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1 Introduction

This paper deals with models of share price movements for the purpose of

evaluating options. Two practical aspects are particularly important here:

the feasibility of the models and the testing of real option prices in “normal”

and also in not entirely quiet times.

Since my practical and research semester 2007/2008, in cooperation with

Kathrin Diener and others at the BHF-Bank, I have been working on models

for stock price developments during my available time for research purposes.

Early designs can be described as model-free approaches [Hausmann 2007].

These were investigated in two diploma theses in 2008 in comparison to the

local volatility model [Dupire 1994] and the model of Heston [Heston 1993].

The investigations showed encouraging aspects, but overall these models in

their implemented form were inferior to the two mentioned models (for dif-

ferent reasons). Overall, however, the model design from 2007 has not yet

been fully fathomed and cannot be regarded as conclusive.

As a result of 2007/2008, however, there was a shift of my interest to-

wards more structured price models. Furthermore, the spectrum of the mod-

els considered was extended to include jump diffusion processes and pure

jump processes. The variance-gamma process was investigated as a pure

jump process. A master thesis from the year 2016 [Kraliczek 2016] had the
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interesting result that the variance-gamma model fits well to the real DAX R°
price development, but not to the DAX R° option prices of Eurex (this is no

contradiction!). This was an important basis for my decision to turn to re-

gime switching models for my last research term (winter semester 2016/17).

With such models, there is a random change between several usually simple

processes (regimes), which basically run parallel. This change is controlled

by a (hidden) Markov chain. As in 2007, discrete models were chosen.

In the winter semester 2016/17, the general system framework was defined

and its possibilities were explored. This concerns on one hand the theoretical

possibilities (in particular with regard to the representable implied volatility

surfaces (IVS)), but on the other hand also the practicability using a com-

puter. An important result is certainly that it was possible to realize models

with quite extreme parameter values on standard laptops in such a way that

sufficiently accurate results (option prices) were obtained.

Towards the end of the research semester, several tests were already car-

ried out using real option prices, the results of which were encouraging.

The presentation of the results of the research semester can be found in

[Hausmann 2017] in German, but they also form (in English) the first part

of this paper (with the exception of studies on some singular trading days in

[Hausmann 2017])1.

In the first part of this article a model construction kit for option price

models is presented, whereby the stable distribution of the Markov chain,

which controls the change between the regimes, also plays a certain role.

From the outset, however, it was planned not to be content with just a

few random tests of real data, but to systematically measure the performance

of the models over extended time periods. This happened almost exclusively

after the winter semester 2016/17. The results achieved can be found in part

II of this paper, which additionally contains a more detailed description of

the special model type used and a few conceptual additional developments.

The presentation of the results of this empirical investigation is the main

part of this paper.

The phrase “simple and good” of the title needs explanation, since it

sounds more like an (extremely simple) advertising slogan than a suitable title

for an article that sees itself as the elaboration of a scientific investigation.

Let’s start with “simple”: The models presented are simple in structure

and easy to program, although there is the problem of tree size (calculab-

ility). Above all, however, the models are simple in terms of mathematical

conceptualization, since they are models of finite type, i.e. all occurring

1The elaboration announced under the name ‘Skew Trees and Variable Time Steps: A

Model Kit for Option Pricing’ is therefore superfluous and no longer planned.
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probabilities are probabilities of finite spaces. For these models, the funda-

mental theorems necessary for option valuation apply to the same extent as

for continuous and time-continuous models, but the important terms such as

equivalent probability measure are fundamentally much easier to understand.

The situation is the same as with the Black-Scholes-Merton model on one

hand and the Cox-Ross-Rubinstein model on the other hand.

Of course, with discrete models for option pricing one rarely thinks of only

one model, but typically of a whole class of discrete models, that all deliver

almost the same prices of relevant options and ideally all approximate a single

continuous model. But it is not necessary to understand a discrete model only

as a numerical approximation of a continuous model. Once one has decided

on a discrete model in a given situation, one moves into a cosmos in which

concepts such as arbitrage (freedom) and self-financing trading strategies with

essentially the same expressiveness exist independently. And this cosmos is

much simpler than that of a continuous model.

The “good” reflects the experience of the investigations in part II con-

cerning Eurex DAX R° call options during the Brexit vote in 2016 and the

French presidential elections in 2017. To approximate the market prices (on

average more than 400 per trading day), a model type was used that can

be described as extremely simple (thus again “simple”) and requires only

two components (= regimes) of the model kit. From the beginning it was

surprising how well the IVS found on the market can be represented by this

model type. Although the performance of the local volatility model in this

respect was not quite achieved, the regularity of the processes is much higher,

which gives hope for better dynamics. In “normal” times within the investig-

ation periods even suitable so-called steady-state models could be found (see

Chapter 7.2, esp. the figures on page 61). In these models, the logarithm of

the discounted share price has stationary (but not independent) increments.

