formulates three
research questions. The first research question examines how a software solution must
be conceptually designed in order to aggregate and visually prepare data from various
tools used in the software development process. The first part of the third chapter
deals with the development of this concept. For this purpose, specific requirements were
developed that served as the basis for the creation of a detailed software concept. This
concept is based on a comprehensive literature research, the analysis of existing software
solutions in this area, as well as widely used and current ISO standards. The subsequent
prototype development of software based on this concept at Janitza electronics GmbH
also went smoothly. The software could be developed without any adjustments to
the original concept, which confirms the practicality and robustness of the concept.
However, it should be noted that the implementation only took place in one company,
which represents a possible external threat to validity. Despite this limitation, the first
research question was successfully answered.

The second research question deals with the introduction of software into a company
and its integration into existing processes. In the middle part of the third chapter, a
concept for software introduction is presented that is based on various approaches from
the relevant literature. The result is an iterative introduction process that involves the
continuous integration of user feedback in order to increase acceptance of the software
during introduction. The successful introduction of the developed software at Janitza
electronics GmbH shows that the proposed introduction model works well in practice.
However, it must also be taken into account here that the implementation only took
place in one company, which indicates a potential external validity risk. Nevertheless,

61

6 Conclusion

the second research question could be clearly answered based on the positive experience
gained during the introduction of the software.

The third research question addresses the influence of the implementation of the created
software concept on the software development process. To answer this question, a
questionnaire was developed based on relevant literature and completed by the end users
of the software. However, as only 17 people had answered the questionnaire by the end
of the thesis processing period, a general statement is only possible to a limited extent.
In addition, the implementation was only carried out in one company, which indicates a
possible threat to external validity. A conclusive answer to the third research question
is therefore only possible to a limited extent within the scope of this work. Another
aspect to consider is the relevance of the metrics displayed on the dashboards. The
usefulness of the software depends to a large extent on the selection and presentation of
these metrics. In order to answer the third research question conclusively, additional
implementations and further investigations into the metrics displayed on dashboards
would be required.

In summary, it can be said that the software concept developed forms a solid basis
for a framework which, with the correct selection and use of suitable metrics, has the
potential to positively influence the software development process and thus improve the
day-to-day work of software developers.

6.2 Evaluation

In this section, the methodology, potential threats to validity and the results of the
individual research questions and hypotheses are comprehensively evaluated.

RQ1: What does a concept for software that consolidates and visualizes information
from various tools in the software development process look like?

To answer the research question, a combined methodology of literature research and the
analysis of existing software solutions was chosen. Scientific publications, conference
papers, statistics, reference books and ISO standards were consulted as part of the
literature research. Access to relevant literature proved to be largely unproblematic.
However, analyzing existing software solutions proved to be more challenging, as only
a few comparable approaches could be identified. Grafana and Monitoror were used
as examples, but their applicability to the specific problem area was limited. In
retrospect, it can be seen that the software analysis had less influence on the concept
development, while the literature research played a central role. In particular, the

62

6.2 Evaluation

data integration paradigms described in the literature provided a solid basis for the
design. The application of and orientation towards practical approaches such as user-
centered design and corresponding methods (personas, user scenarios, user stories) also
significantly supported the development of the concept.

The subsequent implementation of the software solution based on the developed concept
ran without any major challenges, which underlines the quality of the concept. A
possible external threat to validity could arise from the implementation of the software
in a specific company context. However, this is considered to be low, as the concept is
based on generally recognized scientific principles and standards.

RQ2: What considerations and steps are necessary for a successful introduction and
integration of such software within an organization?

To answer the research question, a literature review was chosen as the central method-
ology, which focused on change management in the context of software engineering.
Reference books, scientific papers and statistical data were used to develop a well-
founded concept for the introduction of the software. The implemented software was
then implemented and introduced at Janitza electronics GmbH in accordance with this
concept, which confirmed the practical effectiveness of the concept.

The implementation was carried out step by step, gradually integrating the software
into the teams and continuously collecting feedback via open communication channels.
This iterative approach, initially targeting a team with high adoption, allowed for early
improvements and optimization of the software before the ever-widening rollout. As
a result, teams with initially lower adoption showed increased usage and a positive
attitude towards the software as they benefited from the improvements.

During the implementation, minor adjustments were made based on feedback, such
as the graphical adaptation of various elements or the arrangement of metrics. The
effectiveness of this iterative, feedback-oriented approach underlines its consistency with
the principles of lean change management.

A potential external threat to validity could be that the software has only been introduced
in one company so far. However, this risk is considered to be low, as the implementation
concept is based on generally applicable specialist literature and current statistical data.

63

6 Conclusion

RQ3: To what extent can the implementation of the proposed concept improve the
efficiency and effectiveness of the software development process?

In order to answer research question 3, a theoretical concept first had to be developed
to serve as the basis for the analysis. The originally defined deductive and quantitative
approach of the thesis restricted the choice of suitable methods to empirical-quantitative
procedures. In order to determine an adequate methodology, a comprehensive literature
search was carried out, focusing in particular on reference books and scientific articles
on the subject of empirical research in the field of software engineering. Based on this
research, the questionnaire survey method was selected to answer the research question.
The questionnaire was designed with current best practices in mind.

