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This thesis investigates the optimization of Retrieval Augmented Generation (RAG)
chatbots with a focus on improving information preparation within the retrieval process.
As part of an adapted Systematic Literature Review (SLR), the current state of
research on retrieval methods and optimization approaches in the RAG context is
systematically collected and analyzed. Based on this analysis, suitable methods are
identified and classified. For the subsequent comparative evaluation of the selected
retrieval approaches, an evaluation framework based on an adapted version of the
Software Architecture Comparison Method (SACAM) is developed, which includes
criteria such as document relevance, answer precision, response latency, and hallucination
resistance. The implementation focuses on vector-based retrieval methods (e.g., dense
retrieval and hierarchical variants) as well as supplementary optimization strategies
such as multi-query rewriting and parent-child embedding to improve retrieval quality.
The evaluation shows that the use of selected advanced retrieval strategies can lead to
moderate improvements in answer quality and robustness depending on the application
scenario, while limitations and challenges remain. Finally, the contributions of the
thesis, existing limitations, and directions for future research are discussed.





Contents

1 Introduction 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Objectives and Questions . . . . . . . . . . . . . . . . . . . . . 4
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Scope and Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Chatbots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Chatbot Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Response Generation Methods . . . . . . . . . . . . . . . . . . . 9

2.2 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Natural Language Processing . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Large Language Model . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Generative Artificial Intelligence . . . . . . . . . . . . . . . . . . 13

2.3 Types of Databases as Knowledge Bases . . . . . . . . . . . . . . . . . . 14
2.4 Retrieval-Augmented Generation . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Fundamentals of RAG Pipeline . . . . . . . . . . . . . . . . . . . 15
2.4.2 Paradigms of RAG . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Extensions of RAG Pipeline . . . . . . . . . . . . . . . . . . . . . 18

3 Concept 21

3.1 Task Taxonomy and Derivation of Evaluation Criteria . . . . . . . . . . 21
3.1.1 Taxonomy of RAG Applications . . . . . . . . . . . . . . . . . . 21
3.1.2 Focus on QA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 Deriving Evaluation Criteria . . . . . . . . . . . . . . . . . . . . 26

3.2 Enhancing Retrieval Performance . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Retrieval Model Types . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Retrieval Granularity . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Retrieval Methods and Approaches . . . . . . . . . . . . . . . . . 29

3.3 Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Evaluation Target . . . . . . . . . . . . . . . . . . . . . . . . . . 39

i



Contents

3.3.2 Quality Aspects and Required Abilities . . . . . . . . . . . . . . 40
3.3.3 Types of Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.5 Types of Evaluation for RAG . . . . . . . . . . . . . . . . . . . . 49
3.3.6 Assessment of Robustness and Mitigation E!ectiveness via Map-

ping of Failure Points to Required Abilities . . . . . . . . . . . . 49
3.3.7 Evaluation Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Implementation 53

4.1 Technology Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Justification of Tool Selection . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Programming Language: Python . . . . . . . . . . . . . . . . . . 54
4.2.2 LLM Framework Selection . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Vector Database Selection . . . . . . . . . . . . . . . . . . . . . . 55
4.2.4 Infrastructure Selection: AWS vs. Local Execution . . . . . . . . 57
4.2.5 GenAI-Model Selections . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.6 Embedding Model Selections . . . . . . . . . . . . . . . . . . . . 61
4.2.7 Evaluation Framework Selection . . . . . . . . . . . . . . . . . . 61

4.3 Retrieval Method Selection and Functional Categorization . . . . . . . . 68
4.3.1 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Pre-Retrieval Method Selections . . . . . . . . . . . . . . . . . . 68
4.3.3 Core-Retrieval Method Selections . . . . . . . . . . . . . . . . . . 69
4.3.4 Post-Retrieval Method Selections . . . . . . . . . . . . . . . . . . 69

4.4 Evaluation Integration and Synthetic Dataset Generation . . . . . . . . 70
4.4.1 Synthetic Dataset Generation . . . . . . . . . . . . . . . . . . . . 70
4.4.2 Automatated End-to-End Evaluation Integration . . . . . . . . . 71

4.5 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.1 Chunking Strategy Across All RAG Approaches . . . . . . . . . 72
4.5.2 Approach 1: Naive RAG-based Chatbot. . . . . . . . . . . . . . . 73
4.5.3 Approach 2: Hybrid Multi-Query RAG Chatbot. . . . . . . . . . 73
4.5.4 Approach 3: Hybrid Parent-Document RAG-based Chatbot. . . 73

5 Evaluation 75

5.1 Objectives of the Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Evaluation Design and Setup . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Evaluation Dimensions and Criteria . . . . . . . . . . . . . . . . 76
5.2.2 System Integration and Method Assignment . . . . . . . . . . . . 76
5.2.3 Evaluation Integration and Metric Assignment . . . . . . . . . . 77

5.3 Implementation and Execution . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Quantitative and Qualitative Results . . . . . . . . . . . . . . . . 79

ii



Contents

5.4.2 Interpretation and Discussion . . . . . . . . . . . . . . . . . . . . 86
5.4.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusion 93

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 101

List of Figures 123

List of Tables 125

7 Appendix 127

iii





1 Introduction

Chatbots are text- or voice-based communication interfaces that enable automated
interactions between humans and machines. Their applications range from simple
information bots and citizen services to internal enterprise tools designed to streamline
processes and maintain productivity. In helpdesks and citizen services, they can
reduce delays that often result from sta! shortages. Early chatbots were statically
programmed, identifying specific terms after text normalization and responding with
predefined answers. In contrast, modern chatbots leverage Artificial Intelligence (AI) to
handle complex queries. Trained on extensive datasets, they are capable of retaining
conversational context and correctly handling time-independent queries [Koh20].

The integration of Large Language Models (LLMs) like ChatGPT marks a major
milestone in chatbot technology. ChatGPT enables intuitive, conversational interactions,
answering follow-up questions, identifying errors, correcting assumptions, and rejecting
inappropriate requests [Tae23, Flo20, Dal21, Ope22]. LLMs have revolutionized natural
language understanding and generation with human-like text generation, contextual
awareness, and problem-solving capabilities. Widely used in search engines, customer
support, and translation [Yao24], they enhance chatbots by improving response quality,
handling complex queries, automating routine tasks and enabling domain-specific
knowledge retrieval to boost e"ciency.

However, LLMs have limitations. These models are trained on pre-existing datasets,
which are often broad and generalized, rather than tailored to specific domains. Con-
sequently, LLMs struggle to deliver precise and contextually appropriate responses
to domain-specific inquiries, such as those encountered in fields like medicine, law or
internal resources. A further critical challenge is the issue of outdated training data.
Since LLMs are trained on static datasets collected at a fixed point in time, they
are prone to generating responses based on obsolete or inaccurate information. This
can result in outputs that are incomplete, incorrect or misleading, which is commonly
referred to as hallucinations [Bar24].

One approach to overcoming these limitations is Retrieval Augmented Generation
(RAG), which was introduced by Patrick Lewis et al. [Lew21] and has been shown to
enhance LLM performance in Question Answering (QA) tasks [Roy24]. Unlike purely
pre-trained LLMs, RAG combines a Language Model (LM) with an external knowledge
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1 Introduction

base, providing domain-specific and up-to-date information from fields like medicine,
law or internal resources. This integration improves accuracy, enables precise answers
to complex queries, and reduces hallucinations [Bar24]. Additionally, RAG avoids full
retraining of LLMs, minimizing computational costs and ensuring sensitive data remains
securely stored in the knowledge base instead of the model itself [Cuc24].

The use of RAG to enhance the response quality of LLMs has facilitated their integration
into chatbot systems. The continuous advancement of these technologies has motivated
many organizations to adopt RAG-based chatbots. However, practical implementation
has revealed several challenges, including the complexity of system integration and
instances of inaccurate responses. These challenges underscore the need for further
refinement and adaptation. A more detailed discussion of these issues will be provided
in the Problem Definition 1.1 section.

1.1 Problem Definition

As mentioned briefly in the introduction, RAG approach is associated with several
challenges. Primary challenges have been outlined in ‘Seven Failure Points When
Engineering a RAG System’ [Bar24]. According to Scott Barnett et al., the following
critical failure points (FP) have been highlighted:

FP1 Missing Content:
These refer to missing documents that cannot be utilized to respond to a query.
Typically, when an LLM generates responses, it is instructed to formulate fallback
replies such as ‘Unfortunately, I cannot answer this question’ when no relevant
information is available. However, this mechanism does not always function
reliably, and the system may still generate a response even when the necessary
information is absent.

FP2 Missed the Top Ranked Documents:
Generated answers may be incorrect or incomplete even when the necessary
information exists in the corpus. This typically occurs when relevant documents
are not ranked among the Top-K results during retrieval, as only a limited number
of documents are selected based on performance parameters.

For example, given the query ‘In which city is the Ei!el Tower located?’, the
document ‘The Ei!el Tower is located in Paris.’ may not appear among the Top-K
results. Instead, less relevant documents such as ‘The Cologne Cathedral is located
in Cologne.’ or ‘The Statue of Liberty is located in New York.’ may be retrieved,
leading the model to produce an incorrect response.
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1.1 Problem Definition

FP3 Not in Context - Consolidation strategy Limitations:
Another potential issue arises when relevant documents are retrieved from the
knowledge base but are excluded from the final context used for response generation.
This typically occurs when a large number of documents are retrieved, but some
are discarded during the consolidation or filtering phase due to lower relevance
scores. As a result, the final context provided to the model may lack critical
information, leading to inadequate answers.

For example, consider the query ‘In which city is the Ei!el Tower located?’. While
the document ‘The Ei!el Tower is located in Paris.’ is initially retrieved, it may
be filtered out during context consolidation in favor of seemingly more relevant
but unrelated documents, such as ‘The Cologne Cathedral is located in Cologne.’
or ‘The Statue of Liberty is located in New York.’. As a consequence, the model
lacks the necessary information to answer correctly.

FP4 Not Extracted:
In this case, the answer is contained in the context, but the LLM is unable to
extract the correct answer. This may occur when the context is overwhelmed
by excessive noise, such as irrelevant documents that lack any connection to the
query or even contain contradictory information [Cuc24].

For example, consider again the query ‘In which city is the Ei!el Tower located?’.
Although, the context includes the relevant document ‘The Ei!el Tower is located
in Paris.’, it is mixed with numerous unrelated or misleading documents such
as ‘The Sydney Opera House is located in ...’ and ‘... located ...’. Due to this
overwhelming noise, the model may fail to extract the correct answer, even though
the information is present.

FP5 Wrong Format:
For instance, when a question requires extracting information in a specific format,
such as a table or list, LLMs sometimes fail to follow these instructions. For
example, if the user requests ‘List the cities where the Ei!el Tower and the Statue
of Liberty are located’, the model may generate a free-text paragraph instead of
producing the expected list format.

FP6 Incorrect Specificity:
Typically, RAG systems are designed for specific applications, such as educational
scenarios in a teacher-student setting, where responses should be appropriately
tailored for learning purposes. However, the LLM may occasionally generate
responses that are either overly general or excessively detailed, thereby failing to
adequately address the user’s information need. Issues with specificity may also
arise when the query itself is too broad or insu"ciently formulated by the user.
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FP7 Incomplete:
In this case, the response is not incorrect but incomplete, even though the necessary
information is present in the context and could, in principle, be extracted. This
issue frequently occurs when answering questions that require the aggregation
of information from multiple sources distributed across di!erent documents. For
example, queries such as ‘What are the key points covered in documents A, B,
and C?’ are typically answered more reliably when the system is able to process
and consolidate information from each document individually.

Solutions have already been developed for some of these issues. Yunfan Gao et al.
provide a comprehensive overview of the current state of research in their survey
‘Retrieval-Augmented Generation for Large Language Models: A Survey’ [Gao24]. The
specific approaches will be examined in detail later.

RAG systems rely on two fundamental core components: a retriever and a generator.
The retriever interacts with an external information retrieval (IR) system to identify and
retrieve relevant passages or documents, then passes the selected results to the generator
component [Cuc24]. The retriever process can be divided into four stages: indexing,
pre-retrieval, retrieval, and post-retrieval [Gao24]. The generator, often based on LLMs,
uses the retrieved information along with the query to generate an answer [Cuc24].
Consequently, FPs can arise in either the retriever or the generator components. For
further research, it is essential to categorize the aforementioned FPs into two groups:

C1: Challenges in the preparation of information (Indexing, Pre-Retrieval,
Retrieval and Post-Retrieval) (FP2, FP3, FP7)

C2: LLM Failures (FP1, FP4, FP5, FP6)

It is important to acknowledge that FP4 could be classified into both categories. While
it is described as a failure associated with the LLM, it may also result from issues in
the retriever process, such as errors in retrieving relevant documents or problems with
ranking the retrieved information. The potential FPs in the retriever and generator
components a!ect the quality of the responses generated by the RAG-based chatbot.

1.2 Research Objectives and Questions

This thesis is conducted in collaboration with a leading company and focuses on
optimizing a RAG-based chatbot. Here is a brief summary of the key points discussed
in the section Problem Definition 1.1:
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1.2 Research Objectives and Questions

• Seven critical failure points (FPs) have been identified by Scott Barnett et
al. when using RAG systems

• Based on these findings, the FPs have been categorized into two primary groups

• First category (C1): Challenges in Information Preparation, relates to
the retrieval process and includes four stages: indexing, pre-retrieval, core-
retrieval, and post-retrieval

• Second category (C2): LLM Failures, pertains to the generator component

The primary focus of this thesis is on C1, specifically the optimization of the information
preparation process for enhanced response generation. Category C1 is a critical factor
in the overall performance of RAG models, directly influencing the quality of the
chatbot’s responses. Yunfan Gao et al. provide a comprehensive overview of the current
state of RAG, presenting various optimization approaches [Gao24]. The objective of this
thesis is to investigate how improvements in this area can enhance the performance and
reliability of RAG-based chatbots in practical applications. This leads to the following
main research question:

RQ1: Which of the existing RAG approaches focused on information preparation
hold the greatest potential to optimize the performance of RAG chatbots while
enhancing the reliability and quality of their responses in practical applications?

To address the main research question as e!ectively as possible, the following sub-research
question should also be considered:

RQ2: Which RAG approaches with a focus on information preparation are currently
known and which of them are suitable for optimizing RAG chatbots in practical
applications?

RQ3: What evaluation metrics should be in place to assess and compare RAG
approaches in terms of their performance and reliability?

RQ4: How do the selected RAG approaches perform against the defined evaluation
criteria?

RQ5: What impact do these RAG approaches have on the resulting response quality,
particularly in terms of accuracy, relevance, and coherence?
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1.3 Methodology

A comparative analysis was conducted to explore optimization strategies for RAG
chatbots. To address research question RQ2, a Systematic Literature Review (SLR)
was conducted, drawing on the principles of systematic reviews as outlined by Kitchen-
ham [Kit07]. A full implementation of a formal systematic review protocol was not
pursued. Instead, the review focused on identifying recent and methodologically relevant
publications related to RAG, LLMs and retrieval strategies in QA contexts.

Sources included arXiv, the ACL Anthology, Google Scholar, and major conference
proceedings such as NeurIPS, EMNLP, and ICLR. The selection was guided by the
following criteria:

• Recency: primarily publications from 2022 onward,

• Practical Relevance: relation to RAG-based QA systems,

• Technical Substance: introduction of new modules, interaction mechanisms, or
evaluation techniques,

• Visibility: citation frequency or integration into frameworks such as LangChain
or LlamaIndex.

The objective was not comprehensive coverage but rather a broad representation of
key developments in RAG optimization. The selected approaches were subsequently
classified and form the conceptual basis for the comparative analysis.

To evaluate the selected approaches (RQ3–RQ5), the Software Architecture Com-
parison Method (SACAM) by Stoermer et al. [Sto03] was adapted. As SACAM was
originally developed for complete software architectures, only selected phases such as
criteria derivation, metric definition, and comparative assessment were applied and
specifically adapted to the context of RAG-based QA systems. This adaptation enables
a structured and transparent evaluation of the retrieval and optimization strategies
under investigation. The main research question (RQ1) is addressed through this
comparative assessment. A visual summary of the methodological approach is provided
in Figure 1.1.

Based on the identified approaches and derived evaluation criteria, three representative
retrieval pipelines focusing on information preparation were designed and implemented.
Each implementation integrates di!erent retrieval strategies and optimization techniques
to address specific aspects of the identified failure points.
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Figure 1.1: Methodology based on adapted SLR [Kit07]) and SACAM [Sto03]

The first implemented approach represents a baseline RAG pipeline (‘Naive RAG’),
employing a standard retrieval-augmented generation framework combined with the
applied chunking strategy introduced for consistent passage segmentation across all
implementations. This baseline serves as a reference point for the comparative evaluation
against the subsequent optimization variants. The results of these implementations are
systematically evaluated using the adapted SACAM framework described above.

1.4 Scope and Delimitations

Since RAG has only been researched for a few years, the scientific literature is still
limited. Due to resource and data protection constraints, this study relies solely on
publicly available datasets and focuses primarily on the retriever component. More
detailed limitations are discussed later in this thesis (see Section 6.3).
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2 Background

After presenting the general motivation and problem definition, this chapter reviews
the relevant foundations of AI, including Machine Learning (ML), Deep Learning (DL),
Natural Language Processing (NLP), LLMs, Generative Artificial Intelligence (GenAI)
and RAG, with a particular emphasis on chatbot systems.

2.1 Chatbots

Chatbots are commonly employed on websites, messaging platforms, and smartphone
applications to handle user interactions. They are particularly useful for addressing
frequently asked questions and providing basic information. Another advantage is their
constant availability, allowing chatbots to handle inquiries 24/7 and thereby improve
e"ciency and service quality [Koh20]. The following sections provide an overview of
chatbot types and the methods used to generate responses.

2.1.1 Chatbot Types

Various approaches exist to categorize chatbots based on their functional characteristics.
Adamopoulou and Moussiades [Ada20] propose a classification that groups chatbots
into several distinct types according to their intended use and interaction scope. The
main categories are summarized in Table 2.1.

2.1.2 Response Generation Methods

Independent of their functional type, chatbots di!er in how they process user input and
generate responses. Three main approaches can be distinguished [Ada20]:

• Rule-based Models: rely on predefined rules and scripted responses. They are
typically used for simple and predictable interactions.

• Retrieval-based Models: select appropriate responses from a predefined reposi-
tory of possible answers based on input similarity.

9



2 Background

Table 2.1: Overview of Chatbot Types

Category Subcategory Description

Knowledge Domain
Open Domain Chatbots Capable of discussing a wide range of top-

ics and responding flexibly to diverse user
inputs.

Closed Domain Chatbots Focused on a specific domain and opti-
mized for specialized tasks within that
area.

Service Provided
Interpersonal Chatbots Assist users in performing tasks such as

booking flights or answering FAQs; often
integrated into messaging platforms.

Inter-Agent Chatbots Enable communication and cooperation
between multiple bots or agents to jointly
manage tasks or exchange information.

Goal-Oriented Design

Informative Chatbots Deliver information from pre-defined and
static data sources.

Conversational Chatbots Designed to sustain natural conversations.

Task-Based Chatbots Focus on executing specific tasks or work-
flows.

Human-Aid Human-Aided Chatbots Allow human operators to intervene and
improve response quality when automated
systems reach their limits.

• Generative Models: generate responses dynamically using ML techniques,
particularly neural networks and LLMs.

2.2 Artificial Intelligence

AI is a subfield of computer science with the capability to solve problems autonomously [Car83].
It can be broadly categorized into two main types [Sea80]:

Strong AI: Refers to a programmed computer that possesses cognitive states. It is
not merely a tool for testing psychological theories but rather constitutes an
explanation in itself, aiming to replicate and account for human cognition.

Weak AI: Serves as a tool for simulating and analyzing cognitive processes. It facili-
tates the formulation and testing of hypotheses in a structured and systematic
manner.

Over the years, Weak AI, also known as Narrow AI, has been more precisely defined.
It refers to programs that exhibit intelligence within a specific domain [Bux21, Pen07].
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2.2 Artificial Intelligence

In recent years, research and development have increasingly focused on ML, a subset of
Weak/Narrow AI, which enables adaptive and data-driven decision-making [Bux21].

2.2.1 Machine Learning

ML refers to a set of methods which automatically detect patterns by training an
algorithm to make predictions or decisions based on data [Mur12]. There are three
types of machine learning:

Supervised Learning: Aims to learn a mapping from inputs to desired outputs. A
common task in this category is classification, where the algorithm is trained to
approximate a function that maps input vectors to one of several classes by using
labeled input-output examples [Cun08, Nas17, Mur12].

Unsupervised Learning: Focuses on discovering hidden structures or patterns in the
data, a process often referred to as knowledge discovery. Unlike supervised learning,
it operates on unlabeled data, meaning there are no predefined outputs. These
algorithms identify similarities within the data and group them into clusters [Nas17,
Mur12].

Reinforcement Learning: Involves learning a strategy or policy to solve a specific
task through interaction with an environment. Each action taken a!ects the
environment and yields feedback in the form of rewards or penalties, which guide
the learning process over time [Nas17, Bux21].

Supervision in ML generally refers to the use of labeled data for training models but in
weakly supervised or self-supervised learning, the model can learn from indirect signals,
such as patterns in data or outputs from other models, rather than explicit labels.

One of the prominent methods within ML is the use of Neural Networks, which are
inspired by the information processing mechanisms of the human brain. A Neural
Network is a computational model composed of numerous interconnected units (or
neurons), each performing a specific operation, typically an activation function. The
connections between these neurons represent the transmission of signals, which can
be interpreted as the ‘memory’ of the network, influencing its ability to learn from
data [Bul93, Wu18]. This method serves as the foundation for numerous ML tasks,
including DL and NLP.