With the “unusual” trading days as above (all the days shortly before and

after the Brexit vote as well as the days close to the first ballot in France)

well fitting models could only be found if the model did not also assume a

stable market condition.

The characterization as good, but not as excellent or even perfect results

from the details of the 2nd part. An “excellent” model from the user’s point

of view would be one that allows approximately the same system paramet-

ers for all trading days and that simply swallows the turbulent days. Such

a model would allow completely unproblematic hedging. The model type

investigated (and any model I know) is far from this, but the results of the

rudimentary investigations on stability (sections 7.4 and 8.3) could be an

indication that the usual practice of “always evaluating everything with the

current model and readjusting the hedge portfolio accordingly” should also
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work well with the model type (“good”). However, this needs to be investig-

ated much further. Above all, a hedging strategy appropriate to the model

still needs to be developed.

I would like to thank the students of the mathematics master program

at the THM Holger Schubert and Sabri Dali for their support in obtaining

market data. I would also like to thank the MND department of the THM

and especially my mathematics colleagues for making it possible for me to

spend one more research semester in my last term before retirement. Finally,

last but not least, I would like to thank Nils Koop very much for his help

with the formulations in English.

Wilfried Hausmann Friedberg, December 2018

Fachbereich 13 MND

Technische Hochschule Mittelhessen

Wilhelm-Leuschner-Str. 13

61169 Friedberg

Wilfried.Hausmann@mnd.thm.de

Part I

A Skew Tree Model Kit for

Option Pricing

2 Introduction to the First Part

In this first part special tree models for option pricing are introduced, in-

cluding aspects of the realization. The models are regime switching mod-

els. More precisely: 3 types of regimes are presented, which can be as-

sembled in a modular way. In this way, classical option price models such as

jump diffusion models (cf [Cont Tankov 2004]) or stochastic volatility models

([Heston 1993] and others) can be approximated (the evenmore classical Cox-

Ross-Rubinstein model is a special case), but it is also possible to generate

models which, to my knowledge, have not yet been thoroughly investigated.

This is especially true for regimes called skew ramifications if very disparate

parameters are used.

Overall, regime switching models for option pricing have been known for
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quite some time, including tree models ([Aingworth et al 2006] or

[Liu and Nguyen 2015], also see [Derman 1999]), so this is not a completely

unknown area. In this article, however, particular emphasis is placed on the

real applicability. This means that tree models are aimed at that can (at

least) value options with a maturity of one day to about one year well, i.e.

approximate the real option prices convincingly. This should be done with a

single tree. This is necessary if exotic options are to be valued with the help

of the tree.

Designing such trees in theory is not a problem, but the realization can

be an issue. The resulting trees can become too large to perform extensive

calculations in them. This is especially true when the implied volatility

surfaces observed on the market often require extreme parameter values.

Special tools are needed to overcome these problems. It starts with the

use of lattices, which are well known tools to obtain recombinant trees in

an extended sense. But that alone is not enough. Varying time steps and

tree-cutting are additional tools, which all together create the possibility to

realize models for which this seemed impossible at first. All the models

realised proved to run on a laptop more than five years old.

Part I is structured as follows: First, the construction kit is described

in general terms (chapter 3), which also includes an explanation of some

aspects of the Markov chains used. Chapter 4 contains a description of

the implementation and the tools used to obtain computable trees. Finally,

Section 4.2 presents some typical models and representable implied volatility

surfaces.

3 The Model Kit

3.1 What is Modelled - and How is it Done?

The dynamics of the discounted price e of an asset  - a stock or a stock
index for example - are modelled as a stochastic process under the price

determining equivalent martingale measure Q. All models occuring are of

finite type (or tree models), i.e. every bounded time interval contains only a

finite number of trading times  and at each  there is only a finite number

of possible values of e. ‘Discounted’ means discounted with respect to the
riskless interest rate, which is therefore assumed to exist. The riskless interest

rate may be time dependent, but not stochastic. Without loss of generality

all models start at  = 0.

The demand on Q to be a price determining martingale measure means

that the process of the discounted price g of every (traded) contingent
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claim  of  is a martingale under Q. As  itself is a contingent claim of

, it follows that the process
³e´ is a martingale.