However, it must be noted that it is difficult to provide a universally valid answer to the
research question. The data collected originates exclusively from users within Janitza
electronics GmbH, which means that the results can only be applied to this company.
This poses a potential threat to external validity. In addition, the chosen methodology
of the questionnaire survey could be critically questioned. Questionnaires are susceptible
to various bias effects, such as social desirability, where participants tend to give more
socially acceptable answers [Pod03]. Alternatively, other methods, such as in-depth
interviews or detailed observation of work processes before and after the introduction
of the software, could also have been considered. However, the limited time frame of
the work must also be taken into account, which would have made a more in-depth
investigation using more time-consuming methods such as interviews or observations
more difficult.

Another critical point is that the usefulness of the software depends heavily on the
metrics displayed on the dashboards. As the selection and definition of these metrics
was only a marginal topic of the study, further research is required in this area in order
to conclusively clarify the third research question.

To summarize, there is a potential threat to both internal and external validity when
answering this research question. Accordingly, there is no real final answer to this
research question.

Hypothesis: Software that aggregates and processes differently structured information
generated during the software development process offers added value for software
developers and other people involved in the software development process

Three research questions were answered to test the hypothesis. The basis for proving
the hypothesis is the developed software concept as well as its implementation and the
successful introduction of the software in a company. The hypothesis that software that

64

6.3 Further Approaches

normalizes, aggregates and visualizes information from the software development process
can positively influence this process is supported to a certain extent by the results of the
questionnaire from the third research question. The answers of the respondents indicate
that a positive influence on the software development process is possible through the
use of the software.

Here too, however, it should be noted that the influence of the software on the software
development process depends to a large extent on the selection of information and
metrics displayed on the dashboards. The quality and relevance of this data is crucial
for the effectiveness of the software. Similar to the third research question, there is also
a potential external validity threat, as both the implementation of the software concept
and the subsequent survey were conducted exclusively in one company. Furthermore, it
could be discussed whether the third research question was necessary or whether the
hypothesis could be sufficiently proven without it.

Finally, similar to research question 3, the hypothesis can at least be proven for the
company Janitza electronics GmbH.

6.3 Further Approaches

This work has taken the approach of continuously updating and replacing data so that
the dashboards always display the most up-to-date data. Another potentially valuable
approach could be to capture and store time-based data. By implementing a time-based
database, such as Prometheus, metrics could be monitored over longer periods of time.
This would make it possible to recognize trends and react to long-term developments in
the data.

The introduction of time-based data storage could not only improve the monitoring of
metrics, but also support deeper analysis. For example, correlations between different
metrics could be examined to identify patterns and relationships. Such information
would be valuable for proactive measures and strategic decisions, for example to optimize
development processes or identify potential problems at an early stage.

In addition, historical data analysis could help to fine-tune thresholds or algorithms
used to evaluate metrics. In the long term, this approach would provide a broader
and deeper insight into the performance and dynamics of systems, which could have a
positive impact on both the efficiency and quality of software development.

The focus of the software would therefore shift slightly. Instead of collecting information
centrally and forwarding it to the responsible developers, the focus would be more on
monitoring metrics, performance and long-term trends. Nevertheless, an implementation

65

6 Conclusion

that supports both approaches - centralized information forwarding and continuous
metrics monitoring - in a single software solution would be feasible. This would
enable holistic and flexible use that meets both current and long-term requirements for
monitoring and analyzing development processes.

6.4 Next Steps

Based on the generic concept for a software solution developed in this thesis, further
investigation could focus on which metrics and information should be displayed on the
dashboards in order to optimally increase the efficiency of work processes. It would
be important to consider factors such as team structure, team size and the specific
areas of responsibility of the teams. Such an analysis would help to optimize the use
of the software in a targeted manner and adapt the presentation of information more
closely to the individual requirements of the teams. In this context, best practices and
potential anti-patterns should also be included in the analysis. These further steps
provide a conclusive answer to research question 3 and thus comprehensively confirm
the hypothesis.

Another critical next step would be the development of a comprehensive backup strategy,
as the software handles a large volume of data, and any system failure could have severe
consequences. A well-designed backup plan would ensure data security and minimize
the risk of data loss, further enhancing the reliability and robustness of the software
solution.

6.5 Outlook

This work lays the foundation for software that supports the software development
process through data integration and information design by preparing and visualizing
relevant information in a targeted and centralized manner for software developers. The
software concept presented here offers a generic solution that can be flexibly adapted to
different use cases and tools used in the software development process.

For future research, it would be useful to investigate in detail which specific information
and metrics should be displayed on the dashboards in order to achieve a significant
improvement in the efficiency and quality of work of the developers.