11



2 Background

2.2.2 Deep Learning

The technique behind DL is the use of Deep Neural Networks (DNNs), which are
powerful models that have achieved remarkable performance on complex learning tasks.
Until 2014, DNNs were mainly e!ective when large labeled datasets were available.
However, they struggled with tasks involving the mapping of input sequences to output
sequences. Sutskever et al. addressed this limitation by introducing the sequence-to-
sequence (seq2seq) framework based on an Encoder-Decoder architecture, using Long
Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) to enable complex
sequence transformation tasks such as machine translation [Sut14].

• Encoder: Transforms an input sequence of variable length into a fixed length
vector representation [Cho14].

• Decoder: Uses this vector representation to generate an output sequence of
variable length [Cho14].

Extensions such as attention mechanisms [Bah14] and the Transformer model [Vas17]
have significantly improved the e!ectiveness of this approach, making it foundational to
modern NLP and GenAI applications.

2.2.3 Natural Language Processing

NLP is a field of AI concerned with enabling computers to process and interact with
human language in a meaningful way [Hir15]. The field of NLP often involves the use
of manually crafted regular expressions and complex logical rules. These patterns are
typically employed to either search for sequences within documents and rank them based
on frequency or, in the case of chatbots, to generate scripted responses (answers) to
given sequences (questions). NLP encompasses two main components: the conversion of
raw input text into a numerical format (such as vectors or matrix) and the development
of models designed to process this numerical data [Pat23]. The conversion of raw input
text into a numerical format involves several key steps:

Tokenization: The process of splitting textual data into smaller units such as words,
sentences, or symbols. A token can be defined as a non-empty contiguous sequence
of graphemes (letters) or phonemes (articulated sounds) in a text [Pul51, Mie21].
There are di!erent methods of tokenization, depending on the level of granularity
and the linguistic or computational goals.

• Word-level tokenization (traditionally): Typically relies on typographic
separators such as whitespace and punctuation marks to define tokens [Mie21].
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• Subword-level tokenization: Refers to the segmentation of text into
smaller units that are not defined by traditional word boundaries. These
sub-lexical units are typically not motivated by typographic or linguistic
rules and are often used in modern NLP models. Such tokenization strategies
are commonly employed in modern LMs using methods like Byte Pair
Encoding (BPE) or WordPiece [Mie21, Sen16, Dev19].

2.2.4 Large Language Model

LLMs represent a class of DNNs (see Section 2.2.2) trained primarily through self-
supervised learning objectives. In contrast to supervised learning (see Section 2.2.1),
which requires manually labeled datasets, LLMs are pretrained using self-supervised
learning tasks that are automatically derived from large corpora of unannotated text.
Self-supervised learning tasks are typically designed to force the model to predict parts
of its own input, thereby enabling the model to learn rich internal representations and
general linguistic patterns from extensive corpora. This approach allows for highly
scalable training procedures and facilitates the development of models capable of
handling a broad range of downstream tasks [Bom21].

Modern LLMs are predominantly based on the Transformer architecture, which utilizes
an encoder-decoder framework to model complex sequence dependencies [Vas17]. In
this architecture, the encoder maps an input sequence of symbol representations into a
sequence of continuous vector representations. The decoder then generates an output
sequence of symbols one element at a time based on these continuous representations.
Both encoder and decoder consist of multiple stacked layers incorporating self-attention
mechanisms and position-wise fully connected layers. The attention mechanism can be
formally described as a function that maps a query and a set of key-value pairs to an
output, where queries, keys, values, and outputs are all vectors.

Prominent LLM architectures include encoder-only models such as BERT [Dev19],
which are commonly applied in retrieval and representation learning tasks. Decoder-
only models such as GPT-3 [Bro20] are primarily employed for generative tasks, while
encoder-decoder models such as T5 [Raf20] combine both capabilities and support a
wide variety of tasks, including text generation and RAG.

2.2.5 Generative Artificial Intelligence

GenAI refers to systems that are capable of generating new content based on learned
patterns from data. In recent years, advances in NLP (see Section 2.2.3) have enabled
these models to better understand task requirements through prompt-based learning,
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often reducing the need for extensive fine-tuning. GenAI models typically accept specific
raw data modalities as input, such as text or images, and generate outputs within
the same modality. Most of these models are based on Transformer architectures (see
Section 2.2.4). In addition to unimodal models, multimodal approaches combine multiple
technologies and can process inputs from di!erent modalities, for example, by accepting
both images and text to generate textual outputs, as applied in tasks such as technical
report generation. One practical application of GenAI is its integration into chatbot
systems, such as ChatGPT, which employ large-scale LMs to generate conversational
responses [Cao23, GB23].

2.3 Types of Databases as Knowledge Bases

In the context of AI applications, various types of databases can serve as knowledge
bases depending on the nature of the data and the specific requirements of the system.
This section provides a brief overview of the most common database types that are
relevant in AI-driven knowledge retrieval and processing tasks.

Vector Databases. Store high-dimensional vector representations that encode raw data
such as text, images, audio, or video. The dimensionality reflects the data’s complexity
and granularity. These representations are generated by embedding models, often based
on transformer architectures or alternative feature extraction methods. Vector databases
enable e"cient similarity search and retrieval, particularly for complex and unstructured
data, and support large-scale, real-time processing, making them essential for AI-driven
systems [Han23]. Additional details on embedding generation and indexing are provided
in Section 2.4.

Graph Databases. Represent data and schemas as graphs or generalized structures
such as hypergraphs or hypernodes [Ang08]. Data access is performed through graph
operations, including neighborhood queries, pattern matching, and connectivity analysis.
Integrity constraints ensure data consistency across schema-instance relationships,
identities, and functional dependencies. Graph databases are well-suited for domains
where relational structures and interconnectivity are central, such as hypertext systems
and geographic information systems. In AI contexts, knowledge graphs increasingly
serve as structured indices to enhance retrieval and improve generative outputs [Edg24].

Relational Databases. Organize data as collections of tables, also referred to as relations.
Within these tables, each row represents a fact that generally corresponds to a real-
world entity or relationship, while the table and column names provide the semantic
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context necessary to interpret the stored values. Relational databases are primarily
employed for managing structured data. Data retrieval and manipulation in these
systems are performed using the high-level declarative query language SQL [Elm10].
There are existing approaches and experimental studies that investigate the integration
of relational databases as knowledge bases within AI systems [Li23].

2.4 Retrieval-Augmented Generation

RAG is a method first introduced by Patrick Lewis et al. [Lew21] to enhance the
performance of LLMs in QA tasks [Roy24]. Unlike purely pre-trained LLMs, RAG
integrates a LM with an external knowledge base containing specific and up-to-date
information. This knowledge base may include domain-specific content from fields
such as medicine, law, education or internal company resources. By incorporating
external knowledge, RAG extends the capabilities of LLMs, enabling them to generate
more precise and contextually relevant responses. Another advantage of RAG is its
ability to reduce hallucinations, which refer to instances where the model generates
incorrect or misleading information [Bar24]. Additionally, RAG eliminates the need
for full model retraining when new data becomes available. This not only minimizes
computational overhead but also ensures the confidentiality of sensitive or internal
information. Instead of embedding such data directly into the model, it remains securely
stored in the knowledge database and is retrieved only when necessary [Cuc24]. The
following sections provide a detailed examination of the RAG pipeline, outlining its
structure and key processes.

2.4.1 Fundamentals of RAG Pipeline

This subchapter begins with a fundamental explanation of the RAG Pipeline in order to
establish a general understanding. The RAG Pipeline consists of three core components:
Indexing, Retrieval and Generation. Their respective functions are described below:

Indexing: Documents such as PDF, HTML, Word, or Markdown files are transformed
into a uniform plain text format after cleaning and extraction. Due to the context
limitations of LMs, the text is split into smaller, more manageable chunks. These
chunks are then encoded into vector representations using an embedding model
and stored in a vector database for e"cient similarity-based retrieval. This step
is crucial for similarity searches in the subsequent retrieval phase [Gao24]. The
indexing process is visualized in Figure 2.1. Alternative retrieval mechanisms may
leverage graph databases for relation-based retrieval or relational databases for
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structured fact retrieval. However, this thesis focuses on dense retrieval utilizing
vector databases.

Figure 2.1: Illustration of the indexing process (based on the LangChain documenta-
tion [Lan])

Retrieval: The retrieval phase begins by encoding the user query using the same
embedding model that was applied during the indexing phase. This ensures
consistency in the vector space representation. To determine relevance, similarity
scores are computed between the query vector and the indexed chunk vectors.
Based on these scores, the system ranks and retrieves the top-K chunks that
exhibit the highest semantic similarity to the query. These top-ranked chunks
serve as an expanded context within the prompt, providing additional relevant
information to enhance the response generation process [Gao24]. The retrieval
process is visualized in Figure 2.2.

Figure 2.2: Illustration of the retrieval process

Generation: The user query and retrieved documents are synthesized into a coherent
prompt and processed by the LLM to generate a response based on the available
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information. The LLM’s response generation is determined by the chosen approach
and task-specific criteria, allowing it to either draw on its inherent parametric
knowledge or rely exclusively on retrieved documents. In an ongoing dialogue, the
conversational history can be integrated into the prompt, allowing the LLM to
engage in multi-turn interactions by generating coherent, context-aware responses
that reference previous statements [Gao24]. The generation process is visualized
in Figure 2.3.

Figure 2.3: Illustration of the generation process

2.4.2 Paradigms of RAG

After describing the three core components of the RAG Pipeline, the focus now shifts
to the three RAG paradigms. Understanding these paradigms is crucial for optimizing
RAG applications and tailoring them to specific use cases:

Naive RAG: Follows the traditional process of RAG, which was described in subsection
Fundamentals of RAG Pipeline (see Section 2.4.1). However, this paradigm has
significant limitations [Gao24]:

• Retrieval Challenges: During the retrieval phase, it may struggle with
precision and recall, potentially leading to the selection of misaligned or
irrelevant chunks while also risking the exclusion of crucial information.

• Augmented Generation Challenges: Integrating retrieved information is
challenging, as task-dependent variations may lead to disjointed or incoherent
outputs. Redundancy from multiple sources can result in repetitive responses,
while assessing relevance and maintaining consistency add complexity. A
single retrieval step may lack su"cient context for complex queries, and
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generation models often over-rely on augmented data, replicating retrieved
content without substantive synthesis.

• Generation Challenge: During the response generation, the LLM may
produce hallucinations if the generated content is not adequately supported
by the retrieved context. Furthermore, responses may su!er from irrelevance,
toxicity, or bias, which can compromise their quality and reliability.

Advanced RAG: A paradigm designed to overcome the limitations of Naive RAG
by incorporating pre-retrieval and post-retrieval strategies to enhance retrieval
quality. To address indexing challenges, it refines techniques through the use
of a sliding window approach, fine-grained segmentation, and the integration of
metadata. Additionally, it employs various optimization methods to streamline
the retrieval process [Gao24].

Modular RAG: Enhances adaptability and flexibility by integrating diverse optimiza-
tion strategies, supporting both sequential processing and end-to-end training. It
improves retrieval through fine-tuning and specialized modules, such as advanced
search mechanisms. By restructuring RAG modules and optimizing pipelines,
it addresses specific challenges more e!ectively. While Modular RAG di!ers
in its structure, it builds upon the foundational principles of both Naive and
Advanced RAG, representing a progression and refinement within the RAG
family [Gao24].

It is important to recognize that these three paradigms represent more of a progression
and refinement within the RAG family. However, the choice of paradigm depends on
the specific use case, as each may be better suited to di!erent requirements.

2.4.3 Extensions of RAG Pipeline

There are two main approaches to extending the RAG pipeline: the first enhances
retrieval through pre- and post-retrieval strategies (Advanced RAG), while the second
improves adaptability and flexibility by integrating new modules and patterns (Modular
RAG).

Pre-Retrieval: Primary focus includes [Gao24]:

• Optimizing the indexing structure: by improving data granularity,
refining index structures, incorporating metadata, optimizing alignment and
enabling mixed retrieval.
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• Enhancing the original query: through techniques such as query rewriting,
transformation, and expansion. These methods refine the user’s input, making
it clearer and better suited for the retrieval process.

Post-Retrieval: Focuses on e!ectively integrating the retrieved documents with the
query to enhance the generation process. Key methods include [Gao24]:

• Reranking Chunks: repositioning the most relevant retrieved content to
the beginning or end of the prompt for better contextual emphasis.

• Context Compression: extracting essential information, emphasizing
critical sections and shortening the context to prevent information overload
while ensuring optimal input for the generation process.

New Modules: Has specialized components to enhance retrieval and processing capa-
bilities like [Gao24]:

• Search Module: enables direct searches across multiple data sources,
including search engines, databases, and knowledge graphs.

• (RAG) Fusion: expands user queries using a multi-query strategy, leveraging
parallel vector searches and intelligent re-ranking to uncover both explicit
and implicit knowledge.

• Memory Module: creates a memory pool to better align text with data
distribution, improving retrieval accuracy.

• Routing: directs queries through diverse data sources, selecting the optimal
pathway for more relevant retrieval.

• Predict Module: reduces redundancy and noise by generating contextual
information directly through the LLM.

• Task Adapter Module: adapts to various downstream tasks by automating
prompt retrieval for zero-shot inputs and creating task-specific retrievers
through few-shot query generation.

New Patterns: Enhance adaptability by enabling module substitution or reconfigura-
tion to address specific challenges. These patterns go beyond the fixed Retrieve
and Read structure, extending flexibility through the integration of new modules
or adjustments in the interaction flow between existing components. This allows
for greater customization and applicability across diverse tasks [Gao24].
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This chapter provides the methodological and architectural basis for the evaluation and
optimization of RAG systems. Key evaluation criteria are introduced, downstream tasks
are classified, and architectural as well as retrieval strategies are examined. The chapter
concludes with an evaluation framework specifically designed for QA, which serves as
the primary use case.

3.1 Task Taxonomy and Derivation of Evaluation Criteria

To prepare the subsequent SACAM-based evaluation, this section identifies relevant
goals, requirements, and evaluation criteria for the systematic assessment of RAG
chatbot optimization. To derive these criteria, an initial classification of the RAG
system is conducted based on the characteristics of its downstream tasks, which may be
further subdivided into specific subtasks.

3.1.1 Taxonomy of RAG Applications

RAG models are applicable to various downstream tasks, each characterized by specific
architectural requirements, evaluation strategies, and success criteria. These tasks can
be classified into the following categories, as described by Gao et al. [Gao24]:

1. Question Answering

QA constitutes a central application domain of RAG systems. It involves generating
answers to user questions based on a given query and supporting contextual informa-
tion [Mav24]. The general QA task can be subdivided into several specialized subtasks,
each addressing distinct question types and corresponding reasoning demands.

Single-Hop QA: Refers to QAs based on a single relevant passage, typically su"cient
for fact-based or entity-specific queries [Mav24].
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Multi-Hop QA: Characterized by reasoning across multiple sources or types of
information such as texts, tables and knowledge graphs to answer more complex
questions [Mav24, Min19].

Long-Form QA: Entails the generation of coherent, in-depth responses to open-
ended questions, requiring the synthesis of information from extended textual
contexts [Fan19].

Multiple-Choice QA (MCQA): Provides predefined answer options, with models
evaluated based on their ability to identify the most contextually supported
choice [Sha20].

Domain-Specific QA: Focuses on specialized application areas, where accurate
integration of domain knowledge is required. This introduces complexity for LLMs
in ensuring both accuracy and contextual relevance [Zha23].

Graph QA: Integrates LLMs with Graph Neural Networks (GNNs) to enable QA over
structured knowledge graphs, supporting multi-relational reasoning via techniques
such as soft prompting [He24].

Open-Domain QA: Involves retrieving and reasoning over large unstructured text
corpora, and is particularly relevant for RAG systems. Four main architectural
paradigms are commonly identified in the context of Open-Domain QA, particularly
when implemented through RAG systems [Abd24].

• Retriever-Reader: This architecture integrates traditional information
retrieval techniques with machine reading comprehension models. Initially,
relevant documents or passages are retrieved based on the input query, these
are subsequently processed by a reader model that identifies and extracts
potential answer spans.

• Generator-Retriever: This architectural paradigm combines retrieval
mechanisms with GenAI models. Retrieved passages, based on either sparse
or dense vector representations, serve as input to a seq2seq GenAI model
(e.g., transformer-based), which produces a natural language response based
on the provided context.

• Generator-Reader: In this architecture, LLMs are employed to generate
synthetic contextual documents based on the input question. The generated
content serves as input to a reading comprehension model, which identifies
potential answer spans. This approach separates the processes of document
generation and answer extraction.
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• Retriever-Only: This architecture approaches the QA task as a phrase
retrieval problem, omitting document-level inference. Candidate answer
phrases are retrieved directly, which may increase e"ciency during inference,
depending on the specific application context.

2. Dialogue

The dialog downstream task comprises multiple subtasks, each involving the generation
of conversational responses that maintain coherence and contextual relevance.

Dialogue Generation: Refers to open-domain conversational tasks in which systems
are assessed based on their capacity to produce contextually appropriate and
informative responses. Evaluation is performed using both automatic metrics and
human judgments [Din18].

Personal Dialogue: Denotes a dialogue modeling approach in which user-specific
persona profiles are integrated to influence system responses. Outputs are condi-
tioned on predefined traits or preferences, potentially contributing to consistency
in long-term interactions [Lin19, Wan23b].

Task-Oriented Dialogue (TOD): Systems are designed to support the accomplish-
ment of specific user goals by interpreting contextual information, planning dialog
policies, and producing task-relevant responses. Recent methods make use of
semi-supervised, pre-trained LMs based on large-scale corpora, which can be
fine-tuned for various downstream TOD applications [He22].

Recommendation: Dialogue systems are designed to support users in identifying
content or products aligned with their stated preferences. These systems incorpo-
rate user intent and interest in conjunction with large item collections to generate
context-aware recommendations [He16].

3. Information Extraction (IE)

IE refers to the application of computational methods for identifying and extracting
task-relevant information from human-readable documents. The extracted data is
transformed into structured representations suitable for storage, processing, and retrieval
by computer systems [Sin18]. Two common subtasks in this domain are described below:

Event Argument Extraction: Refers to the task of identifying entities (arguments)
involved in specific events and classifying the roles they fulfill. This process is
commonly divided into two stages: the identification of named entities (or the
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use of annotated ground-truth entities) as candidate arguments, followed by the
determination of their semantic roles within the event context [Zha20].

Relation Extraction: Involves detecting and categorizing predefined semantic rela-
tionships between identified entities in text. For example, in the sentence ‘Jodie
Foster won the Academy Award’. The verb won serves as the semantic relation
connecting the entities ‘Jodie Foster’ and ‘Academy Award’ [Sin18].

4. Reasoning

Reasoning is a cognitive process involves the use of logic, evidence, and structured
argumentation to derive conclusions or make decisions. It is considered a central topic
in disciplines such as psychology, philosophy, and computer science [Hua22]. In the
context of NLP, reasoning tasks can be divided into several subtasks:

Commonsense Reasoning: Involves the application of everyday world knowledge to
disambiguate and interpret natural language, such as resolving pronoun references
based on contextual plausibility [Dav15].

Chain-of-Thought (CoT) Reasoning: Characterized by the use of intermediate
reasoning steps prior to producing a final answer. This approach is associated
with increased interpretability and may improve prediction consistency [Tur23].

Complex Reasoning: Denotes the application of structured logic and rule-based
reasoning to solve problems requiring multi-step inference. It is relevant for
applications such as mathematical problem-solving, clinical decision support, or
argumentative dialogue systems. Subtypes of complex reasoning include [Wan22]:

• Analytical Reasoning: solving problems by evaluating qualitative and
quantitative constraints.

• Logical Reasoning: determining entailment relationships, for example in
Natural Language Inference (NLI) tasks, where a model must assess whether
a hypothesis logically follows from a given premise.

• Multi-Hop Reasoning: integrating information from multiple documents
or textual segments to derive intermediate inferences and reach a final
conclusion.

• Numerical Reasoning: performing arithmetic or symbolic operations on
quantities mentioned in text.
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5. Other Downstream Tasks

Beyond the major categories discussed, there exist several additional downstream tasks
relevant in the context of RAG and LLM applications. These tasks are outlined briefly
below. Readers are referred to the respective publications for further technical detail.

Language Understanding: Refers to tasks that require not only linguistic compe-
tence but also the application of basic reasoning and commonsense knowledge.
While current models perform competitively, certain aspects of comprehensive
language understanding remain challenging [Hen20].

Fact Checking/Verification: Tasks concerned with assessing the factual consistency
of claims by comparing them with external sources of verified information [Kot20].

Text Generation: Refers to the task of generating coherent natural language text
from structured data inputs [Leb16].

Text Summarization: Includes identifying salient information within a source
document and producing a concise summary. Both extractive and abstractive
techniques are commonly employed [Nar18].

Text Classification: Refers to the assignment of input texts to predefined categories
(e.g., sentiment, topic), typically using LLMs through fine-tuning and in-context
learning [Zha24b].

Sentiment Analysis: Addresses the classification of evaluative polarity into pos-
itive, neutral or negative categories based on lexical, contextual and syntactic
features [Tab16].

Code Search: Involves retrieving relevant code snippets from large repositories based
on natural language queries. This task often bridges the semantic gap between
technical programming language and more abstract user queries, relying on both
lexical and semantic retrieval strategies [Hus19].

Robustness Evaluation: Examines model performance in both answerable and
unanswerable cases, often using binary classification to compare model outputs
against human-labeled ground truth [Tha23].