A further consequence is that the value of an option of European type can

be expressed as expected value. Let g be such an option with maturity

  0. Then for each 0   the discounted value g (0) of  at 0 is

the conditional expected value of the payoff at maturity date:g (0) = E
³g ( ) | F(0)

´
(1)

Here E denotes the conditional expected value with respect to Q and F(0)
is a -algebra that represents the information known at 0. In finite discrete

models the information known at a point in time 0 can less formally be

described as the knowledge of the path the system had taken up to 0. As to

the models considered here, ‘path’ need not be the same as “development ofe” (cf the end of this section).
All discounted values refer to discounting to  = 0, but formula (1) re-

mains true if 0 ≤  ≤ 0. The formula in general requires some boundedness

conditions for the payoff of the contingent claim (as a random variable) which

are always fulfilled for models of finite type.

For 0 = 0 the conditional expected value of formula (1) becomes an

ordinary expected value:

 (0) =g (0) = E

³g ( )
´

(2)

The probability measure Q is almost never appropriate to describe the pro-

cess of e in reality, but it should be equivalent to a probability measure P
which suits the real-world process. The general theory says that, starting

from the real world measure P, the existence of a measure Q is equival-

ent to the absence of arbitrage possibilities in the system (first fundamental

theorem of asset pricing), cf [Cont Tankov 2004] for a general formulation

or [Hausmann Diener Kaesler 2002] for an elementary proof for finite mod-

els. If P defines a complete model (or market) (cf any book on mathematical

finance), Q is uniquely determined (second fundamental theorem of asset pri-

cing). The regime switching models of this article are complete if and only

if they consist of only one regime, i.e. if there is no switching at all. So all

interesting models are incomplete. This means that the prices of contingent

claims of  are not uniquley determined by the real world process of  and

the requirement that there are no arbitrage possibilities. A certain vacuity

remains in the price building process that is filled by the traders (thereby

following whatever principles). Anyway, the first fundamental theorem guar-

antees that in the absence of arbitrage possibilities a price determining equi-

valent martingale measure does exist.
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Remark 1 ‘Complete’ is often (just as above) used in the meaning, that the

asset  in combination with risk-free lending and borrowing is a complete

system. But complete systems can have more than one risky asset. At least

in models of finite type, it is always possible, to complete an arbitrage-free

system by “declaring” a suitable finite set of derivatives to “genuine” assets.

Then the processes of  (or e) and the prices of these derivatives uniquely
determine Q (cf [Hausmann Diener Kaesler 2002] for example; illuminative

terms in this context are ‘implied trees’ and ‘Arrow-Debreux securities’; also

see section 5.4). In practice, contingent claims, for which there is a liquid

market, are reasonable candidates for genuine assets.

The models that are covered in this article are regime switching models.

In every point in time one of a finite set of states, so called regimes, is active

and sets the instantaneous rules for the development of e. The change from
one regime to another happens all at once and is guided by an ergodic Markov

chain. This chain is hidden, i.e. it cannot be seen directly by a naive observer

(whereas , the current value of , can). The situation of the system at any

one time  is completely described only by the pair
³e 

´
, where  is one

of the regimes, not by e alone. Within the models, the instantaneous regime
is at any time part of the known information.

This is similar to the situation in stochastic volatility models like the

model of Heston [Heston 1993], where the instantaneous volatility can be

considered as an active regime, that also cannot be seen directly. When

looking at Heston’s model this way, one sees a model that is even able to

handle infinitely many (volatility-)regimes. But a regime can be more than

just a certain volatility. Moreover, in Heston’s model volatility changes con-

tinuously.

3.2 Regimes

Regimes and Regime SwitchingModels were originally introduced to financial

modelling by Hamilton ([Hamilton 1988] and [Hamilton 1989]) and find most

of their applications in time series analysis (cf [Ang Timmermann 2012]). In

this article the term regime has a very restricted meaning as certain binary

ramification in a tree model2. They describe the possible development of

the entity, the dynamics of which are modelled (here e) in a time interval
[ +1]  As time steps within one model may have different lengths, the

2There is one exception. In chapter 5.3 regimes are understood in a slightly more

general meaning.
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definition of a regime must specify the possible developments of the modelled

entity over intervalls [ +1] of various lengths ∆ = +1 − .

3.2.1 Regimes of CRR Type (BSM Type)

Regimes of this type stipulate branchings like

e
%e
&1−

 e
with  = 

√
∆,   0 and  = 1. These ramifications are well known

from the Cox-Ross-Rubinstein model (CRR model), a model that resembles

the Black-Scholes-Merton model (BSM model) in the class of binary tree

models (cf [Black Scholes 1973], [Cox Ross Rubinstein 1979]).