66

Bibliography

[Ale] Alexandre Demode und Jean-Sébastien Didierlaurent: Monitoror —
Unified monitoring wallboard, URL https://monitoror.com

[Ale24] Alexandre Demode: Monitoror-Releases (2024), URL https://github.

com/monitoror/monitoror, original-date: 2019-01-11T14:59:26Z
[And02] Anderson, Kenneth M.; Sherba, Susanne A. und Lepthien, William V.:

Towards large-scale information integration, in: Proceedings of the 24th
international conference on Software engineering - ICSE ’02, ACM Press,
Orlando, Florida, S. 524, URL http://portal.acm.org/citation.

cfm?doid=581339.581403

[Ant12] Antunes, Bruno; Cordeiro, Joel und Gomes, Paulo: Context Mod-
eling and Context Transition Detection in Software Development:, in:
Proceedings of the 7th International Conference on Software Paradigm
Trends, SciTePress - Science and and Technology Publications, Rome, Italy,
S. 477–484, URL http://www.scitepress.org/DigitalLibrary/

Link.aspx?doi=10.5220/0004084204770484

[Bla17] Black, Alison H.; Luna, Paul; Lund, Ole; Walker, Sue; Lund, Ole und
Spiekermann, Erik (Herausgeber): Information design: research and
practice, Routledge, London New York (2017)

[BP20] Brandt-Pook, Hans und Kollmeier, Rainer: Softwareentwicklung kompakt
und verständlich: Wie Softwaresysteme entstehen, Springer Fachmedien
Wiesbaden, Wiesbaden (2020), URL http://link.springer.com/10.

1007/978-3-658-30631-1

[Car16] Carroll, Noel und Richardson, Ita: Software-as-a-Medical Device:
demystifying Connected Health regulations. Journal of Systems
and Information Technology (2016), Bd. 18(2): S. 186–215, URL
https://www.emerald.com/insight/content/doi/10.1108/

JSIT-07-2015-0061/full/html

[Coi14] Cois, Constantine Aaron; Yankel, Joseph und Connell, Anne: Mod-
ern DevOps: Optimizing software development through effective sys-
tem interactions, in: 2014 IEEE International Professional Communi-
cation Conference (IPCC), IEEE, Pittsburgh, PA, S. 1–7, URL https:

//ieeexplore.ieee.org/document/7020388/

67

https://monitoror.com
https://github.com/monitoror/monitoror
https://github.com/monitoror/monitoror
http://portal.acm.org/citation.cfm?doid=581339.581403
http://portal.acm.org/citation.cfm?doid=581339.581403
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0004084204770484
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0004084204770484
http://link.springer.com/10.1007/978-3-658-30631-1
http://link.springer.com/10.1007/978-3-658-30631-1
https://www.emerald.com/insight/content/doi/10.1108/JSIT-07-2015-0061/full/html
https://www.emerald.com/insight/content/doi/10.1108/JSIT-07-2015-0061/full/html
https://ieeexplore.ieee.org/document/7020388/
https://ieeexplore.ieee.org/document/7020388/

Bibliography

[Con03] Conradi, Reidar (Herausgeber): Empirical methods and studies in software
engineering: experiences from ESERNET, Nr. 2765 in Lecture notes in
computer science, Springer, Berlin Heidelberg (2003)

[Dig] Digital.ai: 17th State of Agile Report, URL https:

//digital.ai/resource-center/analyst-reports/

state-of-agile-report/

[Fel19] Felderer, Michael und Travassos, Guilherme Horta: The Evolution of
Empirical Methods in Software Engineering (2019), URL https://arxiv.

org/abs/1912.11512, version Number: 4
[Few06] Few, Stephen: Information dashboard design: the effective visual communica-

tion of data, O’Reilly & Associates, Sebastopol, CA, 1. aufl Aufl. (2006)
[Geo23] Georg, Stefan; Paegle, Lelde und Heiler, Chris: Anwendung des Lean-

Change-Management-Approachs in Zeiten der digitalen Transformation:
Ein praxisorientiertes Vorgehensmodell, essentials, Springer Fachmedien
Wiesbaden, Wiesbaden (2023), URL https://link.springer.com/

10.1007/978-3-658-42266-0

[Git22] GitLab: The GitLab 2022 Global DevSecOps Survey Thriving in an insecure
world (2022), URL https://learn.gitlab.com/dev-survey-22/

2022-devsecops-report

[Gra] Grafana Labs: Grafana OSS and Enterprise | Grafana documentation, URL
https://grafana.com/docs/grafana/latest/

[Gra23] Grafana Labs: Observability Survey 2023 (2023), URL https://grafana.

com/observability-survey-2023/

[Gro09] Groves, Robert M.; Fowler, Floyd J.; Couper, Mick; Lepkowski, James M.;
Singer, Eleanor und Tourangeau, Roger: Survey methodology, Wiley
series in survey methodology, Wiley, Hoboken, NJ, second edition Aufl.
(2009)

[Hag19] Hagemann, Michael: Changemanagement für Praktiker: Mindset, Infrastruc-
ture, Capability, Schäffer-Poeschel Verlag, Stuttgart [Freiburg], 1. auflage
Aufl. (2019)

[Hal20] Halstenberg, Jürgen; Pfitzinger, Bernd und Jestädt, Thomas: De-
vOps: Ein Überblick, essentials, Springer Fachmedien Wiesbaden,
Wiesbaden (2020), URL https://link.springer.com/10.1007/

978-3-658-31405-7

[Han17] Hanschke, Inge: Agile in der Unternehmenspraxis, Springer Fachmedien
Wiesbaden, Wiesbaden (2017), URL http://link.springer.com/10.