Mathematical Reasoning: Evaluates models’ ability to solve math problems, typi-
cally involving symbolic manipulation, arithmetic and logical reasoning [Cob21].

Machine Translation: Benefits from the availability of parallel corpora, supporting
the alignment and modeling of sequences across languages [Koe05].
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3.1.2 Focus on QA

Although, RAG systems can be applied to a broad range of domains, this thesis focuses on
the QA task, which represents a representative and extensively studied application area.
QA aligns closely with the RAG paradigm due to its reliance on retrieving external
context and the need for accurate and informative responses in applied scenarios.
Focusing on QA facilitates a structured evaluation of system characteristics such as
retrieval quality, latency, and robustness against hallucination. Although other RAG
use cases may require task-specific evaluation criteria, this study adopts a QA-oriented
perspective to support domain-relevant and comparable assessment.

3.1.3 Deriving Evaluation Criteria

Based on the QA-oriented scope of this study, the following evaluation criteria are
proposed to assess the e!ectiveness of RAG systems in practical applications:

• Document Relevance: Assesses whether the retrieved context is factually and
semantically aligned with the user query, providing an adequate foundation for
response generation.

• Answer Precision: Evaluates the degree to which the generated answer is correct,
concise, and directly responsive to the input question.

• Response Time/Latency: Focuses on the time required by the system to
generate an answer, based on established usability thresholds (e.g., Nielsen [Nie94]).

• Hallucination Resistance: Examines the extent to which generated content
remains grounded in retrieved sources and avoids unsupported or fabricated
information.

These criteria constitute the basis for evaluating RAG approaches with a focus on
information preparation, as defined in Category C1. They enable a structured
assessment of each approach’s applicability, performance, and impact, contributing to
the systematic analysis of the main research question (RQ1) and its sub-questions
(RQ2–RQ5).

3.2 Enhancing Retrieval Performance

This chapter provides a structured overview of retrieval model types and strategies
relevant to optimizing RAG systems. The presented categorization builds on the results
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of the adapted SLR described in Section 1.3, which identified and classified recent
retrieval approaches applicable to RAG-based QA systems. In addition to categorizing
retrieval model types, the chapter analyzes retrieval granularity, discusses established
retrieval methods and approaches, and introduces various optimization techniques that
influence both retrieval e!ectiveness and generation quality.

3.2.1 Retrieval Model Types

Retrieval models can be broadly categorized according to the underlying methods used
for encoding and comparing information. A systematic understanding of these model
types provides a foundation for analyzing retrieval performance in various application
contexts. The principal types of retrieval models are [Fan24]:

Sparse Retrieval is based on word-level representations of queries and documents.
This approach is commonly applied in traditional text retrieval and in demonstra-
tion selection for in-context learning. Its main limitation lies in the absence of
training, making performance sensitive to the quality of both the query and the
underlying document collection. Furthermore, its reliance on term-based matching
may reduce adaptability to alternative selection criteria, such as diversity, which
are often relevant in LLM-based applications [Fan24].

Dense Retrieval encodes both queries and documents into a shared high-dimensional
vector space, facilitating similarity comparison based on semantic features. In
contrast to sparse retrieval, dense retrieval models are typically trainable, which
allows adaptation to specific domains or tasks. A common architecture consists of
a bi-encoder design in which separate encoders process queries and documents
independently. Dense retrieval plays an important role in RAG systems, especially
for dynamic context construction in in-context learning [Fan24].

Hybrid Retrieval integrates sparse and dense retrieval techniques to combine their
respective strengths. While sparse retrievers emphasize lexical overlap, dense
retrievers capture broader semantic relations. Implementation strategies vary:
some systems apply both types jointly, others sequence them (e.g., dense retrieval
followed by sparse filtering), and some extend the approach to multimodal contexts
by incorporating visual embeddings. Such combinations aim to improve retrieval
robustness and adaptability across heterogeneous tasks [Zha24c].

Graph Retrieval addresses the retrieval of structured information from graph-based
knowledge representations in response to natural language queries. Relevant
elements, such as entities, triples, paths or subgraphs, are extracted based on
semantic alignment with the query. To constrain the search space and prioritize
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relevant graph regions, these methods often apply semantic similarity measures
between queries and graph components [Pen24].

3.2.2 Retrieval Granularity

Another important factor in improving retrieval performance is retrieval granularity.
The granularity of the retrieval model determines the level at which data is retrieved,
such as at the document, passage, token, or entity level. This granularity directly
a!ects both the e!ectiveness of the retrieval process and the e"ciency of database usage
and search operations, as it influences the required storage space and computational
e!ort [Fan24].

Chunk or Passage Retrieval is a technique commonly used in traditional Information
Retrieval and is particularly e!ective for document retrieval tasks. Instead of
retrieving entire documents, this approach focuses on presenting the most relevant
sections within a document. Several types of passages can be distinguished [Liu02,
Fan24]:

• Structural passages: These are based on the document’s inherent structure,
using author-defined boundaries such as paragraphs, sections, or individual
sentences to demarcate passages.

• Topical passages: In this case, documents are divided according to subject
matter or thematic coherence. Each passage corresponds to a coherent unit
that reflects a specific subtopic or the main idea of the text.

• Window passages: These passages consist of a fixed number of words or
bytes, often disregarding the logical structure of the document. The focus
here is on the quantity of text rather than its organization.

• Arbitrary passages: Unlike the previous types, arbitrary passages can
begin at any point within a document and are typically defined dynamically
at query time. They can be further subdivided into:

– Fixed-length arbitrary passages, which resemble overlapping win-
dows but can start at any arbitrary point.

– Variable-length arbitrary passages, which can vary in size depending
on the relevance to the query.

Token Retrieval is a fine-grained retrieval method that operates at the word or
subword level, rather than using larger chunks or passages. It enables faster search
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processes but increases the storage burden on the database. Token Retrieval
is particularly useful when rare patterns or out-of-domain data are required.
Compared to chunk retrieval, token retrieval is less compact and may introduce
more redundancy and irrelevance, which is why chunk retrieval remains more
common, especially in RAG systems [Fan24].

Entity Retrieval focuses on knowledge rather than language and involves two main
approaches: learning entity representations from text and external databases (e.g.,
Wikipedia) to build entity memory, or learning and retrieving mentions of entities
at a more fine-grained level. This form of retrieval is particularly e!ective for
entity-centric tasks and is more space-e"cient than token-wise retrieval in RAG
systems [Fan24].

3.2.3 Retrieval Methods and Approaches

Building upon the previously discussed retrieval models and levels of granularity, this
section provides a structured overview of key retrieval techniques. These methods di!er
in their data representation strategies, computational requirements, and integration
with downstream generation systems.

In this categorization, the core retrieval process responsible for retrieving documents
based on the input query is referred to as core-retrieval, distinguishing it from pre-
retrieval query preparation and post-retrieval context optimization. Additionally,
methods extending the retrieval process itself, as well as those introduced via new
modules and new interaction patterns, are included.

Pre-Retrieval

Pre-retrieval focuses on optimizing queries and indexing structures prior to the actual
retrieval step. These techniques aim to enhance retrieval e!ectiveness by improving
input formulation or search space organization before document selection begins (see
Section 2.4.3).

Hypothetical Document Embeddings (HyDE) is a two-stage retrieval approach
that begins by using a zero-shot, instruction-following LM to generate a hypo-
thetical document based on a given query. Although, this synthetic document
may contain hallucinated or incorrect information, it is designed to capture the
underlying relevance signals of potential answers. In the second stage, a dense
encoder trained with contrastive learning encodes the document (e.g. Contriever,
see Section 3.2.3) into an embedding vector that is used to identify semantically
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similar documents from a corpus via dense retrieval. This embedding acts as a
bottleneck, helping to filter out irrelevant or inaccurate details from the initial
generation. HyDE has demonstrated strong performance across multiple infor-
mation retrieval tasks and languages, despite being fully unsupervised and not
fine-tuned on task-specific data [Gao23].

Parent Child Embedding is a hierarchical retrieval technique commonly used in
Parent Document Retrieval settings to improve retrieval from long or struc-
tured documents. Documents are divided into smaller segments (children), such as
paragraphs, which are independently embedded. These child embeddings capture
fine-grained semantics and are linked to their corresponding parent document.
During retrieval, relevance is assessed at the child level but results are returned at
the parent level. This approach enables more accurate retrieval by combining local
semantic signals with document-level context, preserving both internal structure
and semantic variation [Mis24].

Multi-Aspect Retrieval addresses the challenge of combining multiple, distinct
aspects into a single query for more accurate results. To retrieve diverse documents,
their embeddings may be far apart in the embedding space. A key solution is
to use activations from the multi-head attention layers of a transformer decoder
as embeddings. Transformer architecture consists of blocks with attention and
feed-forward modules, where multi-headed attention captures various relationships
by learning di!erent weight matrices. These multi-aspect embeddings are then
directly used for both query and document representations, improving retrieval
performance [Bes24].

Multi-Query Rewriting (MQR) addresses the challenge of noisy or underspecified
user queries that can lead to intent deviation and suboptimal retrieval. By
generating multiple diverse reformulations of the original query, MQR enhances
both document retrieval and final response generation. The process typically
involves three stages: (1) a query rewriter generates alternative phrasings of the
input query, (2) a retriever searches for relevant documents for each rewritten
query, and (3) a re-ranking mechanism consolidates and ranks the retrieved results
to select the top-K most relevant documents, which are then passed to the LLM
for generation. This approach improves retrieval coverage and robustness against
poorly formulated inputs [Li24].
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Core-Retrieval

Core-retrieval constitutes the central retrieval mechanism within the RAG pipeline. It is
responsible for identifying and selecting relevant documents from the external knowledge
base based on the processed input query.

Maximum Marginal Relevance (MMR) operates by computing a linear combina-
tion of the query-document relevance and the maximum distance of a candidate
document to the set of already selected documents. Specifically, it measures
relevance and novelty independently, and combines these scores into a single
metric, referred to as marginal relevance. A document is assigned high marginal
relevance if it is both highly relevant to the query and su"ciently dissimilar
to previously selected documents. This method helps to mitigate redundancy
in the retrieved contexts and improves the overall quality and coverage of the
information [Gol98, Xia15].

Similarity Search traditionally relies on embedding models to map sentences into
a vector space, enabling the retrieval of similar sentences based on distance
metrics such as Jaccard similarity, cosine similarity, or Euclidean norm. In
standard approaches, similarity is measured directly by computing vector distances.
However, in the context of RAG, alternative strategies have emerged, such as
constructing conversational chains that evaluate sentence-pair similarity more
dynamically [Ber24, Che24a].

Multi-Hop Query is essential for improving the accuracy and reliability of systems
that rely on multiple sources to answer complex, multi-faceted queries [Tan24b].
It refers to a retrieval process that involves querying and reasoning over multiple
pieces of supporting evidence to provide a comprehensive answer. A multi-hop
query requires retrieving several chunks of information from a retrieval set, which
together address the question. There are four main types of multi-hop queries:

• Inference query: The answer to the query is deduced through reasoning
based on the retrieved evidence.

• Comparison query: The answer requires comparing di!erent pieces of
evidence within the retrieval set.

• Temporal query: The answer necessitates analyzing the temporal aspects
of the retrieved information.

• Null query: This query type assesses the generation quality. The answer
cannot be derived from the retrieved set, and the system should produce a
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null response instead of generating incorrect information or hallucinating an
answer.

Term Frequency Inverse Document Frequency (TF-IDF) is a widely used
statistical measure in traditional information retrieval. It evaluates the importance
of a term within a specific document relative to a corpus of documents. The
method combines two components:

• Term Frequency (TF): Quantifies how often a term appears in a document.
The assumption is that terms occurring more frequently in a document are
more important within that context.

• Inverse Document Frequency (IDF): Reflects how rare or informative a
term is across the entire corpus. It is typically calculated as log(N/n), where
N is the total number of documents and n is the number of documents that
contain the term. Terms that appear in many documents receive lower IDF
scores.

The TF-IDF value is the product of these two measures. It assigns higher weights
to terms that are frequent in a specific document but rare across the corpus. This
helps to suppress common words (e.g., ‘the’, ‘and’ and emphasize more distinctive,
context-specific terms. TF-IDF remains a foundational technique in text mining,
keyword extraction, and classical document retrieval systems [SJ72, Ram03].

BM25 (Best Match 25) is a ranking function commonly used in traditional informa-
tion retrieval systems. It is grounded in the probabilistic retrieval framework and
often referred to as Okapi BM25. The model estimates the relevance of a document
to a search query by combining TF, IDF, and document length normalization.
Rather than being a single fixed formula, BM25 represents a family of scoring
functions with tunable parameters. Due to its e!ectiveness, interpretability, and
simplicity, BM25 remains a strong baseline in modern retrieval research, including
neural and hybrid approaches [Rob95, Rob09, Ama09, Lin22].

Dense Passage Retrieval (DPR) is a retrieval method designed to e"ciently
retrieve the top-K passages most relevant to an input query by indexing all
passages in a low-dimensional continuous space. It uses a dense encoder to map
each text passage into a d-dimensional real-valued vector and builds an index over
all M passages to enable e"cient retrieval. During inference, a separate query
encoder maps the input question into the same vector space, allowing retrieval
of K passages whose vectors are closest to the query vector. DPR adopts a
bi-encoder architecture, where the document and query encoders independently
produce dense representations. The task of finding the top-K most relevant
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documents corresponds to a Maximum Inner Product Search (MIPS) problem,
which can be approximately solved in sub-linear time to ensure e"ciency at
scale [Kar20, Lew20].

Dense Hierarchical Retrieval (DHR) is a hierarchical dense retrieval framework
proposed to improve passage selection in open-domain QA [Liu21]. It extends
standard dense retrieval by introducing a two-level retrieval process: a document-
level retriever first selects relevant documents, followed by a passage-level
retriever that identifies pertinent passages within those documents. To further
refine the final ranking, passage-level scores are calibrated using the relevance
of their parent documents. This hierarchical design enables more e"cient and
accurate retrieval by narrowing the search space and maintaining contextual
consistency across levels.

Hybrid Hierarchical Retrieval (HHR) is a retrieval framework that integrates
both sparse and dense retrievers at two hierarchical levels: document-level and
passage-level [Ari23]. Instead of selecting a single retrieval paradigm per stage,
HHR explores hybrid strategies, including a simple yet e!ective heuristic that
interleaves the top-K/2 results from both retrievers to form a top-K candidate
set. Additionally, it performs passage reranking using pre-computed dense repre-
sentations to reduce latency. This setup enables a systematic evaluation of the
tradeo!s between accuracy, storage requirements, and retrieval latency, providing
more realistic insights into deployment in large-scale systems.

Graph-Based Retriever enhances embedding-based retrieval by incorporating struc-
tural information from a knowledge graph to address information imbalance in
large corpora, such as in medical domains [Del24]. Given a query, entities are
extracted and connected via the shortest path in the graph. Text chunks linked
to these entities and their neighbors are retrieved and ranked using a combined
scoring metric that integrates graph distance, recency, and contextual impact.
This rebalancing mechanism improves retrieval fairness and relevance beyond
standard embedding similarity methods.

Post-Retrieval

Post-retrieval complements core retrieval by refining the retrieved results before passing
them to the generator. Typical techniques include reranking, filtering, and context
compression to optimize the final context window provided to the LM (see Section 2.4.3).

Reciprocal Rank Fusion (RRF) is an algorithm used in information retrieval
systems to combine rankings from multiple sources. The goal is to improve
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the accuracy and relevance of search results by assigning a unified score to each
document based on its rank in di!erent retrieval lists. The score for each document
is calculated by using the reciprocal rank from each list and then combining them.
The RRF score is computed as follows:

Reciprocal Rank Fusion Score = 1
rank + k

where rank is the document’s position in a retrieval list, and k is a constant that
adjusts the influence of the original ranking.

After calculating these scores, they are combined, and the documents are reranked
based on the final score. The results are then sent to a LM to generate the final
output. This process enhances retrieval systems by leveraging multiple rankings,
improving both precision and recall [Rac24].

Relevance Estimator (RE) measures the relevance between a question and context.
It takes as input the same question-context pair as the generator but generates
a classification token (true or false) to indicate the context’s relevance to the
question. The true token independently signals whether the context is relevant. By
comparing multiple contexts, the probability of the true token is converted into a
logit, which serves as the relevance score for ranking the retrieved context [Kim24].

Long Context Re-Order addresses the limitations of LLMs in processing long input
sequences, where relevant information in the middle of a context window is often
neglected due to primacy and recency biases [Liu23a]. Studies show that model
performance significantly degrades when key information is placed in non-salient
positions or when many documents (e.g., 10+) are included. To mitigate this,
RAG frameworks such as LangChain and LlamaIndex implement reordering
strategies that prioritize and reposition the most relevant retrieved documents,
ensuring critical content is presented in more impactful positions within the context
window [Lan24, Lla24].

Contextual Compression is a retrieval-enhancement technique designed to reduce
the size of the retrieved context while preserving or improving its relevance. It
typically follows a two-stage process: a retriever first selects a set of candidate
documents, followed by a compressor that filters or condenses these documents,
often at the passage level, to retain only the most salient information. This
approach enables LMs to work with more focused and informative inputs, reducing
unnecessary tokens and improving generation quality [Ver24, Hwa24].
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Joint Passage Retrieval (JPR) is a retrieval model designed to address the challenge
of multi-answer retrieval, where multiple passages must be selected to collectively
cover diverse answer aspects. JPR employs a two-stage pipeline: a first-stage
retriever (e.g., DPR combined with REALM) retrieves candidate passages,
followed by an encoder-decoder reranker that autoregressively generates a sequence
of passage references. This autoregressive reranking models the joint probability of
the selected passages, allowing each step to condition on previously selected content.
To guide the model in the absence of a ground-truth passage order, a dynamic
supervision strategy is used, encouraging the selection of passages that introduce
novel answer information. Furthermore, a tree decoding algorithm enables flexible
control over passage diversity during generation. This approach improves both
relevance and answer coverage in multi-passage retrieval scenarios [Sar24, Min21].

Self-Reflective Retrieval involves training a LM in an end-to-end manner, where the
model learns to reflect on its own generation process. It generates both the task
output and special reflection tokens. These tokens are divided into retrieval tokens,
which signal when additional retrieval is needed, and critique tokens, which assess
the quality of the output. The model evaluates the relevance of multiple retrieved
passages and generates the corresponding task output. Using critique tokens, it
then self-assesses and selects the output with the highest factual accuracy and
overall quality [Asa23].

Chain-of-Note (CoN) is a framework designed to enhance the robustness of retrieval-
augmented language models (RALMs) in the presence of noisy, irrelevant, or
out-of-domain documents. The core idea is to generate sequential reading notes
for each retrieved document, allowing the model to explicitly evaluate its relevance
and extract reliable information before generating an answer. This process enables
more systematic filtering of irrelevant content and improves the factual accuracy
and contextual alignment of the final response [Yu23].

New Modules

New modules extend the RAG pipeline by introducing additional components that
enhance retrieval or generation capabilities. These modules enable more advanced
retrieval logic, adaptive memory integration, or more sophisticated interaction between
retrieval and generation stages (see Section 2.4.3).

Retrieval Transformer (RETRO) is a retrieval-enhanced autoregressive LM that
integrates external context via chunk-wise nearest-neighbor retrieval and cross-
chunked attention [Bor22]. It retrieves contiguous token chunks (rather than
individual tokens), significantly reducing storage and computational requirements.
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A specialized chunked cross-attention mechanism incorporates the retrieved in-
formation with time complexity linear in the retrieval size. RETRO achieves
consistent improvements in text generation quality, factual accuracy, and perfor-
mance on downstream tasks such as open-domain QA. Gains scale across model
sizes (150M–7B) and can be further improved at evaluation time by increasing
database size and retrieval depth [Bor22, Wan23a].

Memory Retrieval (MemoRAG) is a RAG framework enhanced by global memory-
augmented retrieval. It introduces a dual-system architecture in which a lightweight,
long-range component first constructs a global memory representation of the
extended input context. This memory is then leveraged by a second, more ex-
pressive and computationally intensive model that generates the final output.
MemoRAG demonstrates strong performance across a variety of long-context
evaluation tasks. It outperforms traditional RAG methods both in complex scenar-
ios, where these methods often encounter di"culties, and in simpler settings that
represent typical application domains [Qia25]. Building on the general concept
of memory-augmented retrieval introduced by MemoRAG, recent approaches
such as SynapticRAG [Hou24] and Chen et al. [Che24a] propose refinements in
how memory is constructed, dynamically updated, and selectively queried during
generation.

Atlas is a RAG model that fine-tunes an encoder-decoder LM jointly with a dense
retriever. It builds on Contriever , a dual-encoder architecture trained in an
unsupervised fashion to encode queries and documents independently [Iza21].
During training, Atlas applies techniques such as attention distillation, leave-one-
out perplexity, and end-to-end multi-document training (EMDR2) to align retrieval
with generation objectives. The model supports various fine-tuning strategies
including re-ranking, query-side adaptation, and full index updates, allowing for
e"cient and scalable retrieval without labeled data [Iza23].

REALM is a retrieval-based framework designed for open-domain QA, combining
masked language modeling with latent knowledge retrieval. It follows a retrieve-
then-predict paradigm, consisting of two main components: a neural knowledge
retriever and a knowledge-augmented encoder. The retriever uses a dense inner
product model, where two separate embedding functions map input queries and
documents to d-dimensional vectors. Relevance scores are computed via inner
product, and retrieval is implemented as a softmax over these scores. The encoder
then concatenates the query with the retrieved documents and processes them
using a separate Transformer, enabling cross-attention before predicting the output.
The retriever is trained in a latent fashion; its parameters are updated indirectly via
gradients from the encoder’s prediction loss. The pretraining process incorporates
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techniques such as salient span masking, the use of null documents, the prevention
of trivial retrievals, and careful initialization to enhance retrieval quality [Guu20].