The probabilities  and 1 −  can be determined from the requirement

that the process
³e´ has to be a martingale, which implies

 + (1− )  = 1

and hence

 =
1− 

− 
(3)

,  and  thus depend on the volatility  and the length ∆ of the time

interval [ +1] (which may be variable). The regime thus is characterized

by .

3.2.2 Skew Ramifications

These are regimes as in the preceding section, the only difference is  6= .

In principle, these regimes are still of CRR type and generate recombining

binomial trees, although the CRRmodels used in practice mostly have  = .

It takes two positive numbers  and  to characterize such a regime. 

and  are given by

 = 
√
∆  = −

√
∆

In these regimes, too, the martingale property of the stochastic process

uniquely determines the ramification probabilities. Formula 3 is still valid.

The skew ramifications that appear in this article mostly have   ,

for example  = 001 and  = 5. Then at least for small time steps
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∆ the probability  of an upward move is close to 1. This is because of

 ≈  ( + ).

BSM (CRR) regimes and skew ramifications will be called to be of diffu-

sion type.

3.2.3 Jump Ramifications

Jump ramifications are fundamentally different from regimes of diffusion

type: The height of the jump in [ +1] is independent of the length of the

time interval. A constant jump factor  tells how the value of e changes,
if a jump occurs (for instance  = 07 stands for a loss of value of 30%).

In principle, jumps can be upward or downward jumps, and both kinds of

jumps can be modelled in almost the same way, but for this study only

downward jumps have been considered. The corresponding event in real life

is a slump or crash event in [ +1] that dominates all further moves in this

time interval, and that happens only with low probability. It is assumed that

this probability is so low, that the possibility of more than one crash event

in one time interval can be neglected.

Not the height, but the probability of a jump event in [ +1] shall de-

pend on the length ∆ of the time interval - just as it is with a Poisson

process. Poisson processes are continuous-time stochastic processes, but can

be approximated by time-discrete processes. For a Poisson process the fre-

quency of jump events is characterized by a positive real number , which

is called the jump intensity.  has the property, that the probability of no

jump event in a time interval of length ∆ is

 = −∆ (4)

and this is how it shall be with jump ramifications. What should happen

to e in the situation of no crash occuring? The intention is to use a binary
ramification, so a positive number  can be defined by the equation e+1 =
 e.The indispensable requirement that the process ³e´ is a martingale
then leads to

 + (1− )  = 1

and hence

 =
1− (1− ) 


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 depends on ∆, but not on e. The ramification looks like this:
e

%e
&(1−)

 e

3.3 Time Steps and Regime Switching

As already indicated, the models introduced in this article, in which calcu-

lations are executed, are finite models. There is a starting point 0 = 0, an

end point  and there are finitely many more points in time 0  1   

−1   =  .

It is not assumed that ∆ = +1 −  is the same for every . Far from

it: All models start with small time steps, and, as  increases, ∆ eventually

gets bigger. This need not happen in a monotone way. Smaller steps can be

included again at any time. This is often necessary to make a certain date

(a maturity mostly) a moment  of the model.

The use of varying lengths of time steps has no fundamental meaning.

There is just the pragmatic purpose of obtaining models that produce suitable

prices for short running as well as for long running options and that can

be dealt with on standard laptops. Every model with varying time steps is

always supposed to be a good approximation of the corresponding model with

the smallest occuring time step as constant time step. This will be covered

in more detail in the next chapter. Prior to covering this, it is important to

note the following additional features of the models:

To each point in time  there are finitely many states ( ), which are

characterized by

1. the price (value) of the quantity e that is modelled by the system; e
is thought of as the discounted price (with respect to 0) of an asset

paying no dividends

2. the active (ruling) regime , that sets the rules for the development ofe in the next time step from  to +1.

The total number of regimes (for all ) is assumed to be finite.

To describe the development of the system (not only e) in one time step,
the active regime needs to be defined. Is  going to stay active or will it be

replaced by another regime?
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Let us assume that all time steps have the same length ∆0. In that case

the transition between the regimes shall follow the rules of a finite homogen-

eous ergodic Markov chain - independently from e:
Let () denote the active regime at  which is one of  possible regimes

1,..., . Then the conditional probabilities

  := Q ((+1) =  |() =  )

are the same for each  (homogeneity) and are not influenced by the value ofe or the development e → e+1 or the complete path of e or  up to .