1007/978-3-658-19158-0

[Hus09] Hussain, Zahid; Slany, Wolfgang und Holzinger, Andreas: Current State
of Agile User-Centered Design: A Survey, in: David Hutchison; Takeo
Kanade; Josef Kittler; Jon M. Kleinberg; Friedemann Mattern; John C.
Mitchell; Moni Naor; Oscar Nierstrasz; C. Pandu Rangan; Bernhard Steffen;

68

https://digital.ai/resource-center/analyst-reports/state-of-agile-report/
https://digital.ai/resource-center/analyst-reports/state-of-agile-report/
https://digital.ai/resource-center/analyst-reports/state-of-agile-report/
https://arxiv.org/abs/1912.11512
https://arxiv.org/abs/1912.11512
https://link.springer.com/10.1007/978-3-658-42266-0
https://link.springer.com/10.1007/978-3-658-42266-0
https://learn.gitlab.com/dev-survey-22/2022-devsecops-report
https://learn.gitlab.com/dev-survey-22/2022-devsecops-report
https://grafana.com/docs/grafana/latest/
https://grafana.com/observability-survey-2023/
https://grafana.com/observability-survey-2023/
https://link.springer.com/10.1007/978-3-658-31405-7
https://link.springer.com/10.1007/978-3-658-31405-7
http://link.springer.com/10.1007/978-3-658-19158-0
http://link.springer.com/10.1007/978-3-658-19158-0

Bibliography

Madhu Sudan; Demetri Terzopoulos; Doug Tygar; Moshe Y. Vardi; Gerhard
Weikum; Andreas Holzinger und Klaus Miesenberger (Herausgeber) HCI
and Usability for e-Inclusion, Bd. 5889, Springer Berlin Heidelberg, Berlin,
Heidelberg (2009), S. 416–427, URL http://link.springer.com/10.

1007/978-3-642-10308-7_30, series Title: Lecture Notes in Computer
Science

[ISO08] ISO/IEC JTC 1/SC 7: Software engineering — Software product Quality
Requirements and Evaluation (SQuaRE) — Data quality model (2008),
URL https://www.iso.org/obp/ui/#iso:std:iso-iec:25012:

ed-1:v1:en

[ISO19] ISO/TC 159/SC 4: Ergonomics of human-system interaction — Part 210:
Human-centred design for interactive systems (2019), URL https://www.

iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en:

[ISO23] ISO/IEC JTC 1/SC 7: Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — Product qual-
ity model (2023), URL https://www.iso.org/obp/ui/#iso:std:

iso-iec:25010:ed-2:v1:en

[Jet23] Jetbrains: The State of Developer Ecosystem 2023 (2023), URL https:

//www.jetbrains.com/lp/devecosystem-2023/

[Kot96] Kotter, John P.: Leading change, Harvard Business School Press, Boston,
Mass (1996)

[Kus22] Kuster, Jürg; Bachmann, Christian; Hubmann, Mike; Lippmann, Robert
und Schneider, Patrick: Handbuch Projektmanagement: Agil – Klassisch –
Hybrid, Springer Berlin Heidelberg, Berlin, Heidelberg (2022), URL https:

//link.springer.com/10.1007/978-3-662-65473-6

[Lit16] Little, Jason: Lean Change Management: innovative Ansätze für das Manage-
ment organisationaler Veränderung, Happy Melly Express, Erscheinungsort
nicht ermittelbar (2016)

[Lov21] Lovelace, Robin: Open source tools for geographic analysis in transport plan-
ning. Journal of Geographical Systems (2021), Bd. 23(4): S. 547–578, URL
https://link.springer.com/10.1007/s10109-020-00342-2

[MG24] Mejía-Granda, Carlos M.; Fernández-Alemán, José L.; Carrillo-de
Gea, Juan M. und García-Berná, José A.: Security vulnerabilities
in healthcare: an analysis of medical devices and software. Medical &
Biological Engineering & Computing (2024), Bd. 62(1): S. 257–273, URL
https://link.springer.com/10.1007/s11517-023-02912-0

[Pfl95] Pfleeger, Shari Lawrence: Experimental design and analysis in software
engineering. Annals of Software Engineering (1995), Bd. 1(1): S. 219–253,
URL http://link.springer.com/10.1007/BF02249052

[Pod03] Podsakoff, Philip M.; MacKenzie, Scott B.; Lee, Jeong-Yeon und Pod-
sakoff, Nathan P.: Common method biases in behavioral research:

69

http://link.springer.com/10.1007/978-3-642-10308-7_30
http://link.springer.com/10.1007/978-3-642-10308-7_30
https://www.iso.org/obp/ui/#iso:std:iso-iec:25012:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25012:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en:
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en:
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-2:v1:en
https://www.jetbrains.com/lp/devecosystem-2023/
https://www.jetbrains.com/lp/devecosystem-2023/
https://link.springer.com/10.1007/978-3-662-65473-6
https://link.springer.com/10.1007/978-3-662-65473-6
https://link.springer.com/10.1007/s10109-020-00342-2
https://link.springer.com/10.1007/s11517-023-02912-0
http://link.springer.com/10.1007/BF02249052

Bibliography

A critical review of the literature and recommended remedies. Jour-
nal of Applied Psychology (2003), Bd. 88(5): S. 879–903, URL https:

//doi.apa.org/doi/10.1037/0021-9010.88.5.879

[Pre15] Preußig, Jörg: Agiles Projektmanagement: Scrum, Use Cases, Task Boards
& Co, Nr. 270 in TaschenGuide, Haufe-Lexware, Freiburg, 1. auflage Aufl.
(2015)

[Rog23] Rogers, Yvonne; Sharp, Helen und Preece, Jenny: Interaction design:
beyond human-computer interaction, Wiley, Hoboken, New Jersey, sixth
edition Aufl. (2023)

[Sar24] Sarkar, Tiyas; Moharana, Bhimasen; Rakhra, Manik und Cheema,
Gagandeep Singh: Comparative Analysis of Empirical Research on Ag-
ile Software Development Approaches, in: 2024 11th International Con-
ference on Reliability, Infocom Technologies and Optimization (Trends
and Future Directions) (ICRITO), IEEE, Noida, India, S. 1–6, URL
https://ieeexplore.ieee.org/document/10522134/

[Shu08] Shull, Forrest; Singer, Janice und Sjøberg, Dag I. K.: Guide to advanced
empirical software engineering, Springer, London? (2008)

[Sta17] Stahl, Reinhold und Staab, Patricia: Die Vermessung des Datenuniversums,
Springer Berlin Heidelberg, Berlin, Heidelberg (2017), URL http://link.

springer.com/10.1007/978-3-662-54738-0

[Sta23] Stack Overflow: Stack Overflow Survey 2023 (2023), URL https://

survey.stackoverflow.co/2023/

[Sta24] Stack Overflow: Stack Overflow Survey 2024 (2024), URL https://

survey.stackoverflow.co/2024/

[Tav23] Tavva, Naveen und Nguyen, Phuong-Ha: Market Insights Report
(2023), URL https://de.statista.com/statistik/studie/id/

102693/dokument/software-report/

[Vre02] Vredenburg, Karel; Mao, Ji-Ye; Smith, Paul W. und Carey, Tom: A survey
of user-centered design practice, in: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM, Minneapolis Minnesota
USA, S. 471–478, URL https://dl.acm.org/doi/10.1145/503376.

503460

[Wex17] Wexler, Steve; Shaffer, Jeffrey und Cotgreave, Andy: The big book of
dashboards: visualizing your data using real-world business scenarios, Wiley,
Hoboken, New Jersey (2017)

70

https://doi.apa.org/doi/10.1037/0021-9010.88.5.879
https://doi.apa.org/doi/10.1037/0021-9010.88.5.879
https://ieeexplore.ieee.org/document/10522134/
http://link.springer.com/10.1007/978-3-662-54738-0
http://link.springer.com/10.1007/978-3-662-54738-0
https://survey.stackoverflow.co/2023/
https://survey.stackoverflow.co/2023/
https://survey.stackoverflow.co/2024/
https://survey.stackoverflow.co/2024/
https://de.statista.com/statistik/studie/id/102693/dokument/software-report/
https://de.statista.com/statistik/studie/id/102693/dokument/software-report/
https://dl.acm.org/doi/10.1145/503376.503460
https://dl.acm.org/doi/10.1145/503376.503460

List of Figures

1.1 Software-Market statistics . 2

2.1 Tools used in Software-Development . 9
2.2 UCD - Process . 10
2.3 ISO 25012 Dimensions . 14
2.4 Data integration - Ladder . 16
2.5 Data integration - Process . 17

3.1 Grafana - Example Dashboard . 26
3.2 Monitoror - Example Dashboard . 27
3.3 Persona - Niklas . 28
3.4 Persona - Jonathan . 28
3.5 Persona - Luis . 29
3.6 Persona - Brenda . 29
3.7 Concept - Softwares tructure . 36
3.8 Database - Schema . 37
3.9 Wireframe - Dashboard . 39
3.10 Wireframe - Metric Card . 39
3.11 Wireframe - Buildjob Card . 40
3.12 Wireframe - Metric Details . 40
3.13 Wireframe - Dashboard configuration . 41

4.1 Buildmonitor . 46
4.2 Implementation - Metric-Settings . 50
4.3 Implementation - Dashboard . 52
4.4 Implementation - Metricdetails . 53
4.5 Implementation - Team-Settings . 55
4.6 Implementation - Dashboard-Configuration 56

C.1 User Manual . 83
C.2 Swagger REST Documentation . 84

E.1 Questionnare - Question 1 . 91
E.2 Questionnare - Question 2 . 91

71

List of Figures

E.3 Questionnare - Question 3 . 92
E.4 Questionnare - Question 4 . 92
E.5 Questionnare - Question 5 . 92
E.6 Questionnare - Question 6 . 93
E.7 Questionnare - Question 7 . 93
E.8 Questionnare - Question 8 . 93
E.9 Questionnare - Question 9 . 94
E.10 Questionnare - Question 10 . 94
E.11 Questionnare - Question 11 . 94
E.12 Questionnare - Question 12 . 95
E.13 Questionnare - Question 13 . 96

72

List of Tables

4.1 Metrics used in "Buildmonitor" . 47

A.1 List of all REST routes . 77

B.1 Questionnaire - Impact of the software 81

D.1 Tabular representation of the review of “DevMon” with regard to the
fulfillment of the functional requirements 86