Adaptive Retrieval (Adaptive-RAG) is a RAG framework that dynamically deter-
mines whether and how to retrieve external information based on the complexity
of the input query [Jeo24]. Central to this approach is a query classifier that
assesses query di"culty and selects one of three strategies:

• Non-Retrieval QA: Direct LLM response for simple queries.

• Single-Step Retrieval: One retrieval round for moderately complex queries.

• Multi-Step Retrieval: Iterative retrieval for complex, multi-hop questions.

This adaptive selection is trained using supervised or reinforcement learning to
balance response accuracy and retrieval cost. By integrating retrieval decisions into
the model pipeline, Adaptive-RAG improves both e"ciency and performance
compared to static RAG architectures.

GraphRAG sensemaking is a graph-based RAG approach designed for sensemaking
queries that require a global understanding of a document corpus. It constructs
an entity knowledge graph from source documents, partitions it into hierarchical
communities, and generates bottom-up summaries for each community using a LM.
At query time, GraphRAG applies a map-reduce strategy: community summaries
are used to generate partial answers (map), which are then aggregated into a
final response (reduce). This method outperforms standard vector-based RAG
approaches in comprehensiveness and diversity, especially for complex analytical
questions [Edg24].

In-Context Adaptive Retrieval (OpenRAG) is a RAG framework that optimizes
the retriever in an end-to-end manner to capture in-context relevance and adapt
to evolving task requirements [Zho25]. It introduces a two-phase architecture
consisting of an o#ine retriever optimization and an online inference stage. In
the o#ine phase, OpenRAG uses a RAG label (a binary indicator) and a RAG
score (a joint generation likelihood) to train the retriever based on how well
documents contribute to the LMs output. In the online phase, the retriever adapts
dynamically to the input query and context, enabling in-context adaptive retrieval.
This design leads to consistent performance improvements, outperforming prior
retrievers by up to 4.0% in knowledge-intensive generation tasks.
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New Patterns

New Patterns (see Section 2.4.3) further generalize the structure of RAG pipelines. They
introduce flexible architectural designs and interaction flows, allowing dynamic control
over retrieval strategies and increasing modularity to address diverse task requirements.

Generator-Retriever-Generator (GRG) Approach is an architecture for open-
domain QA that enhances the integration of generation and retrieval processes.
Unlike traditional RAG setups, where retrieval precedes generation, GRG first
uses a LM to generate synthetic context based on the input question. This
generated context is then used to guide a dense retrieval system in selecting the
most relevant external documents. A second generator subsequently produces the
final answer based on both the retrieved documents and the original question.
This two-stage generative framework improves contextual alignment and the
informativeness of answers by combining the strengths of generative reasoning
and document retrieval [Abd24].

Retrieval-Augmented Passage Tree Organization for Reasoning (RAPTOR)
is a hierarchical retrieval pattern designed to e"ciently navigate long or structured
documents. It organizes passages into a recursive tree based on semantic similarity,
enabling both broad and fine-grained retrieval. Nodes are embedded and clustered
using dense retrieval techniques and traditional clustering algorithms. During
retrieval, the tree is traversed recursively to locate the most relevant subpassages
while preserving contextual structure [Sar24].

Fusion-in-Decoder (FiD) with Knowledge Distillation trains a retriever without
strong supervision by using a reader model to guide it. The retriever first selects
relevant documents, which are then processed by the reader to solve the task.
The reader’s attention over the input documents is treated as a supervision
signal, allowing the retriever to learn document relevance via distillation from the
reader’s behavior (i.e., a teacher-student setup). This method avoids the need for
manually labeled data and can be combined with retrieval baselines like BM25
or DPR [Iza22].

Table 3.1 provides a structured overview of the retrieval methods and approaches
discussed within this chapter. The methods are organized according to their position
within the retrieval pipeline (pre-, core-, post-retrieval, as well as new modules or
patterns) and are further categorized by their retrieval model type (dense, sparse,
hybrid, or graph) and the level of retrieval granularity (chunk, token, or entity). This
structure emphasizes that, depending on the specific stage and goals of the retrieval
process, di!erent methods can be selectively applied to enhance retrieval performance.
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Table 3.1: Categorization of retrieval approaches based on their position within the
retrieval pipeline, retrieval model type (dense, sparse, hybrid, graph), and retrieval granu-
larity level (chunk, token, entity).

Methods Retrieval Model Type Retrieval Granularity Sources
Dense Sparse Hybrid Graph Chunk Token Entity

Pre-Retrieval
Parent-Child Embedding x x [Mis24]
Multi-Aspect Retrieval x x [Bes24]
HyDE x x [Gao23]
MQR x x x [Li24, Kos24]
Core-Retrieval
Similarity Search x x x x x x x [Wan23a, Saw24, Lua21, Wen17, Ger22, Pen24]
Multi-Hop Query x x x [Tan24b, Sid21]
TF-IDF x x [SJ72]
BM25 x x [Rob95]
MMR x x x x [Gol98, Tra24, Pru24]
DPR x x [Kar20]
DHR x x [Liu21]
HHR x x [Ari23]
Graph-Based Retriever x x x [Del24]
Post-Retrieval
Long Context Re-Order x x [Liu23a]
Self-Reflective Retrieval x x x x [Asa23, Tan24a]
Contextual Compression x x [Hwa24]
CoN x x [Yu23]
JPR x x [Min21]
RRF x x x x [Bru23, Qu21, Yu21]
RE x x x [Kim24, Nog19]
New Modules
RETRO x x [Bor22, Wan23a]
Memory Retrieval x x [Qia25]
Atlas x x [Iza23, Iza21]
REALM x x [Guu20]
Adaptive Retrieval x x x [Jeo24, Xie24]
GraphRAG sensemaking x x [Edg24]
In-Context Adaptive Retrieval x x [Zho25]
New Patterns
GRG x x [Abd24]
RAPTOR x x [Sar24]
FiD x x [Iza22]

3.3 Evaluation Framework

Following the systematic analysis of retrieval strategies and the previously derived
evaluation criteria, the following section introduces the evaluation framework. Based
on an adapted SACAM methodology, it defines evaluation targets, quality dimensions,
required abilities, and corresponding metrics for the systematic assessment of the
implemented RAG approaches.

3.3.1 Evaluation Target

In the evaluation of RAG systems, two main targets can be identified that significantly
influence the overall response quality:

ET1: Retrieval Quality refers to the quality of the retrieved context. It plays
a critical role in determining whether relevant and useful information has been
extracted from the context source. A reliable retrieval component serves as the
foundation for e!ective response generation. The assessment of this component is
based on specific criteria, which will be discussed in subsequent sections.
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ET2: Generation Quality focuses on the model’s ability to generate coherent,
meaningful, and contextually relevant answers based on the provided context.
This can be further distinguished into two content types:

• Unlabeled Content: Refers to instances where no reference answers (ground
truth) are available. Evaluation in this case is based on qualitative charac-
teristics of the response.

• Labeled Content: Involves scenarios where ground truth answers are
available, allowing for a more objective evaluation through comparison.

Depending on the focus of the evaluation, one may choose to concentrate on either of
these two targets: Retrieval Quality or Generation Quality. Alternatively, both
targets can be evaluated simultaneously to provide a comprehensive assessment of the
RAG system’s performance. The specific evaluation aspects and metrics for each target
will be defined in the following sections.

3.3.2 Quality Aspects and Required Abilities

This section introduces a set of key quality aspects to support a structured evaluation of
retrieval and generation quality in RAG systems. Rather than presenting an exhaustive
list, it o!ers a focused selection that captures the most critical factors for assessing
performance and robustness. These aspects are grouped into two main categories:

Primary Quality Scores: These scores reflect the e!ectiveness of the information
retrieval and generation processes from di!erent perspectives, allowing for a
comprehensive evaluation. The three primary quality dimensions are:

• QS1 Context Relevance: Assesses the relevance, accuracy, and specificity
of the retrieved content in relation to the user query, ensuring that the
provided context is useful for answering the question.

• QS2 Answer Faithfulness: Measures whether the generated response is
grounded in the retrieved context and avoids hallucination or contradiction,
thereby ensuring internal consistency.

• QS3 Answer Relevance: Evaluates the extent to which the generated
answer directly addresses the user query and provides meaningful and appro-
priate information.
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Essential Required Abilities: These abilities reflect the model’s performance under
complex or challenging conditions and highlight its adaptability and robustness in
practical applications. Four essential abilities are considered:

• RA1 Noise Robustness: Assesses the model’s ability to handle irrelevant
or noisy documents. These may appear related to the query but do not
provide useful or content-specific information.

• RA2 Negative Rejection: Evaluates whether the model can appropriately
refrain from answering a question when the retrieved documents lack the
necessary knowledge to generate a reliable response.

• RA3 Information Integration: Measures the model’s ability to synthesize
information from multiple documents to formulate a coherent answer to a
complex query.

• RA4 Counterfactual Robustness: Evaluates the model’s ability to iden-
tify and disregard known inaccuracies or false information within documents,
even when it is explicitly exposed to potentially misleading content.

These aspects are assigned to the evaluation targets as follows: Context Relevance and
Noise Robustness are linked to Retrieval Quality, while Answer Faithfulness, Answer
Relevance, Negative Rejection, Information Integration, and Counterfactual Robustness
correspond to Generation Quality. Depending on the evaluation focus, relevant
aspects and abilities will be prioritized accordingly. Both targets can be evaluated
together for a comprehensive assessment.

3.3.3 Types of Evaluation Metrics

Before discussing the specific evaluation metrics, it is important to distinguish between
two primary categories, which determine the nature of the evaluations conducted:

Reference-based metrics assess the quality of a text by measuring the alignment
between system outputs and human-written texts, referred to as references. These
references serve as the gold standard for evaluation, as they represent ideal outputs.
However, the use of reference-based metrics requires the preparation of reference
texts, which must be carefully created and verified by humans [Ito25].

Reference-free metrics o!er significant advantages in terms of scalability for Natural
Language Generation (NLG) tasks, as they eliminate the need for reference texts.
Recent advancements have also improved the correlation between reference-free
evaluation scores and human ratings, making it an active and promising area
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of research. Reference-free metrics evaluate output quality without relying on
references and can be further divided into two categories [Ito25]:

• Absolute evaluation: Where a context and hypothesis are given, and a
quality score is assigned to the output.

• Ranking evaluation: Where a context and a set of hypotheses are provided,
and the hypotheses are ranked by quality. In particular, pairwise evaluation
is a common method for comparing two hypotheses directly.

3.3.4 Evaluation Metrics

After discussing the evaluation targets, quality aspects, and required abilities of the
RAG system, appropriate evaluation metrics can be derived.

The RAG Triad, originally introduced by TruLens, provides a structured evaluation
schema for RAG systems [Tru25b]. It has since been widely adopted as the conceptual
foundation for more comprehensive evaluation frameworks. The architecture comprises
three key components: Input/Query, Retrieved Context (feeding into Retrieval
Quality) and Response (reflecting Generation Quality) (see Figure 3.1) [Tru25b,
luJI25].

Figure 3.1: Own illustration of the RAG Triad, adapted from [luJI25].

Within this RAG Triad, three core quality aspects are essential for evaluating system
robustness and hallucination resistance: Context Relevance, Answer Faithfulness
(also referred to as Groundedness), and Answer Relevance. Various metrics are
applied to quantify these aspects:
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1. Precision
Measures the quality (i.e. relevance) of the retrieved documents or information,
specifically how many of the retrieved documents are actually relevant to the
query [Sin01, Saj18, Gou05]. It is defined as:

Precision = TP
TP + FP = Number of relevant retrieved documents

Total number of retrieved documents

where:

• TP: True Positives (relevant documents correctly retrieved)

• FP: False Positives (irrelevant documents retrieved)

2. Recall
Recall measures the coverage of the relevant documents or information from the
knowledge base, indicating how much of the relevant information the system
successfully retrieved [Sin01, Saj18, Gou05]. It is defined as:

Recall = TP
TP + FN = Number of relevant retrieved documents

Total number of relevant documents

where:

• TP: True Positives (relevant documents correctly retrieved)

• FN: False Negatives (relevant documents not retrieved)

3. F1 Score
The F1 score is defined as the harmonic mean of precision and recall, provid-
ing a balanced evaluation of both metrics. It is derived from the following
formula [Chi20]:

F1 = 2 · TP
2 · TP + FP + FN = 2 · Precision · Recall

Precision + Recall

4. Mean Reciprocal Rank (MRR)
A a widely used evaluation metric in information retrieval and ranking tasks. It
provides insight into how e!ectively a model ranks the correct output, such as a
relevant sentence or document, among a set of potential candidates.
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MRR is based on the concept of Reciprocal Rank (RR), which is the inverse of
the rank position at which the first relevant result appears. For instance, if the
correct item is ranked first, RR is 1.0. If it appears at position two, RR is 0.5. It
decreases reciprocally with rank. This allows for a fine-grained understanding of
how well a model prioritizes the most relevant results.

The Mean Reciprocal Rank is then computed by averaging the reciprocal ranks
over a set of N queries or instances:

MRR = 1
N

N∑

i=1

1
ranki

where:

• N : the total number of evaluation instances or queries

• ranki: the rank position of the first correct result for the i-th instance

A higher MRR indicates that the model consistently retrieves relevant items
at higher ranks, which reflects better performance in ranking and retrieval
tasks [Cra09, Reh24].

5. Mean Average Precision (MAP)
This evaluation metric commonly used in information retrieval to measure the
performance of a system across a set of query topics. MAP is calculated as
the arithmetic mean of the Average Precision (AP) values for each query in the
evaluation set. It can be expressed as follows:

MAP = 1
n

n∑

i=1
APi

where:

• n: the total number of query topics in the evaluation set

• APi: the Average Precision value for the i-th query topic

The Average Precision (AP) for a given query topic is computed based on the
precision at each relevant document retrieved, averaged over the number of relevant
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documents. A higher MAP value indicates better overall retrieval performance
across all queries [SMB09].

6. Normalized Discounted Cumulative Gain (NDCG)
A metric for assessing ranking quality in text retrieval systems. It evaluates the
e!ectiveness of a system based on the graded relevance of retrieved passages, with
scores ranging from 0 to 1, where 1 indicates an ideal ranking.

Unlike traditional binary relevance measures, NDCG allows for degrees of rele-
vance, making it suitable for evaluating systems where documents are not simply
relevant or irrelevant. A key characteristic is its use of a discount function, which
reduces the impact of lower-ranked documents. This is particularly important in
search scenarios, as users typically pay more attention to top-ranked results. The
NDCG at rank K is defined as [J0̈2, Wan13, Val09, Zha24a]:

NDCG@K = DCG@K
IDCG@K

where:

• DCG@K (Discounted Cumulative Gain): The weighted sum of graded
relevance values, where the weight decreases logarithmically with the position
of the result.

• IDCG@K (Ideal DCG): The maximum possible DCG@K, achieved when
the ranking is perfectly ordered by relevance.

7. Hit Rate
The Hit Rate measures how often it finds relevant information within the top-K
retrieved documents. It calculates the fraction of queries for which the correct
answer is present in the top-K results. The hit rate is defined as a binary score:
HR = 1 if the desired relevant document is present in the retrieved results, and
HR = 0 otherwise. Typically, the mean hit rate across all queries is reported.
The formula is given as [Jos24]:

Hit Rate =

∣∣∣UK
hit

∣∣∣

|Uall|
= Number of hits

Total number of queries

where:
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•
∣∣∣UK

hit

∣∣∣
∣∣∣UK

hit

∣∣∣
∣∣∣UK

hit

∣∣∣ is number of queries for which the correct chunk containing the answer
is included in the top-K retrieved recommendation list

• |Uall||Uall||Uall| is total number of queries in the test dataset

8. Bilingual Evaluation Understudy (BLEU)
BLEU is an automatic, language-independent metric for evaluating machine
translation quality [Pap02]. It approximates human judgment by computing
modified N-gram precision between a candidate translation and one or more
references. The score ranges from 0, denoting complete mismatch, to 1, indicating
a perfect overlap between the candidate output and the reference. A brevity
penalty is applied to penalize excessively short hypotheses. The BLEU score is
formally defined as:

BLEU = BP · exp
(

N∑

n=1
wn log pn

)

with:

• pn: Modified precision for N-grams of size n.

• wn: Weight for each N-gram, typically wn = 1
N .

• N : Maximum N-gram length (commonly N = 4).

To penalize overly short translations, BLEU incorporates a brevity penalty (BP),
defined as:

BP =





1 if c > r

e
(1→ r

c ) if c → r

where c is the length of the candidate translation and r is the e!ective reference
length.

9. Recall-Oriented Understudy for Gisting Evaluation (ROUGE)
ROUGE is an automatic metric used to evaluate the quality of summaries by
comparing them to reference summaries created by humans. It measures the
overlap of units such as N-grams, word sequences, and word pairs between the
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candidate and reference summaries. ROUGE is commonly used in tasks like
automatic summarization and QA. Its variants include:

• ROUGE-N (N-gram overlap)

• ROUGE-L (Longest Common Subsequence)

• ROUGE-W (Weighted LCS)

• ROUGE-S(Skip-bigram overlap)

Due to their complexity and limited applicability in the context of RAG, detailed
definitions of the variants can be found in the original paper [Lin04].

10. Metric for Evaluation of Translation with Explicit Ordering (METEOR)

METEOR is an automatic evaluation metric proposed as an alternative to
BLEU, aiming to mitigate certain limitations associated with BLEU, such as
its limited sensitivity to recall. In contrast to BLEU, METEOR explicitly
incorporates recall, which allows for a more balanced assessment of how much of the
reference meaning is captured. This feature is particularly relevant in evaluating
the completeness of machine-generated translations. METEOR calculates a
harmonic mean of precision and recall, typically assigning greater weight to recall
and introduces a penalty to account for fragmented or misordered alignments.
The final score is computed as follows:

METEOR = Fmean · (1 ↑ Penalty)

where Fmean denotes the harmonic mean of precision and recall, and the Penalty

component penalizes disordered alignments based on the number and length of
matching chunks. Detailed definitions of both components can be found in the
original paper by Banerjee and Lavie [Ban05].

11. Accuracy
A fundamental evaluation metric that reflects the proportion of correctly predicted
instances, both positive and negative, relative to the total number of instances
in a dataset. It provides an overall measure of classification performance, where
a value of 1 indicates perfect prediction, and 0 indicates complete failure. The
formula for accuracy is given by [Chi20]:
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Accuracy = TP + TN
TP + TN + FP + FN

where:

• TP: True Positives (instances correctly classified as positive)

• TN: True Negatives (instances correctly classified as negative)

• FP: False Positives (instances incorrectly classified as positive)

• FN: False Negatives (instances incorrectly classified as negative)

12. Exact Match (EM)
EM metric represents the proportion of generated responses that exactly align with
the reference answers. It quantifies the percentage of instances where the output
precisely matches the corresponding target. This metric measures the proportion
of predictions that exactly match any of the reference answers [Sch22, Raj16].

To provide a better overview of which metrics cover which evaluation aspects and
required abilities, Table 3.2) summarizes the di!erent metrics and highlights the Context
Relevancy, Faithfulness, and Answer Relevancy aspects they evaluate, as organized
by the RAG Triad. This facilitates the selection of the appropriate metric for specific
evaluations.

Table 3.2: Mapping of Quality Scores and Required Abilities to Evaluation Metrics,
organized by the RAG Triad, highlighting the Context Relevancy, Faithfulness, and
Answer Relevancy.

Metrics Quality Scores Required Abilities Metric Type
Context

Relevance
Answer

Faithfulness
Answer

Relevance
Noise

Robustness
Negative
Rejection

Information
Integration

Counterfactual
Robustness

Ref-
based

Ref-
free

Context Relevancy
Precision x x x
Recall x x
F1 Score x x x
MRR x x
MAP x x x
NDCG x x
Hit Rate x x
Faithfulness

BLEU x x
ROUGE x x
METEOR x x
Answer Relevancy

Accuracy x x x x x x x x
EM x x
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3.3.5 Types of Evaluation for RAG

The evaluation of RAG systems can be based on two main approaches, each providing
a distinct methodology for assessing the performance and capabilities of these models.
These approaches can be assessed using the evaluation metrics discussed in the previous
Section 3.3.3, which include both reference-based and reference-free metrics.

Benchmarks use large, standardized datasets that are often manually annotated
(reference-based) to assess the fundamental capabilities of RAG models. Bench-
marks typically focus on either the retrieval or generation component, using
human-annotated data as a ground truth to measure the accuracy of retrieved
documents or the correctness and coherence of generated responses [Gao24, Yu24].

Automated End-to-End Evaluation evaluates the entire RAG pipeline, using
LLMs to assess the quality of generated responses. Automated evaluations can be
reference-based, where a ground truth dataset is generated by an LLM based
on a knowledge base. The quality of the generated response is then evaluated
through reference-free metrics, which compare the generated response to the
LLM-generated ground truth dataset[Siv24]. In the reference-free case, the
evaluation is performed through automated metrics or LMs that judge quality
based on coherence, relevance, and other characteristics [Es24]. This approach
covers both data retrieval and response generation, ensuring the integrity of the
full pipeline [Gao24, Siv24].