The   are called transition probabilities of the Markov chain, the matrix

 = ( ) is the transition matrix. The requirement of ergodicity guarantees

that each regime can be reached from each regime in a finite number of steps

(with postive probability) and that there are no static periods for this (for a

formal definition of ergodicity see any book that covers finite Markov chains,

for instance [Winston 2003]).

To obtain the possibility of using variable lengths of time steps and still

remain in the frame of finite Markov chains, the following condition is im-

posed on the lengths ∆ of time steps of a model:

Claim. There is a smallest time interval length ∆0  0, such that every

∆ (  = 0,..., − 1) is an integral multiple of ∆0.

Under this assumption it is always possible to refine the time pattern

of the model in such a way that all time steps have length ∆0. If  is

the transition matrix of an interval of length ∆0, the Chapman-Kolmogorov

equations tell that the transition matrix of a time interval of length ∆0

has to be . So  determines the transition matrix of every time step

 → +1 of the original model, if the original and the refined models are

supposed to fit together. The regime switching of the original model with

a varying length of time steps, i.e. the process ( ()), in this case is an

inhomogeneous Markov chain with homogeneous refinement.

The two-dimensional process of the pairs
³e ()´ is also a discrete

Markov chain (but with infinitely many states, if the set of the  is not

finite). The possible values of
³e+1 (+1)´ and the probabilities

Q
³³e+1 (+1)´ = ( )

¯̄̄
path from

³e0 (0)´ to ³e ()´´
only depend on

³e ()´. The resulting process ³e´ however does not
have the Markov property, if two or more different regimes occur.
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Augmentation.The following slight extension of the models increases

their ability in a reasonable way. Instead of assuming that the system starts

with a pair
³e0 (0)´ in 0, one can artificially divide the start of the

process in two parts: At the beginning there is only the price e0 = 0
of the asset, the determination of the active regime follows in an almost

timeless (0th) step. This can be justified by the fact that the ruling regime

is not as clearly visible as the market prices, but there are hints. At the

beginning there is only a probability distribution (1   ) on the set of

possible regimes, the initial distribution or augmentation. In the 0th step

the active regime is selected - guided by this distribution.

Any model, which makes use of this extension, will be called a general

augmented model. Of course, by the trivial distributions (0  0 1 0  0)

the models with a fixed active regime at the start are included in this defin-

ition. These are also called pure models.

There is another distribution of special interest. Finite homogeneous

ergodic Markov chains X = ()=01 converge to a uniquely determined

distribution (1  ) of its states 1  , i.e. for all 1 ≤  ≤  the equation

lim
→∞

P ( = ) = 

holds. This is true for every initial distribution, i.e. distribution of 0.

 = (1  ) is called the steady-state (or equilibrium or stationary) dis-

tribution of X. The uniquely determined steady-state distribution has the

property, that once reached, it will never be changed again. The transpose of

the row vector (1  ) is an eigenvector with eigenvalue 1 of the transpose

of the transition matrix  of the process. Equivalently

(1  )  = (1  )

Moreover, the powers of  converge to a package of vectors :

lim
→∞

 =

⎛⎝ 1  
 

1  

⎞⎠ (5)

As to our skew tree models, a special situation is given, if the initial

distribution of the regimes equals the steady-state distribution:

(1  ) = (1  )

General augmented models, in which this equation holds, will be called

steady-state models. In these models the equilibrium distribution of the re-

gimes is given for every point in time . In general, this distribution is no
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longer given, if an additional condition like a special value of e is imposed.
But for all regimes  introduced in section 3.2 the conditional distribution

of log
³e+1e´ under the condition, that  is active, does not depend one. From this it follows:

Theorem 2 In a steady-state model built from a finite number of regimes as

introduced in 3.2.1 to 3.2.3 the distribution of log
³e+1e´ only depends on

∆ = +1 − . Hence, if all ∆ are equal, the distribution of log
³e+1e´

is the same for all , which means that the stochastic process
³
log
³e´´ has

stationary increments.

But it must be kept in mind that the increments are not mutually in-

dependent. This is good news, not bad news, because otherwise the central

limit theorem could be applied and would imply convergence to a lognormal

distribution of e+1 as  → ∞. Even without independence the property of
stationary increments adds regularity to a process, which normally is advant-

ageous. General augmented models are not completely irregular. At least

they always have asymptotically stationary increments, which follows from

formula (5).

Remark 3 In the context of the skew tree models of this article, the equilib-

rium distribution  under some aspects plays the role of the mean reversion

of volatility in other models of stochastic volatility.