D.2 Tabular representation of the review of “DevMon” with regard to the
fulfillment of the non-functional requirements 90

73

A REST routes

Users

GET /user/details OAuth2
Returns the details of
the logged in user

GET /user/favoriteDashboard/ OAuth2
Returns the favorite
dashboard of the
logged in user

PUT /user/favoriteDashboard/{dashboardId} OAuth2
Sets the favorite das-
bhoard for the logged
in user

Teams
GET /team OAuth2 Returns all teams

GET /team/{teamId} OAuth2
Returns info for the
specified team

POST /team OAuth2 Creates a new team

PUT /team/{teamid}/repos HMAC
Overwrites the repos
for which the team is
responsible for

POST /team/{teamid}/repos/{repoId} OAuth2
Assignes a responsi-
ble team for a repo

DELETE /team/{teamid}/repos/{repoId} OAuth2
Cancels the assign-
ment of a responsible
team for a repository

POST /team/{teamid}/repos/{userId} OAuth2
Assigns a user to a
team

DELETE /team/{teamid}/repos/{userId} OAuth2
Removes a user from
the team

Repositories
GET /repo OAuth2 Returns all repos

GET /repo/{repoId} OAuth2
Returns the specified
repo

PUT /repo/{repoId} HMAC
Updates an existing
repo

75

A REST routes

POST /repo/ HMAC Creates a new repo
DELETE /repo/{repoId} HMAC Deletes a repo

Buildjobs

GET /repo/{repoId}/buildjobs OAuth2
Returns the build-
jobs from a repo

POST /repo/{repoId}/buildjobs HMAC
Creates a new build-
job for a repo

Metrics
GET /metric OAuth2 Returns all metrics

GET /metric/{metricId} OAuth2
Returns the specified
metric

POST /metric OAuth2 Creates a new metric

DELETE /metric/{metricId} OAuth2
Deletes the specified
metric

Metricdata

GET /metric/{metricId}/data OAuth2
Returns the metric-
data for the specified
metric

PUT /metric/{metricId}/data HMAC
Updates the metric-
data for the specified
metric

POST /metricdata/{metricdataId}/user/{userId} OAuth2
Assigns a metricdata
to a user

DELETE /metricdata/{metricdataId}/user/{userId} OAuth2
Cancels assignment
of a metricdata to a
user

POST /metricdata/{metricdataId}/repo/{repoId} OAuth2
Assigns a metricdata
to a repo

DELETE /metricdata/{metricdataId}/repo/{repoId} OAuth2
Cancels assignment
of a metricdata to a
repo

Dashboards

GET /dashboard OAuth2
Returns all dash-
boards

POST /dashboard OAuth2
Creates a new dash-
board

76

POST

/dashboard/{dashboardId}/

• TeamUserMetricdata/{teamId}

• TeamRepoMetricdata/{teamId}

• TeamBuildjobs/{teamId}

• SingleMetricdata/{metricdataId}

• RepoMetricdata/{repoId}

• RepoBuildjobs/{repoId}

• MetricMetricdata/{metricId}

OAuth2
Defines what is to be
displayed on a dash-
board.

DELETE

/dashboard/{dashboardId}/

• TeamUserMetricdata/{teamId}

• TeamRepoMetricdata/{teamId}

• TeamBuildjobs/{teamId}

• SingleMetricdata/{metricdataId}

• RepoMetricdata/{repoId}

• RepoBuildjobs/{repoId}

• MetricMetricdata/{metricId}

OAuth2

Removes the speci-
fied entry that is to
be displayed on a
dashboard.

GET /dashboard/{dashboardId}/subscribe OAuth2
Subscribes to the
specified dashboard

GET /dashboard/{dashboardId}/allMetricdata OAuth2
Returns all metric-
data from the speci-
fied dasbhoard

GET /dashboard/{dashboardId}/allBuildjobs OAuth2
Returns all buildjobs
from the specified
dashboard

Webhooks

POST /webhook/[...] HMAC

Routes for webhooks
from specific services
can be created if
needed.

Table A.1: List of all REST routes

77

B Questionnaire - Impact of the software

Frequency of use

How often do you use the soft-
ware in your day-to-day work?
(If you look at it together as
a team, simply add up the us-
age)

• Never

• Less frequent

• Once a week

• Several times a week

• Daily

If you ticked "Once a week",
"Less frequent" or "Never",
what stops you from using it
more often?

Free text answer

How is the software integrated
into your everyday life?

• I look at my dashboard/s independently.

• We look at the dashboard together as a
team in the daily.

• Other (free text answer)

Influence on the software
development process

The software gives me a better
overview of the development
process.

• Do not agree at all

• Do not agree

• Neutral

• Agree

• Fully agree

79

B Questionnaire - Impact of the software

The software helps me to react
more quickly to problems (is-
sues, complaints, build errors,
errors in the source code).

• Do not agree at all

• Do not agree

• Neutral

• Agree

• Fully agree

The centralized and targeted
display of information, build
jobs and metrics saves me
time.

• Do not agree at all

• Do not agree

• Neutral

• Agree

• Fully agree

The software has improved the
way I work.

• Do not agree at all

• Do not agree

• Neutral

• Agree

• Fully agree

Concrete effects

How has your efficiency at
work changed since the soft-
ware was introduced?