3.3.6 Assessment of Robustness and Mitigation E!ectiveness via Mapping of Failure
Points to Required Abilities

While automated metrics provide operationalized scores for Primary Quality Aspects,
they are limited in capturing how well a system performs under adverse or realistic
conditions. To address this, the evaluation framework includes a targeted mapping
between empirically observed FPs (see Section 1.1) and the essential Required Abilities
defined in Section 3.3.2.

This mapping allows for a qualitative assessment of robustness and helps identify whether
the implemented retrieval strategies e!ectively mitigate known system weaknesses. In
doing so, it bridges the gap between theoretical capability requirements and practical
system behavior.

Table 3.3 presents the mapping for failure points from Category C1 (Information
Preparation), highlighting which abilities are challenged and to what extent the system
was designed to address them.
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Table 3.3: Mapping of FPs to Required Abilities for Category C1

Failure Point Short Description of Issue Mapped Required Ability

FP2 Missed the Top
Ranked Documents

Relevant documents are available
but not ranked high enough to
be included in the context. Im-
portant evidence is missed due to
cut-o! at top-K.

RA2 Negative Rejection:
Refrain from answering when
su"cient evidence is missing.

RA4 Counterfactual Ro-
bustness: Avoid generating
plausible but incorrect responses
based on partial or misleading
evidence.

FP3 Not in Context Retrieved relevant documents are
excluded from the input context
during consolidation, often due to
low ranking confidence.

RA1 Noise Robustness: Han-
dle and filter irrelevant or seman-
tically weak context.

FP4 Not Extracted The answer is present in the con-
text but is not correctly extracted
by the model, often due to noise
or misleading content.

RA1 Noise Robustness: Ex-
tract meaningful information de-
spite noisy or distracting content.

FP7 Incomplete The response is incomplete even
though the necessary information
is present across multiple docu-
ments. Complex queries requiring
synthesis are not fully resolved.

RA3 Information Integration:
Combine information from multi-
ple sources to provide a complete
and coherent answer.

3.3.7 Evaluation Dataset

Various types of datasets can be utilized to evaluate the performance and e!ectiveness
of a system or model. The most common categories used in the context of RAG and
related evaluation frameworks are outlined below:

Benchmark Dataset Standardized, publicly available datasets frequently used in
research to enable consistent and comparable evaluations across di!erent systems
(e.g., RECALL, RGB, CRUD, RAGBench) [Gao24, Fri24, Liu23b, Che24b,
Lyu25].

Synthetic Dataset Artificially generated data, often produced through simulations or
rule-based procedures. These datasets allow for fine-grained control over specific
properties or constraints, making them suitable for targeted evaluations [Zhu24].

Human-Annotated Dataset Datasets in which annotations (e.g., labels, relevance
judgments, correctness scores) are provided by human annotators. Such datasets
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are particularly valuable for tasks involving subjective assessments or complex
semantic interpretations [Niu23].

Manually Curated Dataset Datasets that are manually assembled and cleaned,
typically by domain experts or developers. These datasets are often used when
no appropriate benchmark exists, ensuring high data quality and domain rele-
vance [Kat25].
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This chapter describes the technical implementation of the system. It outlines the
technologies selected, the applied retrieval methods to address the previously identified
challenges, and the integration of the evaluation pipeline. Furthermore, it details which
retrieval techniques were applied to the respective RAG variants to enable subsequent
evaluation according to the defined criteria and metrics.

Given the comparative nature of this study, a detailed documentation of the implemented
variants, tool selection, and system configuration was necessary to ensure reproducibility
and transparency.

4.1 Technology Stack

This section provides a concise overview of the core technologies employed in the
implementation. A detailed rationale and technical evaluation of each component are
presented in the subsequent section (see Section 4.2).

The RAG-based chatbot system and its evaluation framework are built upon the
following key components:

• Response Generation (via GenAI): The Mistral AI LM is utilized to generate
context-aware responses based on retrieved content.

• Vectorization: Amazon Titan Text Embedding is used to transform user
queries and document content into dense vector representations suitable for
similarity-based retrieval.

• Cloud Infrastructure: All embedding and model inference operations are
executed on Amazon Web Services (AWS), ensuring scalability and secure
cloud-based deployment.

• Vectordatabase: Chroma was employed to store the vectorized data produced
by the embedding model.
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• LLM Framework: LangChain serves as the orchestration layer for the RAG
pipeline. AWS integration is facilitated via the boto3 SDK.

• Evaluation and Dataset Generation: The DeepEval framework is used
for automated response evaluation and the generation of synthetic test datasets,
enabling reproducible benchmarking. For this purpose, Anthropic Claude 3.5
Sonnet is employed as the underlying LM and Cohere Embed 3 Multilingual
is utilized as the embedding model.

4.2 Justification of Tool Selection

This section provides a detailed rationale for the selection of the technologies intro-
duced in Section 4.1. Each tool or framework was chosen based on specific functional
requirements, architectural considerations, and compatibility with the overall system
design.

4.2.1 Programming Language: Python

Python was chosen as the primary programming language for this implementation
due to its dominant role in AI and ML development. It o!ers a mature and extensive
ecosystem of libraries, frameworks, and tools that support all stages of AI workflows,
from data preprocessing and model development to deployment and evaluation [Ras20].

In the context of LLMs and RAG systems, Python is the de facto standard. Both
LangChain and LlamaIndex, the leading open-source frameworks for RAG pipelines,
are primarily developed in Python. While limited support for JavaScript and
TypeScript exists, full functionality including advanced orchestration, agent-based
logic and vector store integration is currently only available in the Python ecosys-
tem [Tea25d, Tea25i].

The native compatibility of these frameworks with Python further reinforces its
suitability. Consequently, the choice of programming language directly influenced the
selection of supporting libraries. The following section provides a comparative analysis
of LangChain and LlamaIndex, and justifies the selection of the most appropriate
framework for the RAG implementation.
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4.2.2 LLM Framework Selection

In the current ecosystem, two dominant open-source frameworks are widely used for
the implementation of RAG: LangChain and LlamaIndex. Table 4.1 compares the
two frameworks in terms of their architectural focus and selection rationale.

Table 4.1: Comparison of LLM frameworks considered for building the RAG compo-
nent

Framework Description Exclusion Criteria for Selection

LangChain Modular and widely adopted framework for
building LLM applications. Provides tools
for prompt management, chaining, agent
design, and integration with vector stores,
making it highly flexible for advanced RAG
systems [Tea25d].

Its broad scope and abstraction layers may
introduce additional complexity and poten-
tial performance overhead for lightweight
RAG use cases. However, it o!ers exten-
sive modularity and flexibility for scalable
architectures.

LlamaIndex Focused on indexing and retrieval of un-
structured and structured data. Designed
for RAG pipelines with support for vari-
ous document loaders, query engines, and
vector store integrations [Tea25i].

Strong in the retrieval component but lacks
modular extensibility for complex multi-
stage applications. Not chosen due to
limitations in advanced orchestration and
agent integration.

Based on the comparison in Table 4.1, LangChain was selected as the framework
for this implementation. Its high modularity and extensibility make it particularly
suitable for advanced RAG systems that are expected to evolve over time. The ability
to integrate agents, tools, and complex pipeline structures ensures that the system can
scale in both functionality and architectural complexity as application requirements
grow.

4.2.3 Vector Database Selection

The selection of a suitable vector database in this implementation was guided not
only by immediate technical feasibility but also by strategic considerations aimed at
ensuring long-term viability and extensibility. While data protection and regulatory
compliance, particularly with regard to personal and sensitive business information,
were key drivers [Par16, dJ25, Com24], additional factors such as scalability, system
interoperability, and support for advanced retrieval features were also taken into account.
To maintain full control over data access and processing, only self-hostable solutions were
considered, thereby allowing the system to be deployed in local, regulated environments.
This approach ensures not only legal compliance but also architectural flexibility for
future integration into production-grade RAG pipelines. To operationalize these criteria,
a number of vector database options were assessed. Table 4.2 presents the evaluation
results and corresponding exclusion justifications.
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Table 4.2: Comparison of vector databases considered for integration in a locally de-
ployable RAG chatbot

Vector DB Description Exclusion Criteria for Selection

Chroma An open-source vector database that inte-
grates seamlessly with the LangChain frame-
work [Tea25b]. Chroma is positioned as a
lightweight, developer-friendly solution [Tea25a].
It is particularly well-suited for prototyping and
can be deployed locally.

Chroma is still under active development and
currently lacks advanced capabilities such as clus-
tering, replication, or large-scale scalability. It
is therefore best suited for small-scale, local de-
ployments and prototyping use cases.

FAISS FAISS is known for its high e"ciency in sim-
ilarity search and clustering of dense vectors,
particularly on large datasets. This performance
is largely attributed to the fact that many of
its core algorithms are implemented for GPU
execution, enabling highly parallelized computa-
tion on local machines [Tea25j]. FAISS is also
compatible with LangChain, allowing it to be
integrated into the RAG pipelines [Tea25c].

Although k-means vector quantization enables
high reconstruction accuracy, both memory con-
sumption and encoding complexity increase ex-
ponentially with the size of the codebook. As a
result, this method quickly reaches practical lim-
its in terms of memory and computation when
applied to large datasets or when a high number
of clusters is required [Dou24]

pgvector Pgvector is an open-source extension for Post-
greSQL that enables vector similarity search
within relational databases [pc25]. It is fully
self-hostable, making it particularly suitable
for privacy-sensitive applications with existing
structured data. Pgvector is compatible with
LangChain [Tea25f]

Too complex to integrate for rapid prototyping.
However, well-suited for production-grade RAG
systems with existing PostgreSQL infrastructure.

Weaviate Weaviate is an AI-native, open-source vector
database that supports both vector and hy-
brid search. Its built-in vector index com-
pression improves memory e"ciency for large
datasets [Tea25o]. Additionally, it is compatible
with LangChain, enabling seamless integration
into RAG pipelines [Tea25h].

High system complexity due to required de-
ployment via Weaviate Cloud Services (WCS),
Docker, or Kubernetes, even in self-hosted sce-
narios [Tea25n]. The resulting overhead is com-
paratively high and may not be suitable for small-
scale or prototype RAG applications.

Qdrant O!ers support for sparse vectors, enabling hybrid
search strategies. It provides a production-ready
service with a convenient API for storing, search-
ing, and managing vectors, including additional
payload data and advanced filtering capabilities,
which makes it particularly suitable for use with
AWS-based infrastructures [Tea25l]. Qdrant is
also compatible with LangChain [Tea25g].

As of May 2025, Qdrant had fewer GitHub stars
(23.8k) than more established alternatives like
FAISS (35.2k) or Milvus (35k), indicating a com-
paratively smaller community. Moreover, certain
advanced features such as distributed deployment
are more mature in the cloud-managed version,
as seen in the more limited capabilities of the
o"cial Helm Chart [Tea25m].

Milvus Supports a wide range of deployment scenarios,
from local prototyping to large-scale Kubernetes
clusters capable of managing tens of billions of
vectors. It is highly scalable and o!ers a va-
riety of configurable indexing and search algo-
rithms, making it well-suited for complex vector
retrieval tasks [Tea25k]. Milvus is compatible
with LangChain [Tea25e].

For smaller-scale prototyping, Milvus entails con-
siderable implementation complexity, which may
render it unsuitable for limited-scope projects.
A lightweight variant called Milvus Lite is avail-
able, but it only supports the flat index, which
limits performance and scalability options within
LangChain [Tea25e].

Based on the comparative analysis, two vector databases were shortlisted: pgvector and
Chroma. One of the main advantages of pgvector is its seamless integration with the
well-established PostgreSQL database system. In environments where PostgreSQL
is already in use, pgvector can be easily adopted, enabling direct embedding of vector
functionality into an existing relational database. This makes it particularly suitable
for hybrid retrieval approaches that combine structured and unstructured data.
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However, for the purposes of this implementation, pgvector was deemed too complex
and resource-intensive. As a result, Chroma was selected due to its lightweight
architecture and ease of integration.

Nonetheless, pgvector remains a strong candidate for future production-grade de-
ployments, where its robustness, scalability, and integration capabilities could o!er
significant long-term advantages.

4.2.4 Infrastructure Selection: AWS vs. Local Execution

For the implementation, AWS was selected as the infrastructure platform to enable
access to high-performance GenAI models. A local deployment was not feasible due to
insu"cient storage and computational resources.

AWS provides direct access to models such as MistralAI, which was used as a core
component for response generation in the RAG-based chatbot developed in this work.
The selection of Mistral Large and the underlying rationale are discussed in detail in
Section 4.2.5.

4.2.5 GenAI-Model Selections

In the implementation, various GenAI models were employed, each selected to meet
specific requirements and contextual constraints. This section presents the models used,
their areas of application, and the rationale behind their selection.

1. RAG Application

The model Mistral Large was used for response generation within the RAG system.
The decision to use MistralAI was based on several factors: First, it is an open-
weight model with strong performance capabilities [Jia23]. Second, its open-source
nature [AI] allows for full deployment in a self-hosted environment, which facilitates
compliance with European data protection standards (GDPR) [fSidIBb] when used
appropriately and aligns with the regulatory objectives of the EU AI Act [Par]. Third,
the transparency and controllability of the model architecture enable a higher degree
of control over the processing of sensitive data, which is an important factor in public
sector contexts [fSidIBa].
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2. Evaluation Tool

The evaluation tool is designed to assess the performance of the RAG system and
is likewise based on generative AI models. It fulfills two primary functions: (1) the
generation of synthetic datasets for testing purposes and (2) the automated end-to-end
evaluation of answer quality through explanatory feedback. The selection of suitable
models is particularly critical in this context to avoid bias and overfitting due to
model homogeneity [Bub23, Stu24, Zho23]. Therefore, several models were assessed and
selectively employed:

2.1 Use in Synthetic Dataset Generation. Selecting an appropriate model requires con-
sideration of DeepEval’s structural expectations. Specifically, DeepEval requires a
model capable of supporting structured chat interactions, as it di!erentiates between
the fields input (question), expected_output, context, and source, and seman-
tically maps them into a role-based message structure [Dee25g]. This corresponds to the
commonly used messages[] schema, which is understood by chat-compatible LLMs.
For such conversational applications, Amazon Bedrock provides the Converse API,
which supports structured message exchanges in the messages[] schema [AWS25b].
Additionally, AWS maintains an o"cial list of models that are compatible with this
API [AWS25g]. It is important to note that a model must not only support the Con-
verse API but must also fully process the messages[] schema according to the
conventions used by OpenAI and Anthropic [Ser25, AWS25d, AWS25f, AWS25h].
Only such models are fully compatible with DeepEval through the LangChain
framework and the ChatBedrock class. Furthermore, the selected model must o!er
multilingual capabilities, in particular support for German, since both the context
documents and the generated questions are in German. Lastly, regional availability
must be verified to ensure that the model is available in the designated AWS region for
deployment [AWS25e]. Based on these criteria, the remaining candidate models were
evaluated and are shown in Table 4.3.
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Table 4.3: Exclusion criteria for candidate GenAI models for synthetic data generation
in DeepEval

Model Exclusion Criteria for Selection

Anthropic Claude 3.5
Sonnet

None. Strong contextual understanding [Len24]. Delivers consistent and
robust evaluations [Jau24]. Highly suitable for evaluation purposes due
to its strong contextual understanding.

Mistral Large Already deployed in the RAG component of the application. Re-use was
avoided to minimize model overlap.

Meta LLaMA Only available in AWS Bedrock via provisioned throughput, which was
not suitable for this project due to higher operational costs and lack of
on-demand availability in the designated region.

Writer Palmyra X5 Not available in the designated region. Additionally, there is limited
publicly available documentation or benchmarking data regarding its
suitability for synthetic dataset generation.

Based on the selection criteria and the exclusion conditions summarized in Table 4.3,
only Claude 3.5 Sonnet remained as a viable option. Writer Palmyra X5, which
was initially considered for dataset generation to avoid model overlap, had to be excluded
due to its unavailability in the target AWS region. Consequently, Claude 3.5 Sonnet
was selected for both synthetic dataset generation and evaluation (see justification in
the following section 4.2.5). To address the associated risk of model bias and reduced
diversity, all generated outputs were manually reviewed and revised where necessary to
ensure high quality and minimize model-specific artifacts.

Implementation Note: Although DeepEval in principle supports the automated
generation of synthetic test data through integration with LangChain and AWS
using the Converse API (accessed via boto3), the practical implementation turned
out to involve significant complexity that exceeded the intended project scope. The
current version of DeepEval does not account for repeated throttling behavior on
the AWS side. Mitigating this issue would have required either batching requests or
implementing an exponential backo! mechanism, both of which would have necessitated
substantial modifications to DeepEval’s internal scripts, resulting in a disproportionate
implementation e!ort. Consequently, automated test data generation was omitted.
Instead, 50 evaluation samples were manually curated from the available PDF documents
to form a manually curated dataset 3.3.7. This alternative still enabled meaningful
end-to-end evaluation of answer quality, as the manually curated dataset maintained a
high level of content quality. Additionally, this approach mitigated the risk of bias and
overfitting that could have arisen from using the same model for both data generation
and evaluation. Full automation remains a potential enhancement for future iterations
of the system (see Section 6.3).
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2.2 Use in Automated End-to-End Evaluation. Amazon Bedrock provides a lim-
ited set of GenAI models specifically designated for evaluation tasks in RAG applica-
tions [AWS25c]. These are categorized as supported evaluator models for (1) built-in
metrics and (2) custom metrics. For this implementation, only the latter are relevant,
as DeepEval requires evaluator models that support custom metric definitions and
chat-based interfaces. In addition to technical capabilities, further aspects must be
considered in the selection process. As previously discussed, regional availability plays
a crucial role [AWS25e]. Based on the above requirements, the supported evaluator
models for custom metrics were assessed and are summarized in Table 4.4.

Table 4.4: Exclusion criteria for candidate GenAI models for automated evaluation in
DeepEval

Model Exclusion Criteria for Selection

Mistral Large Already deployed in the RAG component. Re-use was avoided to prevent
model overlap.

Claude 3.5 Sonnet None. Strong contextual understanding [Len24]. Delivers consistent and
robust evaluations [Jau24].

Claude 3.7 Sonnet Technically accessible via cross-Region inference but not natively available
in the selected AWS region [AWS25e]. To minimize latency and ensure
data locality, this option was excluded. Despite being a newer version of
Claude 3.5 Sonnet, availability constraints were prioritized.

Claude 3 Haiku 3.5 Technically accessible via cross-Region inference but not natively available
in the selected AWS region. Additionally, outperformed by Claude 3.5
Sonnet in multiple benchmarks [Tea24].

Claude 3 Haiku 3 Technically accessible via cross-Region inference but not natively available
in the selected AWS region. Predecessor of Haiku 3.5.

Meta LLaMA 70B In-
struct

Only available in AWS Bedrock via provisioned throughput, as shown in
the AWS console at the time of implementation. Since on-demand access
was not available in the designated region, and provisioned throughput
incurs higher costs and setup e!ort, the model was excluded.

Amazon Nova Pro Limited public documentation on evaluation performance. Inference calls
can take up to 50 minutes, requiring extensive timeout configuration (60
minutes) [AWS25a] and significantly delaying response cycles. Due to
these ine"ciencies, the model was excluded.

Based on the criteria and the comparative analysis, Claude 3.5 Sonnet was selected
for the evaluation process. The model was chosen due to its proven contextual reasoning
capabilities and its ability to produce stable, consistent evaluations across various task
domains.
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4.2.6 Embedding Model Selections

As outlined in Section 4.2.5, di!erent embedding models were utilized depending on the
specific application context. This section provides an overview of which embedding model
was employed for each use case. The structure follows the categorization introduced in
Section 4.2.5, namely: (1) RAG application, and (2) evaluation tool.

1. RAG Application

As of May 2025, AWS provides only two embedding models. For the RAG-based chatbot,
the Titan Embeddings v2 model was selected. This model is capable of processing
and vectorizing text in multiple languages and is well-suited for general-purpose retrieval
tasks.

2. Evaluation Tool

In contrast to the RAG application, the embedding model within the evaluation tool
is used exclusively for the generation of synthetic data. More specifically, it serves to
vectorize the entire context corpus, enabling the system to retrieve relevant segments and
generate appropriate question-answer pairs based on a given query and the vectorized
dataset. For this task, the Cohere Embed 3 Multilingual model was selected,
primarily due to its strong multilingual capabilities, including reliable support for the
German language.

Implementation Note: Please note that the generation of synthetic data was ulti-
mately replaced by a manually curated dataset 3.3.7, as discussed in Section 4.2.5.

4.2.7 Evaluation Framework Selection

As discussed in Section 3.3.5, RAG systems can be evaluated using either benchmarks or
automated end-to-end evaluation. This implementation focuses on automated evaluation
to gain more granular insights into response quality. This section is structured into
three parts: First, an overview of available evaluation tools is provided. Then, their
respective evaluation metrics are presented. Finally, the tools are compared and one is
selected for implementation.
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Overview of Evaluation Tools

RAGAS. The Retrieval-Augmented Generation Assessment System (RAGAS) origi-
nally designed for reference-free evaluation, leveraging LLMs to automate the assessment
process [Es24]. With the later introduction of non-LLM-based metrics, the framework
has been extended to support reference-based evaluation, enabling comparison against
synthetic or human-annotated datasets. Notably, several RAGAS metrics can be applied
in both LLM-based and non-LLM-based evaluation settings, depending on the specific
requirements of the application context [Rag25i]. RAGAS o!ers a broad set of evaluation
metrics.