General augmented models, that only differ by their initial distribution,

are very closely related and may be considered as members of the same class

in some sense. If each initial probability  is positive for both, their trees -

nodes, possible transitions and transition probabilities - only differ by their

0-th transition probabilities . Thereafter the trees are identical.

Theorem 4 a) General augmented models, which only differ by their initial

distribution and are equal elsewhere, have the same internal prices (prices at

nodes
³e ()´) of European options after the 0-th step. This is true for

all nodes
³e ()´, that occur in both models.

b) In a skew tree model with regimes 1,...,  let 1, ...,  be the prices of

a European option in the respective pure models. Then the price  of this

option in a general augmented model with initial distribution (1  ) is

 =

X
=1

 (6)
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Proof. a) If, as described before the theorem, the  of all considered models

are  0, this is an immediate consequence of formula (1). Otherwise the

conditional expected value of this formula applied to a node
³e ()´

only depends upon the subtree generated by the paths starting at this node.

b) This follows from the formulae (1) and (2). Letg ( ) be the discounted

value of the option at maturity T. Then

E

³g ( )
´
=

X
=1

 E
³g ( ) |(0) = 

´

If there are  European options and 
()
 is the vector of their prices in

the -th pure model ( = 1  ), then part b of the theorem implies that

the set of price combinations that can be realized by a general augmented

model of the same class, equals the convex hull of the 
()
 in R.

Remark 5 The skew trees of two finite general augmented models, that only

differ by their augmentation and have the same set of nonzero initial prob-

abilities , are equivalent as probability spaces. The sets of all paths (Ω) are

equal and the same sets of paths have probability zero.

4 Realization

4.1 The Concept of Realization

The aim is to put regime swiching models, as introduced in the last chapter,

into practice using an ordinary laptop. It should be possible to price options

with a maturity from 1 day to 1 year or even longer with sufficient accuracy in

one single model. The problem is the required size of the tree - the numbers

of nodes and edges. In the strictly recombining classical CRR model the

number of nodes just grows by one with every time step. This realistically

cannot be maintained with the complexer regime switching models. But if

the models do not make multiple use of the same e-values, it inevitably leads
to numerically untreatable exponential growth of the number of nodes.

4.1.1 The Lattice

The most important step to get numerically calculable trees is the construc-

tion of a lattice that contains all combinations of  and e occuring in the
tree. By a lattice (or grid) we mean a Z-module of rank 2 in R2 - one com-
ponent for time, one for log e (the regimes will be treated separately below).
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To be precise, not the pairs
³
 e´ will be points of the lattice, but the pairs³

 log e − log0´. A tree, for which such a lattice exists, might be called
semirecombining. Note that a semirecombining tree need not be numerically

calculable. ‘Semirecombining’ is more a necessary than a sufficient condition.

A suitable lattice can be constructed as follows: First a minimal time

step ∆0 as on page 14 has to be fixed. Next, a minimal volatility 0  0 also

has to be fixed. The set of points
¡
∆0  0

√
∆0

¢
with integral ,  then

form a lattice. In all examples below the values of ∆0 and 0 are

∆0 =
1

3285
=
1

9
 and 0 = 001 (7)

These values turned out to be small enough to calculate the prices of short

running options with sufficient accuracy, as well as big enough to keep trees

for long running options numerically treatable (at least if some accompanying

measures are taken (cf below)).

4.1.2 Implementation of the Regimes

Of course, the requirement to stay within the lattice, imposes some conditions

on the parameters of the regimes. For those of diffusion type (3.2.1 and 3.2.2)

there are positive numbers  and  such that the price e = 0 
0
√
∆0 in

 becomes one of the values

0 exp
³
 0

p
∆0 + 

p
∆

´
or 0 exp

³
 0

p
∆0 − 

p
∆

´
in +1. The corresponding points lie on the lattice, if there are positive

integral numbers ,  und  such that the following equations hold:

∆ = 2∆0  =  0  =  0

From now on, this is assumed to be true. As a consequence, not every

positive integral multiple of ∆0 can be the length of a time step. Only

squares of natural numbers are allowed. This is the reason for the “odd”

choice of ∆0 =
1
9
 above. To refine the models further, the candidates for

the next steps are ∆0 =
1
16
 and then ∆0 =

1
25
.

The restriction to square number multiples of ∆0 can be coped with, as

at any time it is possible to reduce the length of the next time steps - down

to ∆0, if required. Any multiple of ∆0 can be made a point in time of a

model.