• Strongly deteriorated

• Slightly worsened

• Unchanged

• Slightly improved

• Greatly improved

80

Have the communication chan-
nels within your team changed
as a result of the software?

• Strongly deteriorated

• Slightly worsened

• Unchanged

• Slightly improved

• Greatly improved

Have the communication chan-
nels to other teams changed as
a result of the software?

• Strongly deteriorated

• Slightly worsened

• Unchanged

• Slightly improved

• Greatly improved

Demographic questions

Length of service at Janitza

• <= 1 Year

• >1 Year and <= 3 Years

• >3 Years

Jobdescription

• Softwaredeveloper

• Tester

• Data Analyst

• Scrum Master

• Product Owner

• Other (Free text answer)

Open questions
Are there any other remarks
or comments you would like to
share?

Free text answer

Table B.1: Questionnaire - Impact of the software

81

C Documentation

C.1 User Manual

Figure C.1: Excerpt from the user manual in Confluence

83

C Documentation

C.2 REST Documentation

Figure C.2: Excerpt from the REST Documentation realized with Swagger

84

D DevMon evaluation

D.1 Functional requirements

Table D.1 presents a review of the individual user stories and shows the extent to which
the “DevMon” software fulfills these requirements.

User-Story Evaluation Fulfilled ?

User-Story 1

• “DevMon” presents the information clearly with
the help of dashboards.

• The generic structure of the backend makes it
possible to send a wide variety of data to the
backend.

User-Story 2

• Bitbucket Cloud, Janitza’s build tool, was con-
nected to “DevMon” via a webhook, allowing
new build jobs to be displayed on the dashboards
in real time.

User-Story 3

• Where possible, a URL is stored for each piece
of information, which redirects directly to the
corresponding source.

User-Story 4

• Dashboards can be marked by clicking on a fa-
vorite icon so that the favorite dashboard is au-
tomatically loaded when “DevMon” is called up.

User-Story 5

• Users can join teams and all relevant information
is automatically displayed on the dashboard of
the respective team.

85

D DevMon evaluation

User-Story 6
• Clicking on a metric opens a pop-up window that

provides detailed information on that metric.

User-Story 7

• Metrics are aggregated by team so that, for ex-
ample, the coverage of Team A and Team B can
be viewed separately.

• This differentiation also applies to other metrics,
such as open Jira tickets.

User-Story 8

• Dashboards can be freely configured via the web
interface according to the requirements of users
and teams.

User-Story 9

• The Datafetcher concept enables the integration
of new data sources using simple JavaScript files.

• Changes to the backend source code are not re-
quired.

• No adjustments to the database are necessary
either.

User-Story 10

• Metrics are provided with threshold values for
warning and error states.

• The status of a metric, i.e. whether there is a
warning or an error, is visualized using clearly
assignable colors (green, yellow, red).

User-Story 11

• Different calculation algorithms can be defined
for metrics, which are used to evaluate the values.

• For example, a distinction is made between the
number of data per metric and the average of all
values within a metric.

Table D.1: Tabular representation of the review of “DevMon” with regard to the fulfill-
ment of the functional requirements

86

D.2 Non-functional requirements

D.2 Non-functional requirements

Table D.2 presents an assessment of the individual non-functional requirements. Each
requirement is evaluated and briefly described.

Requirement Evaluation Fulfilled ?

Requirement 1

• Comprehensive documentation is available in
the company’s internal wiki and is accessible
to all users. During creation, particular em-
phasis was placed on detailed descriptions and
the use of illustrations.

• There is also separate documentation for the
REST interfaces, which is provided using
Swagger.

Requirement 2

• The dashboards are configurable and can be
adapted to individual or team-related require-
ments.

• They are clearly laid out and avoid an overload
of information.

• Appropriate colors (green, yellow, red) are
used to facilitate interpretation.

• Clicking on the metrics opens pop-up windows
(drill-downs) that display detailed information
on the respective metrics.

Requirement 3

• The database has been structured and built
to support a generic approach, enabling it to
store and manage different types of informa-
tion.

87

D DevMon evaluation

Requirement 4

• PostgreSQL is a relational database that there-
fore supports the management of relationships
between data. This allows teams, users, met-
rics and other entities to be efficiently linked
together.

Requirement 5

• The tables were deliberately designed accord-
ing to a generic approach; the Metricdata
table in particular is designed to be flexible.

• PostgreSQL supports the jsonb column for-
mat, which enables the storage of JSON data
and therefore offers a high degree of flexibility
when managing different data types.

Requirement 6

• Spring Security supports authentication using
OAuth2.

• Bitbucket Cloud was implemented as an
OAuth consumer, corresponding to the tech-
nologies used in Janitza.

Requirement 7
• Not applicable, as this requirement only ap-

plies to ready-made software solutions. -

Requirement 8

• The frontend was implemented with React.

• The backend was developed with Spring Boot.

• The database is based on PostgreSQL.

• All the technologies mentioned are modern
and widely used frameworks and systems
[Sta23].

88

D.2 Non-functional requirements

Requirement 9

• The architecture of Spring Boot promotes the
use of the “controller service repository” pat-
tern, which clearly structures the source code,
clearly separates responsibilities and signifi-
cantly improves overall maintainability.