ARES. The Automated Retrieval-based Evaluation System (ARES) introduces a frame-
work for evaluating RAG systems, focusing on the quality of retrieved information
and the relevance of the generated responses [SF23]. These aspects correspond to the
evaluation targets ET1 and ET2 (see Section 3.3.1). The approach comprises (1)
generating synthetic QA pairs from corpus passages using a LM, (2) fine-tuning three
lightweight judge models to evaluate ARES’s core metrics of context relevance, answer
faithfulness and answer relevance, and (3) applying Prediction-Powered Inference (PPI)
[Ang23] to estimate statistically reliable confidence intervals based on a small set of
human-annotated data.

TruLens. Gao et al. introduced TruLens as another evaluation tool applicable to
RAG systems [Gao24]. TruLens also contributed to formalizing the concept of the
RAG Triad, as outlined in Section 3.3.4 of Chapter Concept. It is a software tool
designed to assess the quality and e!ectiveness of LLM-based applications through the
use of feedback functions. These functions are not limited to post-hoc evaluation but
can also be applied at runtime, providing dynamic feedback to iteratively improve the
RAG pipeline. For instance, context relevance can be used as a guardrail to filter out
irrelevant information before it is passed to the LLM, thereby reducing hallucinations
and enhancing e"ciency.

It provides a rich set of metrics, including RAG-specific ones, and supports human-
in-the-loop feedback. DeepEval is designed for use in production environments with
integration capabilities for CI/CD pipelines and a complementary cloud platform called
Confident AI [Dee25h].

LangSmith. Is a observability and evaluation platform from LangChain to monitor
AI applications perfomance. It can be used with or without LangChain. LangSmith
follows a three-stage evaluation workflow: (1) instrumenting observability features such
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as metrics and alerts, (2) collecting performance data during live tra"c for scoring and
feedback, and (3) iteratively refining prompts with version control and collaboration
tools.

Evaluation Metrics per Tool

The following section presents the evaluation metrics o!ered by each framework, with
definitions and references. The metrics are organized per tool to ensure clarity and
comparability.

Table 4.5 lists the core metrics supported by RAGAS, including both LLM-based and
non-LLM-based evaluation options.

ARES and TruLens implement comparable evaluation metrics that align with similar
quality objectives, although both frameworks employ di!erent terminology. For clarity
and comparability, these are presented jointly in Table 4.6.

Table 4.6: Shared metrics in ARES and TruLens

Evaluation
Tool(s)

Metric Description Source

ARES, TruLens

Context Relevance Evaluates how well the retrieved context
aligns with the information need of the
query. Corresponds to QS1 (see Sec-
tion 3.3.2).

[SF23], [Tru25b]

Answer Faithful-
ness/Groundedness
(ARES/TruLens)

Assesses whether the generated response
is faithful to the retrieved context. Corre-
sponds to QS2 (see Section 3.3.2).

[SF23], [Tru25b]

Answer Relevance Measures how relevant the generated an-
swer is to the original user query. Corre-
sponds to QS3 (see Section 3.3.2).

[SF23], [Tru25b]

The following Table 4.7 provides an overview of the metrics implemented in DeepEval
for evaluating RAG system performance. All listed metrics apply the LLM-as-a-judge
paradigm and provide justifications for the assigned scores. In addition, to the standard
RAG-specific metrics, two further metrics called G-Eval and RAGAS are included due
to their relevance for specialized or extended evaluation needs.

LangSmith provides a variety of evaluation metrics, including specific ones for RAG
systems. A fundamental distinction is made between whether a reference output is
required and which evaluation mode is applied [Lan25a]:

• O!ine evaluation: Used when prompts require a reference output. Commonly
applied in answer correctness evaluation, where ground truth answers are available.
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Table 4.5: RAGAS metrics

Evaluation
Tool

Metric Description Type Source

RAGAS

Context Precision Measures the proportion of relevant infor-
mation in the retrieved context, based on
the traditional Precision metric (see Sec-
tion 1).

LLM-based
Non-LLM-based

[Rag25b]

Context Recall Measures the proportion of relevant in-
formation successfully retrieved from the
available sources, based on Recall (see Sec-
tion 2).

LLM-based
Non-LLM-based

[Rag25c]

Context Entities Re-
call

This metric is an advanced version of the
Recall metric, which assesses the recall of
retrieved context based on the number of
relevant entities.

LLM-based [Rag25a]

Noise Sensitivity Measures robustness against irrelevant or
noisy input. Aligns with ability RA1 (see
Section 3.3.2).

LLM-based [Rag25h]

Response Relevancy Assesses how well the generated response
addresses the query. Maps to quality score
QS3 (see Section 3.3.2).

LLM-based [Rag25j]

Faithfulness Evaluates whether the generated response
remains truthful to the context. Aligned
with QS2 (see Section 3.3.2).

LLM-based [Rag25d]

When using LangChain as the LLM framework, RAGAS recommends additional metrics:

LLMContextRecall Assesses the alignment between retrieved
context and reference answer, estimating
recall without manual annotations. Com-
putes TP and FN based on their compari-
son, following the principles of the Recall
metric (see Section 2).

LLM-based [Rag25g, Rag25e]

Factual Correctness Assesses factual accuracy by comparing
the response to a reference using Precision,
Recall, and F1 (see Sections 1, 2, 3). Em-
ploys claim-based evaluation and natural
language inference.

LLM-based
Non-LLM-based

[Rag25f, Rag25e]

Faithfulness Also part of the core RAGAS metrics but
explicitly recommended for RAG evalua-
tion with LangChain.

LLM-based [Rag25e]

• Online evaluation: Applied for prompts that do not require a reference. Suitable
for real-time or streaming applications.

• Pairwise evaluation: Compares answers from di!erent RAG chains based on
user-defined criteria (e.g., tone, style), rather than factual correctness.

All LangSmith metrics follow the LLM-as-a-judge paradigm. The following Table 4.8
provides an overview of relevant metrics.
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Table 4.7: Overview of DeepEval metrics for evaluating RAG systems.

Evaluation
Tool

Metric Description Source

DeepEval

Answer Relevancy Assesses how relevant the actual output pro-
duced by the LLM is with respect to the in-
put. This metric corresponds to QS3 (see
Section 3.3.2).

[Dee25a]

Faithfulness Evaluates whether the actual output is fac-
tually consistent with the retrieved context.
This corresponds to QS2 (see Section 3.3.2).

[Dee25e]

Contextual Precision Derived from classical precision (see Sec-
tion 1). Evaluates whether the most rele-
vant nodes in the retrieved context are ranked
higher than irrelevant ones, based on semantic
alignment.

[Dee25b]

Contextual Recall Based on classical recall (see Section 2). As-
sesses how well the retrieved context seman-
tically covers the key information from the
expected output, allowing flexible, meaning-
based comparison.

[Dee25c]

Contextual Relevancy Evaluates the overall semantic relevance of the
retrieved context with respect to the input.
This corresponds to QS1 (see Section 3.3.2).

[Dee25d]

Additional Evaluation Metrics:

G-Eval A flexible evaluation framework that com-
bines the LLM-as-a-judge paradigm with CoT
prompting. It enables the evaluation of LLM
outputs against custom, user-defined criteria
and is particularly suited for subjective or
use-case-specific assessments.

[Dee25f]

RAGAS DeepEval integrates the RAGAS library,
which includes the following metrics:
RAGASAnswerRelevancyMetric,
RAGASFaithfulnessMetric,
RAGASContextualPrecisionMetric,
and RAGASContextualRecallMetric.
While functionally similar to DeepEval’s
native RAG metrics, minor implementation
di!erences exist. For consistency, DeepEval’s
default metrics are generally preferred.

[Dee25i]

Comparison and Evaluation Tool Selection

Building on the previously presented evaluation metrics, the following comparison
provides a structured overview of key evaluation tools for RAG systems. The goal is
to support a transparent and well-founded tool selection process. For each tool, the
supported metrics are listed, along with key advantages and exclusion criteria. The goal
is to provide a transparent rationale for the final tool selection. All tools considered
fulfill the general evaluation targets ET1 and ET2 as defined in Section 3.3.1.
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Table 4.8: Overview of LangSmith metrics for evaluating RAG systems.

Evaluation
Tool

Metric Description Source

LangSmith

Document Relevance Measures how relevant the retrieved context
is to the user query. This aligns with QS1
(see Section 3.3.2).

[Lan25a]

Answer Faithfulness Evaluates whether the generated answer is
grounded in the retrieved context, avoiding
hallucination. Related to QS2 (see Sec-
tion 3.3.2).

[Lan25a]

Answer Helpfulness Assesses whether the answer addresses the
user’s query and provides useful information.
This corresponds to QS3 (see Section 3.3.2).

[Lan25a]

Answer Correctness Compares the generated response to a ground
truth reference to assess factual correctness.
This metric requires a reference output and
conceptually overlaps with both QS2 and
QS3, as it evaluates whether the response is
both grounded and appropriately addresses
the query.

[Lan25a]

Pairwise Comparison Compares two model outputs side by side, use-
ful for evaluating stylistic or preference-based
criteria. Often applied in summarization or
generation quality comparisons.

[Lan25a]

Evaluation Tool Selection. DeepEval was selected as the evaluation framework due
to its robust set of standard RAG evaluation metrics and its extensible architecture
for defining custom criteria. While LangSmith o!ers stronger native integration
with LangChain, DeepEval provides greater long-term flexibility for extending the
evaluation process. Although user-defined metrics via G-Eval were not used in this
thesis, their availability makes DeepEval more suitable for future expansions. A
detailed comparison and justification is provided in Table 4.9.

Metric Selection and Alignment. The selected evaluation framework DeepEval deter-
mines the applied metrics. To assess the system’s retrieval and generation quality, the
following core metrics were used: Answer Relevancy, Faithfulness, Contextual
Precision, Contextual Recall, and Contextual Relevancy. These align with the
defined quality aspects QS1–QS3 (see Section 3.3.2) and operationalize the evaluation
criteria introduced in Section 3.1.3, such as Document Relevance, Answer Precision,
and Hallucination Resistance.

While DeepEval o!ers G-Eval for implementing custom metrics, this thesis prioritizes
standardized evaluation to ensure comparability and reproducibility. Future extensions
could integrate G-Eval to address domain-specific quality dimensions once a reliable
baseline has been established.
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Table 4.9: Overview of selected evaluation tools for RAG systems with advantages and
exclusion criteria

Evaluation
Tool

Aspects /
Abilities

Metrics Advantages Exclusion Criteria Source

RAGAS QS1, QS2,
QS3, RA1

Context Precision,
Context Recall,
Context Entities Recall,
Noise Sensitivity,
Response Relevancy,
Faithfulness,
LLMContextRecall,
Factual Correctness

Hybrid evaluation
(reference-based and
reference-free). No
human-annotated dataset
required (if preferred).
Dataset can be generated
by LLM. Faster evaluation
due to lack of human
annotation.

Familiarity bias: Prefer-
ence for predictable phras-
ing.
Skewed rating distribu-
tions: Inconsistent scoring,
limits comparability.
Anchoring e"ects: Early
judgments influence later
ratings.

[Wan23c]

ARES QS1, QS2,
QS3

Context Relevance,
Answer Faithfulness,
Answer Relevance

E"cient evaluation with
minimal human annotation
(150–300 data points).
Improved accuracy
compared to the RAGAS
framework (as of March
2024).

Limited annotation
scale: More labeled data
required for higher
reliability.
High computational
demand: Requires 32GB
GPU memory and
substantial runtime.
Language restriction:
Currently supports only
English (as of March
2024).
Other: No support for
generating synthetic
datasets

[SF23]

TruLens QS1, QS2,
QS3

Context Relevance,
Groundness, Answer
Relevance

Implements the RAG
Triad metrics and allows
the definition of custom
evaluation functions via its
feedback function API,
o!ering flexibility for
use-case-specific quality
assessments.

No support for generating
synthetic datasets. Focuses
solely on evaluation of
existing outputs

[Tru25b, Tru25a]

DeepEval QS1, QS2,
QS3

Answer Relevancy,
Faithfulness,
Contextual Precision,
Contextual Recall,
Contextual Relevancy,
G-Eval,
RAGAS

In addition to standard
RAG metrics, DeepEval
supports G-Eval, enabling
the definition of custom
evaluation criteria for
domain-specific or
subjective tasks. It also
o!ers CI/CD integration,
making it well-suited for
continuous evaluation in
production environments.
The framework
additionally supports
RAGAS-based metrics for
broader compatibility.

While highly versatile,
certain advanced use cases
may still require
adaptation or additional
customization, as
DeepEval is actively
evolving.

[Dee25h]

LangSmith QS1, QS2,
QS3

Document Relevance,
Answer Faithfulness,
Answer Helpfulness,
Answer Correctness,
Pairwise Comparison

Well-suited for
LangChain-based
applications, as it
originates from the same
development environment.
This facilitates seamless
integration, systematic
evaluation, and iterative
improvement of RAG
systems. LangSmith
supports both online and
o#ine evaluation modes as
well as pairwise
comparisons and can be
combined with unit tests.

Currently, it does not o!er
fully user-defined
evaluation metrics (e.g., as
provided by DeepEval’s
G-Eval).

[Lan25a]
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4.3 Retrieval Method Selection and Functional Categorization

In line with the advanced RAG architecture described in Section 2.4.3, the retrieval
process in this thesis is structured into four functional stages: indexing, pre-retrieval,
core retrieval, and post-retrieval. This staged decomposition aligns with the failure point
categorization defined in Category C1, which addresses key challenges in information
preparation. It therefore serves as a conceptual and operational framework for selecting
and assigning retrieval methods to specific mitigation tasks.

Specifically, this section addresses FP2 (Missed the Top Ranked Documents), FP3
(Irrelevant Context), and FP4 (Noise Overload), due to their significant influence
on context quality. The embedding model used throughout the retrieval process was
constrained by infrastructure limitations on AWS and is discussed separately in Section
4.2.6.

While FP7 (Incomplete Answers) also falls under Category C1, it is not addressed in
detail in this work due to time constraints.

4.3.1 Indexing

The indexing stage serves as the initial step in the retrieval pipeline and is responsible
for preparing documents in a structured and retrievable format. Within this stage,
chunking plays a central role by defining the granularity of retrievable units and thereby
directly influencing retrieval e!ectiveness.

Chunking Strategy. Although not a retrieval method in the strict sense, the chunking
strategy is a foundational aspect of the pre-retrieval stage. It structures retrievable units
and mitigates FP4 by carefully balancing chunk size and overlap: overly small chunks
risk omitting relevant context, while excessively large ones may introduce irrelevant
content. Similar chunking considerations were proposed in [Guu20, Kar20].

4.3.2 Pre-Retrieval Method Selections

In the implemented retrieval setup, the pre-retrieval stage was designed to optimize
input representations before document retrieval takes place. Two key components were
incorporated at this stage: a carefully defined chunking strategy, which determines the
structure and granularity of retrievable units, and the use of multi-query rewriting to
improve query formulation and increase document coverage.
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4.3 Retrieval Method Selection and Functional Categorization

MultiQueryRetriever. The MQR used in this setup aligns with the approach described
in the Concept chapter and is implemented via LangChain [Lan25d]. While not derived
from a specific paper, it follows the same core idea: generating diverse reformulations of
the user query, retrieving documents for each variant, and aggregating the results. This
improves coverage and reduces irrelevant context, thereby mitigating FP3.

4.3.3 Core-Retrieval Method Selections

This stage targets the core retrieval process, primarily addressing FP2 and FP3.
Depending on the specific retrieval configuration, both dense and sparse techniques are
employed. Additionally, FP4 is partially mitigated through reranking strategies.

Similarity Search. As described in Section 3.2.3, Similarity Search is a dense retrieval
method that identifies semantically similar sentences via vector comparison in embedding
space. It enhances recall and helps mitigate FP2.

BM25. The sparse retrieval baseline BM25 estimates document relevance based on
TF, IDF, and length normalization. It serves as a strong complement to dense methods
by boosting keyword-matching performance, thereby addressing both FP2 and FP3.

MMR. As a reranking strategy, MMR balances query relevance and content diversity
across retrieved candidate documents. This helps reduce redundancy (FP2) and pro-
motes coverage of complementary information, which may also contribute to mitigating
irrelevant context (FP3) and, to some extent, noise overload (FP4).

4.3.4 Post-Retrieval Method Selections

At the end of the retrieval pipeline, two post-retrieval methods are employed to refine
the quality and relevance of retrieved content before generation.

ParentDocumentRetriever. This LangChain method [Lan25e] builds on the Parent-
Child Embedding strategy described in the Concept chapter. While the initial retrieval
is conducted over fine-grained child chunks stored in a vector database, the final context
returned to the LM includes their corresponding parent documents. This design allows
for more coherent and informative inputs at generation time and is therefore categorized
as a post-retrieval method. By expanding the retrieved context to the parent level,
the method enhances semantic completeness and mitigates FP3. However, due to the
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inclusion of broader textual segments, it may also introduce additional noise, potentially
increasing the risk of FP4.

EnsembleRetriever. Implemented via LangChain [Lan25b], this method combines the
outputs of multiple retrievers using the RRF algorithm. RRF reranks documents by
aggregating their ranks across di!erent retrieval outputs, giving preference to consistently
high-ranked results. This improves robustness and recall, mitigating FP2 and FP3.

ContextualCompressionRetriever. As discussed in Contextual Compression, this
method reduces noise by retaining only the most relevant portions of retrieved documents.
The implementation used in this setup is based on LangChain and includes two types
of compression strategies [Lan25c]:

• LLMChainFilter: Filters entire documents based on their relevance to the query,
thereby mitigating FP3.

• LLMChainExtractor: Extracts only the most relevant content spans from each
document, addressing both FP3 and FP4.

These post-retrieval mechanisms enhance precision and ensure that the generation model
receives focused and contextually appropriate input.

4.4 Evaluation Integration and Synthetic Dataset Generation

As discussed in Section 4.2.7, DeepEval was selected as the evaluation framework
for this study. Section 3.3.7 outlined potential strategies for constructing evaluation
datasets. This chapter describes how DeepEval was technically integrated into the
system and explains the process of generating and validating synthetic evaluation data.
Implementation-specific adjustments for AWS compatibility and custom components
are also addressed.

4.4.1 Synthetic Dataset Generation

The evaluation dataset was designed around administrative directives (Weisungen)
to assess whether the chatbot can e!ectively handle legal content and assist users in
locating and referencing specific regulations in public administration contexts.

To generate synthetic evaluation data, referred to as ‘goldens’ in DeepEval, a custom
script was implemented based on the o"cial documentation [Dee25h]. Since the default
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configuration uses ChatGPT, custom embedding and response models were integrated
to comply with AWS infrastructure constraints. The generate_from_documents
function was used for question generation, as the source documents were well-suited for
this approach.

As detailed in Section 4.2.5, fully automated dataset generation was ultimately omitted
due to integration limitations and reliability issues with AWS. Instead, a manually
curated dataset of 50 evaluation samples was used. The structure of the evaluation
samples is summarized in Table 4.10.

Table 4.10: Structure of evaluation samples

Field Description

Input User query provided to the system

Context Retrieved context passages

Source File Origin of retrieved documents

Expected Output Ground-truth answer

Actual Output Not applicable during dataset generation

4.4.2 Automatated End-to-End Evaluation Integration

Building upon the selected evaluation metrics 4.2.7, the end-to-end evaluation process
was implemented using DeepEval’s framework [Dee25h], with necessary adaptations
for AWS-based models used for embedding and generation (see Section 4.1). JSON
formatting issues, mainly caused by escaped characters such as \", leading to invalid
evaluation inputs. Since LangChain did not provide a su"ciently robust JSON parser
for the evaluation process, a custom solution was implemented to maintain input
consistency and prevent evaluation failures.

To accelerate the evaluation process, the golden sample assessments were parallelized.
Additionally, custom threshold values were set for each metric to reflect the open-ended
nature of QA tasks (see Table 4.11 for an overview).

Table 4.11: Evaluation Metrics and Thresholds

Metric Threshold Description

Contextual Precision 0.6 Tolerates minor irrelevant content if core information is present

Contextual Recall 0.7 Ensures that most relevant context is captured

Contextual Relevancy 0.7 Balances approximate matches and semantic fidelity

Answer Relevancy 0.75 Enforces alignment between question and response

Faithfulness 0.8 Prioritizes factual correctness and discourages hallucinations
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The defined thresholds aim to balance tolerance for variation in natural language with
the need for semantic accuracy and alignment with the retrieved context.

4.5 System Integration

This section outlines how the selected retrieval methods were integrated into the system
architecture. To enable a comparative analysis, three RAG-based chatbot variants were
implemented, each representing a distinct retrieval configuration.

A shared preprocessing step is the chunking strategy, which will be introduced first,
as it serves as a common foundation for all variants. All approaches also share the
same generation component: the Mistral Large LM with a temperature setting of 0,
ensuring deterministic outputs strictly grounded in the retrieved context.

While the selected evaluation metrics (see Section 4.2.7) cover key quality criteria
such as Document Relevance, Answer Precision and Hallucination Resistance, they
do not include system e"ciency. Therefore, a custom timer was implemented in all
approaches to measure average response time as an additional evaluation dimension.

The document corpus stored in the Chroma vector database consists of 107 o"cial
directives derived from SGB I, SGB II, and selected sections of SGB III, specifically
covering general provisions, unemployment insurance, and activation and reintegration
policies.

In addition, the corpus includes recent administrative guidelines such as 202401006,
202401009, and 202406008, reflecting updated legal interpretations resulting from
legislative changes. Their inclusion ensures comprehensive coverage of current regulatory
developments.

4.5.1 Chunking Strategy Across All RAG Approaches

A uniform chunking pipeline was applied across all systems to ensure consistent and
high-quality retrievable units. This process minimizes noise and preserves contextual
coherence. The key preprocessing steps include:

• Removal of formatting artifacts (e.g., hyphens, excess whitespace, tables of
contents).