Next to the jump ramifications of section 3.2.3. These are characterized

by a jump factor  and a jump intensity , which need to be translated in
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multiples of 0
√
∆0. If ∆ has the smallest possible value ∆ = ∆0, then

there must be positive integers  and  so that

0 exp
³
( + )0

p
∆0

´
and 0 exp

³
( − )0

p
∆0

´
are the possible values at +1 (e = 0 

0
√
∆0 as above). The jump factors

 can only be of the form

 = exp
³
−0

p
∆0

´
which is not very restrictive. Choosing then  ≥ 1 determines the next step
completely, because the martingale property must be fulfilled. As already

pointed out in subsection 3.2.3, this means that the equation

 exp
³
0

p
∆0

´
+ (1− )  = 1

has to hold, and hence:

 =
1− 

exp
¡
0
√
∆0

¢− 

Formula 4 then leads to intensity . Given the system parameters ∆0 and

0, the smallest possible intensity is always obtained by  = 1.

Now, let’s assume the time step has length 2∆0 with   1. For the

step down the same factor  has to be applied, whereas the upward step

changes. It has to be a factor of the form exp
¡
()0

√
∆0

¢
(() ∈ N) and

the martingale equation must hold exactly. Usually, this does not allow to get

the desired intensity  exactly. By the first Taylor polynomial of (1 + )

and  one can see that 2 is a good approximation of the ideal ().

As integrality is required, this value is the best one available and hence has

to be taken. In this argumentation it is assumed that even for the greatest 

that do occur, the probability of more than one jump in an interval [ +1]

is negligibly small.

4.1.3 Tree and Tree-cut

The results of the preceding section allow to represent a regime switching

model consisting of finitely many BSM regimes, skew ramifications and jump

ramifications as described in 3.2, such that every state of the model (tree)

consists of one of the finitely many regimes and a point in a lattice. The

possible parameters are subject to some restrictions, but these are not very

tight.
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But even then, a model may be too big to calculate, depending on the

values of the parameters. For instance with  = 500 oder  = 2000 - not

uncommon values - it is clear that it is impossible to calculate the complete

tree because the number of nodes increases too fast. Luckily, extreme changes

of e in a short time (like many big jumps) are even more improbable. Such
very rare ramifications thus have simply been cut off. This has been done

without compensation. So by comparing the calculated total probability with

the value it should have (1) and doing the same with the expected value of e
(should be e0) the importance of the cut off part of the tree can be reliably
estimated. The difference was negligible in all cases.

4.2 Examples

A series of examples is to follow to convey an impression of the “model kit”.

In all of these examples the same time pattern is used. One year is divided

in 114 time steps, the smallest one has length ∆0 =
1
9
 ≈ 0000304414

(as already indicated above (equ. (7))). ∆0 is the length of each of the first

18 time steps. The biggest time interval has a length of 9 days. Call option

prices are calculated for the maturities 2 days, 1 week (= 7 days), 1 month

(30 days), 3 months (90.78 days), 6 months (182.33 days) and 1 year (365

days). For additional explanations see the relevant examples.

Remember also that 0 = 001 is the smallest volatility step and observe

that no interest rates need to be specified as only discounted values of assets

are considered. This, of course, is only true, if interest rates are considered

as being nonstochastic.

4.2.1 Black-Scholes-Merton Model

We start with a model, where the wanted result is completely known and

calculable by the Black-Scholes formula.  = 025 is the chosen volatility

of the single regime used, which of course is of CRR type (BSM type). So

there is no regime switching at all, but nevertheless, the model is not a CRR

model, because of the varying length of time steps. The resulting tree has

17,348 nodes and 33,880 edges and thus is a pretty small tree.

The following table shows the call prizes of the model for various strikes

 and the maturities as introduced above. The strikes are not noted directly

but by the correspondig forward moneyness FWM, which is defined by

 =
0e =

  0



( denotes the continuously compounded interest rate for the period from



4 REALIZATION 21

0 to , the maturity date of the option). The option prices are denoted in

percentage of 0. All values are rounded.

 1.44 1.30 1.18 1.09 1.00 0.91 0.81

2 days 30.33 23.18 15.30 07.90 00.67 00.00 00.00

1 week 30.33 23.18 15.30 07.91 01.32 00.00 00.00

1 month 30.33 23.18 15.32 08.33 02.79 00.28 00.00

3 months 30.34 23.24 15.78 09.73 04.91 01.59 00.25

6 months 30.44 23.64 16.81 11.44 06.99 03.34 01.11

1 year 31.01 24.81 18.78 14.02 09.90 06.07 03.08

The next table shows the differences between these prices and the prices

computed by the Black-Scholes formula (the rounding took place after cal-

culating the differences).