Requirement 10
• The business logic was tested using unit tests.

• The test coverage is over 95%.

Requirement 11

• Comprehensive pipelines were developed that
support linting, unit tests and automatic
building and deployment of the application.

Requirement 12
• Not applicable, as this requirement only ap-

plies to ready-made software solutions. -

Requirement 13

• All data is retrieved directly from the original
data sources by the data fetcher and forwarded
to the backend.

Requirement 14

• The data fetchers are run at least once a day,
but most are run once an hour. This means
that the latest data is always displayed on the
dashboards.

Requirement 15

• Access to “DevMon” is secured by OAuth2
and HMAC.

• An additional reverse proxy is also used to
restrict access to predefined IP ranges.

89

D DevMon evaluation

Requirement 16

• The URLs to almost all data are saved, which
means that the source of the information can
always be traced. There are only a few excep-
tions.

Requirement 17
• All information is stored with concise titles

and detailed descriptions.

Requirement 18

• The data for each metric can also be retrieved
via a REST route, with the response being
provided in JSON format.

Requirement 19 • All data is stored on the same server.

Table D.2: Tabular representation of the review of “DevMon” with regard to the fulfill-
ment of the non-functional requirements

90

E Questionnaire results

Figure E.1: Results of the first question of the questionnaire

Figure E.2: Results of the second question of the questionnaire - Personal data or
internal company information has been made unrecognizable

91

E Questionnaire results

Figure E.3: Results of the third question of the questionnaire

Figure E.4: Results of the fourth question of the questionnaire

Figure E.5: Results of the fifth question of the questionnaire

92

Figure E.6: Results of the sixth question of the questionnaire

Figure E.7: Results of the seventh question of the questionnaire

Figure E.8: Results of the eighth question of the questionnaire

93

E Questionnaire results

Figure E.9: Results of the ninth question of the questionnaire

Figure E.10: Results of the tenth question of the questionnaire

Figure E.11: Results of the eleventh question of the questionnaire

94

Figure E.12: Results of the twelfth question of the questionnaire

95

E Questionnaire results

Figure E.13: Results of the thirteenth question of the questionnaire - Personal data or
internal company information has been made unrecognizable

96

	Inhaltsverzeichnis
	1 Introduction
	1.1 Motivation
	1.2 Goal of this work
	1.3 Methodology
	1.4 Delimitation
	1.5 Structure of the Thesis

	2 Background
	2.1 Software Development
	2.1.1 Software Development Methods
	2.1.2 Software Tools used in Software Development

	2.2 User-centered design
	2.2.1 Steps of User-centered design
	2.2.2 Tools used in User-centered design

	2.3 ISO 25000
	2.3.1 ISO 25010
	2.3.2 ISO 25012

	2.4 Data integration
	2.5 Information design
	2.6 Change management
	2.6.1 Lean Change Management
	2.6.2 Introduction types

	2.7 Empirical methods in software engineering

	3 Concept
	3.1 Understand & describe the context of use
	3.1.1 Context of use
	3.1.2 Core aspects of the software
	3.1.3 Examination of existing software solutions
	3.1.4 Personas
	3.1.5 User scenarios

	3.2 Specify functional & non-functional requirements
	3.2.1 Functional Requirements
	3.2.2 Non-functional requirements

	3.3 Justification for Own Software Development
	3.3.1 Grafana
	3.3.2 Monitoror
	3.3.3 Decision

	3.4 Software Concept
	3.4.1 Conceptual design of the backend application
	3.4.2 Conceptual design of the frontend application

	3.5 Change Management Concept
	3.5.1 Change Management Strategy
	3.5.2 Strategic team selection for the software launch
	3.5.3 Training and Support Plan

	3.6 Evaluation Concept

	4 Implementation
	4.1 Janitza electronics GmbH
	4.2 Technology Stack
	4.2.1 Version Control
	4.2.2 Data-Persistence
	4.2.3 Backend-Service
	4.2.4 Data fetchers
	4.2.5 Webhooks
	4.2.6 Security
	4.2.7 Frontend-Service

	4.3 Testing Strategies
	4.4 Pipelines
	4.5 Documentation
	4.6 Software Introduction
	4.6.1 Realize the change management strategy
	4.6.2 Determining the fall-back strategy
	4.6.3 Creation of required dashboards

	4.7 Determining the influence of the software on the software development process

	5 Implementation Review
	5.1 Alignment between Concept and Implementation
	5.1.1 Review of the functional requirements
	5.1.2 Review of the non-functional requirements

	5.2 Questionnaire analysis
	5.2.1 Frequency of use
	5.2.2 Influence on the software development process
	5.2.3 Concrete Effects
	5.2.4 Demographic Questions
	5.2.5 Open questions
	5.2.6 Discussion

	6 Conclusion
	6.1 Summary
	6.2 Evaluation
	6.3 Further Approaches
	6.4 Next Steps
	6.5 Outlook

	Bibliography
	List of Figures
	List of Tables
	A REST routes
	B Questionnaire - Impact of the software
	C Documentation
	C.1 User Manual
	C.2 REST Documentation

	D DevMon evaluation
	D.1 Functional requirements
	D.2 Non-functional requirements

	E Questionnaire results