• Exclusion of low-value segments (e.g., recurring headers and footers).

• Selective inclusion of metadata to enrich document context.
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• Preservation of cohesive structures (e.g., tables, bullet lists).

• Vector storage with timestamping and hashing to prevent duplication.

• Filtering of irrelevant or meaningless chunks (e.g., placeholder pages, isolated
footnotes).

• Table extraction using PyMuPDF to preserve structure and semantics.

4.5.2 Approach 1: Naive RAG-based Chatbot.

This baseline system uses a conventional RAG pipeline with dense retrieval (see Fig-
ure 4.1, left section). The chunking configuration from Section 4.5.1 is applied (chunk
size: 400 tokens; overlap: 100). Retrieval is performed using a dense vector store
with Similarity Search as the method, returning the top-7 results. This setup helps
mitigate FP4 through noise-aware chunking.

4.5.3 Approach 2: Hybrid Multi-Query RAG Chatbot.

This variant combines Multi-Query Retrieval and BM25 in a hybrid setup (see
Figure 4.1, middle section). The MultiQueryRetriever generates three query
reformulations, each executed via dense retrieval. MMR reranks the top-10 candidates
to select 5 final documents, using lambda_mult = 0.98 emphasizes relevance over
diversity in the selection process. BM25 returns the top-3 results based on lexical
scoring. The outputs are merged via LangChain’s EnsembleRetriever (weights:
0.6 Multi-Query, 0.4 BM25). LLMChainFilter was initially used for compression
but was replaced by LLMChainExtractor due to over-filtering (see Section 4.3.4).
This setup addresses FP3 and FP4 by enhancing retrieval coverage and precision.

4.5.4 Approach 3: Hybrid Parent-Document RAG-based Chatbot.

This variant incorporates the Parent-Child Embedding strategy (see Figure 4.1,
right section). Child chunks (400 tokens with 100-token overlap) are embedded into the
Chroma vector database, while parent chunks (2000 tokens with 200-token overlap) are
stored locally. Initial retrieval is performed on the child chunks, and the corresponding
parent segments are returned via the ParentDocumentRetriever (top-5 results).
Retrieval uses a dense vector store with Similarity Search as the primary method.
Additionally, BM25 retrieval contributes three additional results. Both result sets are
merged using the EnsembleRetriever, weighted at 0.8 for parent-based retrieval
and 0.2 for BM25.
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To mitigate potential redundancy from large parent chunks, a custom duplicate filtering
mechanism is applied. The ContextualCompression module was excluded due to
its latency overhead. This setup addresses FP3 and FP4 by expanding context and
reducing noise, while also supporting FP2 through ensemble-based retrieval.

Figure 4.1: Own illustration of the architectural design of all three approaches, adapted
from [Gao24].

74



5 Evaluation

This chapter evaluates the selected RAG approaches using the previously defined criteria
and metrics. The analysis is based on the adapted SACAM methodology (see Section
1.3) and addresses research questions RQ3 to RQ5 (as introduced in Section 1.2).

5.1 Objectives of the Evaluation

The evaluation aims to systematically assess the selected RAG approaches with respect
to their e!ectiveness, reliability, and suitability for QA scenarios. It follows a structured
procedure to define evaluation criteria and link them to specific system functions.

In order to answer the main research question (RQ1), the following sub-questions guide
the evaluation:

• RQ3: What evaluation metrics should be used to assess and compare RAG
approaches in terms of performance and reliability?

• RQ4: How do the selected RAG approaches perform according to the defined
evaluation criteria?

• RQ5: What impact do these RAG approaches have on the resulting response
quality, particularly regarding accuracy, relevance, and coherence?

5.2 Evaluation Design and Setup

This section outlines the technical setup, data foundation and evaluation procedures
used in line with the overall methodology introduced earlier.
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5.2.1 Evaluation Dimensions and Criteria

The evaluation is structured along several core dimensions to ensure comparability and
to cover relevant system characteristics. The following summary outlines the key focus
areas of the evaluation:

Application Context: Within the scope of QA tasks (see Section 3.1), three RAG
approaches are subjected to comparative evaluation, with the objective of con-
tributing to the resolution of the main research question RQ1.

Evaluation Criteria: The evaluation is guided by quality dimensions tailored to QA
tasks. These were derived in the context of this study and include: Document Rel-
evance, Answer Precision, Response Time/Latency and Hallucination Resistance
(see Section 3.1.3).

Retrieval Types: The evaluated RAG approaches make use of both dense and hybrid
retrieval strategies (see Section 4.5).

Evaluation Targets: Based on the Evaluation Criteria and the focus on Category
C1, ET1 is of primary relevance. ET2 is additionally included to examine whether
the results from ET1 have an observable e!ect on the generated responses.

Robustness Evaluation: In addition to the primary Evaluation Targets, selected
failure points (FPs; see Section 5.2.2) are mapped to the defined Required Abilities
(RAs; see Section 3.3.2) to assess each system’s behavior under challenging
retrieval conditions (see Section 5.4.2).

5.2.2 System Integration and Method Assignment

The applied technologies have been described in detail in the implementation chapter
(see Section 4.1). Section 4.3 introduced the selection and categorization of retrieval
methods, along with their mapping to Category C1 and the corresponding to FP2,
FP3, and FP4. Although FP7 also belongs to Category C1, it is not included in the
evaluation due to its specific requirements regarding multi-document reasoning.

Building on this, the integration of the three distinct RAG approaches for comparative
evaluation is discussed in Section 4.5. The underlying corpus includes a domain-specific
dataset of 107 legal directives from SGB I, II and III, ensuring coverage of recent
legislative amendments and current administrative directives.
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5.2.3 Evaluation Integration and Metric Assignment

The selection of evaluation metrics (see Section 4.2.7) was guided by a multi-stage
derivation process. Initially, key evaluation criteria were conceptually defined in Sec-
tion 3.1.3, based on quality demands in QA-focused RAG systems. These included
Document Relevance, Answer Precision, Response Time, and Hallucination Resistance.

These criteria were then abstracted into three Primary Quality Score (QS1-QS3) as
outlined in Section 3.3.2. They can be mapped to the overarching evaluation dimensions
of the RAG Triad (see Section 3.3.4). These dimensions served as the theoretical basis
for metric selection.

DeepEval was chosen as the evaluation framework due to its modular design and its
ability to operationalize these dimensions using automated metrics (see Section 4.4.2).
The following threshold settings for each metric were selected:

• Contextual Precision: 0.6

• Contextual Recall: 0.7

• Contextual Relevancy: 0.7

• Answer Relevancy: 0.75

• Faithfulness: 0.8

Since DeepEval does not natively support latency measurements, the evaluation
criterion Response Time/Latency was implemented separately using custom timers
in each RAG component (see Section 4.5). This ensured full operationalization of all
originally defined evaluation criteria.

The initial idea of automated dataset generation was omitted due to technical constraints
and integration overhead with AWS, as detailed in Section 4.4.1. Instead, 50 high-
quality samples were manually curated to enable meaningful evaluation and avoid
potential model bias and overfitting.

For automated evaluation tasks, Anthropic Claude 3.5 Sonnet was used as the
underlying LM, and Cohere Embed 3 Multilingual served as the embedding model
for context representation (see Section 4.1).
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5.3 Implementation and Execution

Building on the metric configuration and tool selection described above, the evaluation
was carried out using DeepEval’s integrated execution environment. The Confident
AI dashboard was employed to visualize and compare results across all test cases and
RAG approaches.

For each of the 50 evaluation samples, the platform provided structured outputs, includ-
ing the generated answer, expected reference, retrieved context, and the corresponding
metric scores with model-generated justifications. This setup allowed for a transparent
assessment of system behavior under comparable conditions.

Table 5.1: Structure of Evaluation Output per Test Case

Field Description

Test Case Name Unique identifier of the evaluation sample

Success Overall success status of evaluation execution

Input Generated question for the test case

Expected Output Ground-truth answer used for evaluation

Actual Output Model-generated response

The following fields are recorded per metric:

<Metric>_success: Boolean indicating if score passes threshold

<Metric>_score: Computed score (numeric value)

<Metric>_reason: Textual explanation for assigned score

<Metric>_verboseLogs: Detailed logs with model verdicts and statement-level reasoning

<Metric>_threshold: Threshold value applied for this metric

To support the interpretation of metric results, each evaluation instance was manually
reviewed in addition to the automated scoring. This process involved inspecting
the generated output, the retrieved context, the expected answer, and the reasoning
provided by the LLM-as-a-judge (Claude 3.5 Sonnet). The goal was to understand
how specific scores were assigned and to ensure that the evaluation system had accurately
interpreted context and semantic intent. Particular attention was paid to cases where
score justifications appeared unclear or borderline, in order to critically assess the
reliability of the judgment process.

The evaluation platform supported pairwise comparative analysis of the implemented
RAG approaches. By comparing metric values across test cases, it was possible to identify
performance di!erences between two systems at a time. This view enabled the detection
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of recurring patterns, such as one approach consistently achieving higher Contextual
Precision, while another demonstrated stronger Faithfulness. These observations
informed the interpretation of evaluation outcomes and supported answering research
questions RQ4 and RQ5.

Additionally, test cases that exhibited unusual metric combinations or inconsistencies
were documented and analyzed in detail. These qualitative observations are synthesized
in Section 5.4.1 and serve to complement the quantitative evaluation results.

5.4 Evaluation Results

The following analysis addresses the evaluation criteria of Document Relevance, Answer
Precision and Hallucination Resistance through the combined quantitative and qualita-
tive findings presented in Subsection 5.4.1 as well as the subsequent interpretation in
Subsection 5.4.2. The criterion Response Time/Latency, while likewise situated within
Subsection 5.4.1, is examined separately in Subsubsection 5.4.1 using empirical response
time measurements.

Potential threats to validity and limitations of the evaluation setup are discussed in
Subsection 5.4.3, including annotation uncertainty, metric interpretation, and contextual
ambiguity.

5.4.1 Quantitative and Qualitative Results

This section combines quantitative metrics with qualitative findings from selected
cases to evaluate the performance of the three RAG approaches across five dimensions:
Contextual Precision, Contextual Recall, Contextual Relevancy, Answer
Relevancy and Faithfulness.

General Overview

An overview of the average metric scores computed by ConfidentAI for all three RAG
approaches is provided in Table 5.2. Approach 03 achieves the highest values for both
Contextual Precision and Contextual Recall, indicating superior retrieval accuracy
and coverage. In contrast, Contextual Relevancy is highest in Approach 01,
suggesting a stronger alignment between retrieved content and the ground truth in that
case.
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Table 5.2: Comparison of the average metric scores of the three RAG approaches

Metric Approach 01 Approach 02 Approach 03

Contextual Precision 0.72 0.33 0.75

Contextual Recall 0.78 0.76 0.83

Contextual Relevancy 0.59 0.31 0.55

Answer Relevancy 0.98 0.99 0.98

Faithfulness 0.97 0.94 0.96

A visual comparison is provided in Figure 5.1, which illustrates the relative performance
di!erences and highlights key trade-o!s between the approaches. Notably, despite the
retrieval-related advantages of Approach 03, its Answer Relevancy and Faithful-
ness scores are nearly equivalent to those of Approach 01. Moreover, Approach 01
slightly exceeds Approach 03 in Faithfulness (0.97 vs. 0.96). These findings indicate
that improvements in retrieval metrics do not necessarily translate into higher answer
quality. Possible underlying factors, such as contextual alignment, are discussed further
in Section 5.4.2.

Despite relying only on a basic chunking strategy without additional enhancements,
Approach 01 achieves a high Faithfulness score, suggesting that even simple retrieval
setups can yield accurate and consistent answers when the context is well-structured.
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Figure 5.1: Comparison of average metric scores across RAG approaches
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Pass Rate Perspective

A closer inspection of the pass rates in Table 5.3 reveals notable di!erences between
the approaches. For example, although Approach 02 reaches only 6% in Contextual
Precision and 0% in Contextual Relevancy, it achieves a comparable score in
Answer Relevancy (98%) and the highest result in Faithfulness (94%).

Table 5.3: Pass Rate of the three RAG approaches

Metric Threshold Approach 01 Approach 02 Approach 03

Contextual Precision 0.60 80% 6% 80%

Contextual Recall 0.70 68% 64% 72%

Contextual Relevancy 0.70 32% 0% 20%

Answer Relevancy 0.75 98% 98% 98%

Faithfulness 0.80 88% 94% 90%

These discrepancies between ET1 and ET2 are further illustrated in Figure 5.2. The
bar chart provides a visual overview of the pass rate distribution across all metrics,
highlighting how strengths and weaknesses di!er across evaluation dimensions.

C. Precisi
on

C. Recall

C. Relevancy

A. Relevancy
Faithfulness

0

20

40

60

80

100

Pa
ss

R
at

e
(%

)

Approach 01
Approach 02
Approach 03

Figure 5.2: Pass rate distribution across all evaluation metrics for the three RAG
approaches

Case-Based Insights

While the quantitative metrics outline general strengths and weaknesses across ap-
proaches, specific test cases provide deeper insight into how di!erent retrieval dynamics
a!ect answer quality. Table 5.4 highlights selected examples where unusual metric
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combinations occur such as low contextual scores alongside high Faithfulness and helps
explain the interaction between retrieval noise, model behavior, and answer correctness.

Note: The evaluation system refers to the individual context elements retrieved during
information retrieval as nodes. In the context of this thesis, these units are consistently
referred to as chunks. The terms are considered equivalent and interchangeable for
purposes of analysis.

Table 5.4: Summary of selected test cases highlighting key retrieval-to-answer dynamics

Test Case Approach Key Insight Implication

TC6 01 No relevant chunks re-
trieved, but answer is ac-
curate and faithful

LM likely relied on prior
knowledge, high faithful-
ness despite 0.00 in preci-
sion/recall

TC24 01 Retrieved context is plau-
sible but lacks legal speci-
ficity (e.g., no supervisory
complaint)

Faithful output may ob-
scure gaps in retrieval
specificity

TC42 01 The retrieval output lacks
relevant legal provisions,
and the model misin-
terprets the content by
conflating disbursement
waiver criteria with reim-
bursement thresholds. De-
spite the absence of sup-
porting context, it gener-
ates a plausible-sounding
rule based on a misreading
of the 50€ clause.

Demonstrates high answer
relevancy despite low con-
textual and faithfulness
scores. Highlights the risk
of semantically precise hal-
lucinations when no evi-
dential grounding is avail-
able.

TC10 02 Context includes partially
relevant and misleading
content

Model interprets context
slightly wrong, faithful-
ness still above threshold

TC7 02 Relevant chunks present
but diluted by irrelevant
context

Contextual relevancy suf-
fers despite high precision
and faithfulness

Continued on next page
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Test Case Approach Key Insight Implication

TC26 02 Relevant chunks (6–9)
ranked below irrelevant
ones (1–5), despite con-
taining key legal content

Retrieval ranking failure
significantly lowers con-
textual precision, suggests
reranking is essential for
hybrid approaches

TC11 03 The retrieved context cov-
ers approximately 50% of
the expected output. The
generated answer aligns
with the user query and re-
mains faithful to the avail-
able context but does not
include all expected ele-
ments.

The model omits unsup-
ported details instead of
hallucinating, demonstrat-
ing that high faithful-
ness and answer relevancy
are still achievable despite
limited retrieval coverage.

TC14 03 Output directly answers
the question but simpli-
fies legal details (only §104
cited, though §§102–105
are relevant)

High answer relevancy de-
spite low context preci-
sion. Model robust, but
loses legal nuance due to
retrieval ranking and con-
text noise

TC39 03 Answer is factually rele-
vant and well-formulated,
but cites §50 SGB X incor-
rectly instead of §76 SGB
IV, despite the latter be-
ing present in the context.

Reveals a failure of norm
attribution: the LLM
generates legally valid
structure but anchors to
the wrong legal reference.
Highlights the need for
stricter citation grounding
even when faithfulness is
expected to follow from
correct retrieval.

Continued on next page
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Test Case Approach Key Insight Implication

TC19 01/03 Additional reference to
‘tax advisors’ in the out-
put is supported by the
retrieval context

Example of model-driven
context enrichment: rel-
evant supplementary in-
formation improves speci-
ficity without compromis-
ing faithfulness

TC34 01/03 both approaches achieved
an identical Contextual
Relevancy score of 0.48,
despite Approach 03 uti-
lizing a more sophisti-
cated retrieval strategy.

This suggests a limitation
in retrieval e!ectiveness
when relevant information
is diluted by thematically
unrelated content. The
advantage of more com-
plex pipelines diminishes
if no additional context fil-
tering is applied.

TC18 All Low Contextual Pre-
cision (→ 0.50) but
high Answer Relevancy
(↓ 0.80) across all ap-
proaches

Demonstrates model ro-
bustness: relevant an-
swers can still emerge
even when most retrieved
chunks are o!-topic or
poorly ranked. Indicates
possible overperformance
due to LLM generaliza-
tion.

TC31 All All contextual met-
rics failed across all
approaches. While
the generated answers
are relevant, the re-
trieved context lacks
key procedural content
(e.g., mediation process,
suspension of sanctions).

Highlights a blind spot in
the retrieval stack. Calls
for improved filtering or
retrieval augmentation for
procedural legal norms
such as §15a SGB II.

Continued on next page
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Test Case Approach Key Insight Implication

TC36 All All three approaches
achieved an identical
Contextual Recall
score of 0.50, as none
were able to retrieve the
full scope of information
required by the expected
output.

This indicates a system-
atic retrieval gap a!ect-
ing all methods equally.
While core aspects of in-
surance obligation dur-
ing work incapacity were
covered, details on unex-
cused absences were en-
tirely missing from the re-
trieved context. This sug-
gests the need for targeted
retrieval augmentation or
content-aware expansion
to capture procedural nu-
ances.

TC41 All All approaches generate
fully relevant answers
that contradict or par-
tially misrepresent the
context content, particu-
larly regarding whether
maintenance payments
are treated as income.

Reveals a key limitation of
LLMs in legal settings: an-
swers may appear legally
plausible while misalign-
ing with retrieved con-
tent. Highlights the
need for stricter ground-
ing mechanisms beyond
relevance scoring. Faith-
fulness degradation can
occur even with contextu-
ally covered answers.

Additional evaluations of all 50 test cases for each RAG approach are documented in
Appendix 7.

E!ciency of Response Time

To evaluate the Response Time/Latency criterion introduced in Section 3.1.3, the average
response times of each RAG approach were measured. According to Nielsen [Nie94],
response times under one second are perceived as instantaneous, while delays beyond ten
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seconds risk disrupting the user’s cognitive flow and reducing overall interaction quality.
Maintaining low latency is therefore essential for usability in real-world applications.

Approach 03 6.37

Approach 02 7.79

Approach 01 3.92

1 2 3 4 5 6 7 8
Average Answer Time (s)

Figure 5.3: Comparison of the average response generation time (in seconds) for each
RAG approach. Lower values reflect higher response e"ciency.

The results show that Approach 01 delivers the fastest average response time (3.92
seconds), while Approach 02 exhibits the slowest (7.79 seconds). Approach 03 lies
between the two, with an average of 6.37 seconds. Although all approaches remain
below the 10-second threshold for tolerable delays, only Approach 01 comes close
to the 1-second mark that preserves the impression of immediate system feedback.
These di!erences are particularly relevant in practical applications where responsiveness
directly impacts perceived usability, as discussed further in Section 5.4.2.

5.4.2 Interpretation and Discussion

This interpretation is based on the empirical findings presented in Subsection 5.4.1 and
supported by selected examples summarized in Table 5.4.

The evaluation reveals that high answer quality (ET2) does not necessarily stem from
strong retrieval quality (ET1). In test cases such as TC6 and TC18, all models
generated relevant answers despite weak contextual foundations, indicating a certain
generalization capability of the underlying LLM.

Approach 01 – Simple Dense Retrieval
Despite its simple architecture and lower ET1 performance, Approach 01 frequently
achieves solid ET2 results. This suggests that the LLM may compensate for missing
context with pretrained knowledge. However, the retrieved context often contains
incomplete or irrelevant chunks and lacks proper ranking, limiting both Contextual
Precision and Contextual Relevancy.
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Approach 02- Hybrid Multi-Query RAG with Ensemble-Reranking
Approach 02 achieves high Contextual Recall through its multi-query strategy
but su!ers significantly from contextual noise. Marginal or redundant chunks reduce
Contextual Relevancy. The filtering mechanisms (LLMChainFilter/Extractor)
proved either overly restrictive or ine!ective. Similarly, the ensemble reranker fails to
reliably prioritize relevant content (e.g., TC24, TC31). The MMR-based selection
(Top-5) o!ers broader coverage but struggles to balance relevance and information
density.

Approach 03 – Parent-Child Hybrid Retrieval with Ensemble-Reranking
Owing to its parent-child structure, Approach 03 achieves higher average Contextual
Precision than the other approaches (see Figure 5.1). In TC2, a case of semantic
redundancy was observed. While it did not significantly a!ect overall performance, it
indicates potential for improvement in deduplication and ranking logic. In TC39, Faith-
fulness issues arose despite complete context availability, highlighting shortcomings in
the LLM’s legal output. Likewise, TC22 demonstrates that a high Answer Relevancy
score does not necessarily equate to high Faithfulness if the answer includes incorrect
or incomplete legal references.

General Observations
More complex retrieval strategies (Approach 02 and 03) do not inherently lead
to better performance: Approach 01 outperforms others in terms of Contextual
Relevancy in some cases. Test cases such as TC34 and TC41 emphasize that even
advanced pipelines are limited in e!ectiveness without targeted context filtering. In
several instances, a single relevant chunk was su"cient to answer the question, whereas
additional passages diluted the evaluation. This suggests that adaptive retrieval may
be preferable to a fixed top-K strategy.

Evaluation of Failure Points and Mapping to Required Abilities
As outlined in the evaluation framework (see Section 3.3.6), the e!ectiveness of the
system’s retrieval strategies under realistic conditions is assessed by mapping empirically
observed FPs to the defined Required Abilities (RAs). While the Primary Quality Scores
(Section 3.3.2) are operationalized via automatic evaluation metrics (Section 4.2.7), they
alone do not su"ciently capture system robustness. The FPs-RAs mapping enables a
deeper understanding of how well each approach handles challenges such as noisy input,
incomplete evidence, or misleading context.

• RA1 (Noise Robustness) is addressed through FP4 (Noise Overload) and FP3
(Irrelevant Context), which evaluates whether models can generate accurate an-
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swers despite irrelevant or semantically diluted context. Both Approaches 02
and 03 were designed to mitigate this via filtering (e.g., duplicate reduction).
However their practical implementation proved insu"cient. LLMChainFilter
was overly aggressive, while LLMChainExtractor was ine!ective (e.g., TC31).
Approach 03 also showed localized failures (e.g., TC2), indicating unresolved con-
textual noise (FP4). Approach 02 fails to reliably prioritize relevant information
(FP3) despite using MMR and query reformulation (e.g., TC24).

• RA2 (Negative Rejection) is reflected in FP2 (Missed the Top Ranked Docu-
ments), where models ideally should abstain from confident output when relevant
information is absent. This ability was not demonstrated in TC6 and TC42,
where plausible answers were generated despite insu"cient contextual evidence.

• RA4 (Counterfactual Robustness) is linked to FP2 (TC39), where the
model produced a legally plausible but factually incorrect reference despite the
correct context being available. Approach 03, though generally strong due to its
parent-document logic, failed to maintain output fidelity in this instance.

Note: RA3 (Information Integration) could not be evaluated in this thesis, as
FP7 was excluded from the analysis (see Section 5.2.2).

In summary, the FP-based analysis confirms that although mitigation strategies for
the essential abilities were conceptually well-founded and integrated into the system
architectures, their real-world e!ectiveness remained inconsistent and often insu"cient.

Conclusion
Approach 03 produced the highest average scores overall but showed clear limitations in
reranking and exhibited a duplicate handling failure in one isolated case. Approach 02
was most a!ected by contextual noise and unreliable prioritization of relevant informa-
tion. Surprisingly, Approach 01 achieved comparatively stable results and showed
superior performance in Contextual Relevancy compared to the more complex setups.
However, this metric remains limited overall, as only 32% of test cases surpassed the
defined threshold (see Figure 5.2).

With regard to e"ciency, Approach 01 is the fastest, which is unsurprising given its
simpler architecture. Nonetheless, all models maintained acceptable response times (see
Section 5.4.1).

Only a few test cases successfully met the full set of core evaluation metrics defined by the
RAG Triad (see Section 3.3.4). While Approach 03 showed measurable improvements
in Category C1 (Contextual Precision and Contextual Recall), it remains evident
that gains in ET1 do not automatically translate into improved ET2 performance.
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Relation to SACAM and Metrics
The applied metrics were derived from an adapted SACAM framework, primarily
leveraging its structured comparison principles. In contrast to the original scenario-
driven method, this study employs a quantitative, metric-based evaluation tailored to
the RAG context.

Throughout the analysis, Contextual Relevancy and Faithfulness occasionally
followed divergent patterns, for instance when semantically fitting answers lacked
proper legal grounding. This underscores the need for application-specific weighting of
quality criteria. The selected set of di!erentiated metrics (e.g., Contextual Precision,
Contextual Recall, Answer Relevancy) allows for a comparative and nuanced
assessment of all approaches, in line with a pragmatically adapted SACAM methodology.

Relation to Research Questions (RQ3–RQ5)
To conclude the evaluation, the following section explicitly relates the findings to the
previously formulated research questions RQ3 to RQ5.

RQ3: The applied metrics Contextual Precision, Recall, Relevancy, Answer
Relevancy and Faithfulness proved suitable for assessing both ET1 and ET2.
They support a structured and reliable comparison of system performance and
output validity. Their selection was derived from QA-specific evaluation criteria
and implemented using the DeepEval framework and custom latency tracking.
A detailed rationale and configuration can be found in Section 5.2.3.

RQ4: The evaluated RAG approaches di!er significantly in performance:

• Approach 03 achieves the highest average scores but exhibits weaknesses in
reranking and duplicate filtering.

• Approach 02 demonstrates high Contextual Recall but is hindered by
contextual noise and ine!ective filtering.

• Approach 01, while architecturally simpler, achieves notably strong Con-
textual Relevancy and in some respects matches the robustness of the
two more advanced methods, although it shares similar shortcomings in
Faithfulness and ranking.

RQ5: ET2 does not depend strictly on ET1. Several cases (e.g., TC6, TC18) showed
relevant answers despite weak context, highlighting the generalization capacity of
the LLM. Conversely, cases like TC39 or TC22 reveal that even complete context
cannot prevent factually incorrect or legally inaccurate answers, emphasizing the
need for verification mechanisms and domain-specific grounding.
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5.4.3 Threats to Validity

The following limitations outline potential threats to the validity of the conducted
evaluation. They are structured according to four commonly accepted dimensions:
internal validity, external validity, construct validity, and conclusion validity. The
purpose of this section is to reflect critically on the design choices, data foundations,
and interpretation of results.

Internal Validity:

(1) Model-Related Distortions

Model Bias and Prior Knowledge: The evaluated responses were generated by
RAG systems using Mistral Large as the underlying LM. Due to its extensive
pretraining, Mistral may produce high-quality answers even when the provided
context is incomplete or noisy. This can mask weaknesses in retrieval performance
and lead to inflated scores, particularly for metrics such as Faithfulness and
Contextual Relevancy, which assume a direct link between context quality and
answer accuracy.

Semantic Generalization by the Evaluation Model: For the automated as-
sessment of metrics like Answer Relevancy, Contextual Precision, and
Faithfulness, a pre-trained model (Anthropic Claude 3.5) was used. Although
the evaluation is based on structured inputs such as the question, answer, reference,
and retrieved context, the model’s semantic generalization capabilities may lead to
positive ratings even when the context is insu"cient. This reduces the reliability
of tracing answer quality back to retrieval e!ectiveness.

Retrieval–Generation Decoupling: High-quality context retrieval does not always
lead to accurate answers, as the LM may misinterpret or misuse correct inputs.
This undermines a clear attribution of evaluation scores to the retrieval component.
TC39 exemplifies this, with complete context but legally inaccurate output.

(2) Evaluation Uncertainty and Interpretation

Interpretative Analysis of Evaluation Outputs: All test cases were manually
reviewed to assess the plausibility of metric justifications and detect potential
inconsistencies, especially in borderline cases. While this supported the interpre-
tation of results, it introduced a degree of subjectivity that may a!ect internal
validity.
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Metric Misalignment and Interpretation Risk: Isolated metric scores can
occasionally be misleading, especially when surface-level relevance masks factual
or legal deficiencies. This underscores the need for holistic interpretation across
multiple dimensions rather than relying on a single metric. For instance, in TC22,
high Answer Relevancy coincided with low Faithfulness due to incomplete
legal references.

(3) System Complexity and Infrastructure Constraints

Varying System Complexity: The compared RAG approaches were intentionally
designed with di!erent structural complexities, ranging from a simple dense re-
trieval setup (Approach 01) to more elaborate hybrid and reranking pipelines
(Approach 02 and 03). While this supports a realistic system-level compari-
son, the combination of multiple optimization steps complicates attribution of
performance e!ects to specific components, particularly the retriever.

Technical Limitations in the Setup: Certain components (e.g., LLMChainFilter,
LLMChainExtractor) proved ine!ective in practice (see Sections 4.3.4, 5.4.2),
leading to pragmatic adjustments such as omitting compression in Approach 03
and excluding FP7 from the evaluation (see Section 5.2.2). An initially planned
approach for synthetic data generation was dropped due to AWS integration
challenges. Furthermore, using the same model Anthropic Claude 3.5 for both
data generation and evaluation was considered methodologically problematic due
to the risk of bias and overfitting. Instead, 50 manually curated test cases were
used as a fallback to mitigate such risks (see Section 4.4.1)

External Validity:

Domain-Specific Data: The evaluation corpus is limited to 107 German legal
directives (SGB I–III). The results are therefore not necessarily transferable to
other domains, languages, or less-structured datasets.

Limited Test Set Size: Only 50 manually curated test cases were used. While
high-quality, the dataset lacks statistical representativeness and may omit edge
cases or linguistic variation.

Absence of User-Centered Validation: Although response time was measured
empirically, no user-centered evaluation was conducted to assess perceived latency
or overall user satisfaction. This limits the generalizability of the findings to
real-world usage scenarios.
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Construct Validity:

Heuristic Thresholds: The pass/fail cuto!s used in this study (e.g., 0.75 for Answer
Relevancy) are empirically motivated but ultimately heuristic. In safety-critical
or legally sensitive applications, stricter or domain-specific thresholds may be
more appropriate.

Conclusion Validity:

Overinterpretation of Individual Metrics: Strong results in individual metrics,
such as high Faithfulness despite weak context, can create a misleading impression
of system performance. For reliable conclusions, it is necessary to interpret the
combined metric set holistically, as intended by the RAG-Triad approach.

Overgeneralization Risk: Several conclusions (e.g., the surprising performance of
Approach 01) are based on aggregated averages and a small number of qualitative
cases. These insights should be seen as indicative, not definitive, until validated
at larger scale.

Overall, while the evaluation methodology is sound and transparent, the outlined factors
may a!ect the reliability, generalizability, or interpretability of the results. These
limitations should be considered when transferring the findings to other domains or
applications.
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This chapter summarizes the main findings of the thesis, outlines the resulting contribu-
tions, discusses relevant limitations, and identifies directions for future work.

6.1 Summary

This thesis investigated the optimization of RAG systems for domain-specific QA
chatbots, with a particular focus on legal documents. Although the legal domain
served as the primary context throughout the evaluation, it became evident during the
analysis that such use cases require stricter standards regarding contextual accuracy
and faithfulness, as discussed in Section 5.4.3. Five research questions were defined in
Section 1.2 and examined using a structured approach that integrated targeted literature
analysis and comparative system evaluation. The following summarizes the findings with
respect to each sub-research question (RQ2-RQ5). Together, these insights provide
the foundation for answering the main research question (RQ1).

Answer to RQ2:
Which RAG approaches with a focus on information preparation are currently known,
and which of them are suitable for optimizing RAG chatbots in practical applications?

This research question was addressed through a SLR based on the principles proposed
by Kitchenham [Kit07]. While a formal SLR was not fully implemented, the analysis
focused on identifying recent retrieval methods and RAG-specific enhancements (see
Section 3.2.3). These were categorized both in terms of their applicability within the
RAG pipeline and their underlying retrieval model type (e.g., dense, sparse, hybrid). In
addition, the approaches were classified according to their retrieval granularity (e.g.,
chunk-level, token-level, or entity-level) in order to better assess their suitability for
domain-specific QA scenarios.

Answer to RQ3:
What evaluation metrics should be in place to assess and compare RAG approaches in
terms of their performance and reliability?
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The answer to this research question involved a multi-step process, which is described in
detail in Section 5.2.3. Based on the derived evaluation criteria and quality dimensions,
the following metrics were selected:

• Contextual Precision

• Contextual Recall

• Contextual Relevancy

• Answer Relevancy

• Faithfulness

To ensure complete coverage of all defined evaluation criteria, including e"ciency, a
custom timer was implemented in each RAG approach to measure Response Time/La-
tency.

Answer to RQ4:
How do the selected RAG approaches perform according to the defined evaluation criteria?

This sub-research question was addressed in the Evaluation chapter (see Chapter 5). The
results show that Approach 03 achieved the highest overall metric scores, particularly
in terms of contextual precision and recall. Surprisingly, Approach 01, despite its
simpler architecture, demonstrated notably strong contextual relevancy.

Answer to RQ5:
What impact do these RAG approaches have on the resulting response quality, particularly
regarding accuracy, relevance, and coherence?

This question was also answered in the evaluation (see Section 5.4.2). The findings
indicate that ET2 does not strictly depend on ET1. Several test cases yielded relevant
answers even with weak or incomplete context, illustrating the generalization capacity of
the underlying LM. Conversely, some cases showed that even complete context does not
guarantee factually correct or legally accurate responses, which underlines the relevance
of verification mechanisms and domain-specific grounding.

Overall, the results emphasize the importance of interpreting evaluation metrics holis-
tically and demonstrate that architectural complexity does not automatically lead to
higher output quality.
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Answer to the main research question (RQ1)
Which of the existing RAG approaches focused on information preparation hold the
greatest potential to optimize the performance of RAG chatbots while enhancing the
reliability and quality of their responses in practical applications?

The evaluation shows that Approach 03 holds the greatest potential for optimizing
RAG chatbots, particularly due to its strong retrieval performance in terms of contextual
precision and recall. However, its architecture also revealed weaknesses, especially in
reranking e!ectiveness and insu"cient duplicate filtering, which may limit its robustness
in more complex or noisy retrieval scenarios. Its structured retrieval setup ensures
comprehensive and relevant context, which is crucial for reliable response generation.

Nevertheless, the results also highlight that architectural complexity does not automati-
cally guarantee superior output quality. Approach 01, despite its simplicity, achieved
surprisingly strong contextual relevancy and competitive faithfulness.

Ultimately, answer quality depends not only on retrieval but also on the model’s ability
to generalize and the domain’s specific requirements. Especially in sensitive domains
like legal QA, additional verification mechanisms are essential to ensure factual and
contextual accuracy.

Although mitigation strategies for known failure points (FP2–FP4) were conceptually
integrated into the system architectures, their practical e!ectiveness was inconsistent.
Components such as reranking, query reformulation, and context filtering did not reliably
eliminate irrelevant, noisy or insu"cient input. This led to only partial improvements
in robustness and output quality (see Section 5.4.2).

These findings must be interpreted in light of the evaluation’s limitations (see Sec-
tion 5.4.3). In particular, the influence of model bias, the small and domain-specific test
set, and the use of heuristically defined thresholds may a!ect the generalizability of the
results. While Approach 03 showed strong technical potential, its practical advantage
should be validated further in broader, user-centered or domain-independent settings.

6.2 Contributions

Several conceptual, technical, and evaluative advancements were introduced to improve
the design of RAG-based QA chatbot for domain-specific applications. Drawing on
literature review, system implementation, and empirical evaluation, the following con-
tributions extend existing research and provide practical guidance for real-world use
cases.
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Conceptual Framework. A structured taxonomy of RAG applications is developed,
including tailored evaluation criteria for QA-specific use cases. Various retrieval types
and granularities are identified, accompanied by a comprehensive overview of applicable
methods. A core contribution is the design of an evaluation framework that outlines
evaluation targets, quality aspects, and required abilities, all aligned with the RAG
Triad. The framework also clarifies di!erent types of evaluation metrics and their
suitability for RAG system assessment.

Practical System Implementation. The conceptual framework was applied to
implement multiple RAG approaches, focusing on improving information preparation
through pre-, core-, and post-retrieval techniques. Detailed justifications for the chosen
technology stack are provided, o!ering practical guidance. Special emphasis is placed
on retrieval strategy selection and the operational integration of evaluation metrics.

Failure Point Mitigation via Required Abilities. Building on established elements
like FPs and quality metrics, this thesis extends the evaluation methodology by intro-
ducing a systematic mapping between FPs and RAs. This addition supports a more
targeted robustness analysis and complements standard metric-based evaluation.

E#ciency-Oriented Evaluation. In addition to output quality, each RAG approach
was instrumented with response-time measurement to assess practical usability. The
observed average response times reveal trade-o!s between retrieval complexity and
system responsiveness.

Domain-Specific Observations for Legal QA. Although not the initial design
focus, the evaluation surfaced challenges particularly relevant to legal QA scenarios.
These include the importance of contextual accuracy, strict verifiability, and constrained
model generalization. The findings confirm concerns previously identified in LexGLUE
benchmarks [Cha21], neural legal judgment prediction studies [Cha19] and recent RAG-
specific evaluations such as LexRAG [Li25] and demonstrate their practical significance
in real-world RAG-based legal applications.

Together, these contributions o!er both theoretical and practical value for the design,
evaluation, and deployment of robust RAG systems in real-world, domain-sensitive
environments.

6.3 Limitations

This section outlines overarching limitations of the thesis that extend beyond the
methodological risks discussed in the Threats to Validity section (see Section 5.4.3).
While the latter focuses on the internal soundness and external generalizability of the
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evaluation setup, the following limitations reflect broader conceptual, practical, and
domain-specific boundaries of the study.

Limited Focus on Retrieval Quality. The evaluation framework was primarily
centered on assessing ET1, while ET2 was only considered indirectly, specifically
to observe whether improved retrieval context led to better answers. However, the
evaluation revealed that retrieval and generation can behave independently. A more
holistic evaluation would require an expanded framework that equally emphasizes both
components.

Absence of User-Centered Evaluation. The system was evaluated purely on a
technical level without any user feedback or usability testing. Important dimensions such
as perceived latency, trust and user satisfaction were not captured, limiting conclusions
about practical user experience.

Domain Generalization Limitations. While the system was tested using legal
documents, the conceptual framework itself was designed for general QA applications
and does not address domain-specific QA needs such as in legal, medical or technical
contexts. The evaluation surfaced domain-specific issues (see Section 5.4.2) but the
framework does not yet account for them explicitly.

Limited Metric Scope. The evaluation relied on metrics aligned with the RAG
Triad, which are well-established in practice but cover only basic aspects of system
performance. More advanced or task-specific evaluation dimensions (e.g., multi-hop
reasoning, legal soundness, user satisfaction) were not included.

Small and Manually Curated Dataset. The evaluation corpus consisted of 107
German legal directives and 50 manually created QA pairs. These questions were derived
from the content but were not generated or verified by legal experts. Consequently, the
dataset does not support complex or nuanced legal inquiries, limiting the generalizability
of findings. As such, the results should be interpreted as indicative rather than definitive.

No Real-World System Testing. The system was not deployed or tested under
real-world usage conditions. The evaluation does not simulate realistic query tra"c,
diverse user behavior, or integration with external information systems.

Dependency on Automated LLM-Based Evaluation. The evaluation was con-
ducted via automated metrics using LLM-as-a-judge models, which introduces additional
abstraction and possible unreliability (see Section 5.4.3). These models may overgener-
alize or tolerate weak context, limiting the accuracy of some judgments.
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Infrastructure Constraints. Due to limitations with AWS infrastructure, the
originally planned synthetic data generation was not implemented. This restricted the
diversity of the test cases and reduced the scope of scenario coverage.

Emerging Nature of the Research Field. RAG is an emerging area with rapidly
evolving tooling. Many frameworks and best practices are still under development.
Consequently, some design decisions were based on currently available tools that may
change in future work.

Overall, these limitations do not undermine the validity of the findings but help to
contextualize them. The results should be understood as a technically grounded,
exploratory study conducted under controlled conditions. They o!er valuable guidance
for future system design and evaluation, particularly in the area of retrieval quality.
However, further research, broader validation and domain-specific adaptation are needed
before the approach can be considered fully generalizable.

6.4 Future Work

Although the evaluation framework and comparative system analysis have yielded
valuable insights, several open questions and avenues for further research remain. The
following directions highlight potential extensions and refinements to the current work.

Domain-Specific Adaptation. Extend the evaluation framework to account for
domain-specific requirements, particularly for legal, medical or technical/regulatory QA
scenarios. This includes incorporating domain knowledge into the system design and
evaluation logic.

Synthetic Dataset Generation. Enable automated generation of synthetic evaluation
datasets via AWS to support larger and more diverse test collections. This would
improve scalability and reduce dependency on manual test case creation.

Custom Metrics for Retrieval Evaluation. Integrate custom evaluation metrics
using the G-Eval module of the DeepEval framework to more precisely assess retrieval
behavior and context quality beyond generic metrics.

Improved Reranking and Chunking Strategies. Implement more e!ective rerank-
ing mechanisms and introduce a dynamic chunking procedure to better balance context
granularity and relevance in retrieval, with the goal of reducing noise and improving
contextual alignment.

98



6.4 Future Work

Extension to Generation Quality. Expand the evaluation framework to explicitly
cover generation quality aspects, such as factuality, completeness and answer formulation
to support a comprehensive assessment across both retrieval and generation components.

End-to-End Evaluation Framework. While initial end-to-end evaluation combining
retrieval and generation metrics was applied, future work could further develop integrated
evaluation frameworks that capture a wider range of real-world tasks, domain-specific
constraints, and long-context interactions in RAG systems.

User-Centered Evaluation. Future work should include user studies and UX testing
to assess the practical usability and acceptance of the developed RAG approaches. This
includes evaluating how end users interact with the system, perceive answer quality,
and respond to latency or uncertainty in outputs.
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7 Appendix

Provision of Test Data and Source Code

Due to the size of the test datasets, evaluation results, and the related source code,
these materials are not included as a physical appendix to this thesis.

The complete source code, evaluation scripts, and curated test datasets are publicly
available on GitHub under the following repository:

https://github.com/thng17/MasterThesisAppendix

The full Chroma vector database used for retrieval experiments is provided separately
via Zenodo due to file size limitations. It can be accessed through the following DOI:

https://doi.org/10.5281/zenodo.15666607

All sensitive configuration files, credentials, access keys, and other confidential informa-
tion have been removed prior to publication.
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