 1.44 1.30 1.18 1.09 1.00 0.91 0.81

2 days 00.00 00.00 00.00 00.00 00.00 00.00 00.00

1 week 00.00 00.00 00.00 00.00 00.01 00.00 00.00

1 month 00.00 00.00 00.00 00.00 00.01 00.00 00.00

3 months 00.00 00.00 00.00 00.00 00.01 00.00 -00.01

6 months -00.01 -00.01 00.00 00.01 00.02 00.01 00.00

1 year 00.00 00.01 00.01 00.01 00.01 00.01 00.00

Obviously - and not surprisingly - the short-running options benefitted

from the small value of ∆0, whereas the accuracy of the prices of the long

running options is not quite as good, but still acceptable. So the longer time

steps do not lead to bigger imprecisions, if the time steps in the near future

are small - at least in this example.

This model is one of the very few skew tree models where the process of³e´ is a Markov Chain. The increments of e and log³e´ of the time steps
of the model therefore are independent and by the characterisitc function it

can be shown that for every   0 log
³e´ converges to a normal distribution

for every sequence of such models with ∆ → 0. This is even true for variable

time steps, as long as the maximal time step converges to zero.

4.2.2 Multiple BSM Regimes

The following figure shows the Implied Volatility Surface (IVS) of a model

with two regimes of BSM type. The volatilities are 5% (regime 1) and 40%

(2) (i.e.  =  = 5 resp. = 40).
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The chosen transition matrix

 =

µ
0999 0001

001 099

¶
has diagonal elements close to one, which is typical fo all our models. Regime

switches are always possible, but they are also always more the exception than

the rule.

The matrix  is vitally important for the shape of the IVS, as this matrix

determines the equilibrium distribution of the regimes, which in this case was

also taken as initial distribution (a steady-state model). The distribution in

the example is (0909090 00909090). This means that on the long run,

more than 90% of the time the regime with the low volatility 5% will be act-

ive. A consequence of this is the comparatively low volatility of long-running

options.
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Smiles of a 2 BSM regimes steady-state model

Smiles of a general augmented 2 BSM regimes model
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Some more general or at least typical properties: The higher the steady-state

probability of the high-volatility regime 2, the higher the implied volatility

of long-running options. A typical property of this section’s models, which

can be seen in the figure on page 22, is the apparent symmetric smile. This

can be seen even better if one looks at the upper figure on page 23, which

shows the implied volatity curves (smiles) of several maturities.

As to general augmented models, the initial distribution has great influ-

ence on the prices of short-running options. For instance, if in the example

above (0 1) is taken as initial distribution (i.e. regime 2 rules), one obtains

the lower diagram on page 23.

Some technical data: The underlying tree of the steady-state model has

450,852 vertices and 1,762,640 edges. The other model has similar values, but

they are not exactly the same, because the tree-cut is a little bit different. In

both models, after 1 year 99.999% of the total probability have escaped from

tree-cut and also more than 99.999% of the expected value. So the resulting

values (especially option prices as expected values) are very close to those of

the corresponding ideal tree without tree-cut.

The next two figures belong to a model consisting of 6 BSM regimes - the

maximum number of regimes in the study. In spite of the many regimes the

The implied volatility surface of a model made of 6 BSM regimes
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model turned out to be computable on a laptop built in 2012 (but it was

close to the limit).

One might be tempted to use tree models with many regimes in order

to approximate models with continuoulsy varying stochastic volatility. The

volatilities used in the model are 5, 10, 15, 20, 25 and 80 percent. The

transition matrix is

 =

⎛⎜⎜⎜⎜⎜⎜⎝
099 0009 0001 0 0 0

00005 0999 00005 0 0 0

0 000009 09999 000001 0 0

0 0 0000001 09999 000005 0000049

0 0 0 00005 0999 00005

0 0 0 0 001 099

⎞⎟⎟⎟⎟⎟⎟⎠
and the equilibrium distribution is used as initial distribution.

The symmetric smile is very much pronounced for short running options,

but fades away quickly and is almost gone after 1 year. Then the implied

volatility is only slightly greater than 02. This is to a great deal a con-

sequence of the fact that the stable probability of the 20%-regime is bigger

than 075. The development of the smile can also be read from the figure on

this page. Some technical data of this model: 2 629 736 vertices; 30 108 074
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edges; total probability after 1 year and after tree-cut: more than 09999;

total expected value: nearly 0999 999.

4.2.3 BSM Regime Combined with Skew Ramification and Com-

bined with Jump Ramification

Although quite a lot of volatility surfaces can be generated by the models

described in the last subsection, those typically found in connection with

stocks or stock indices are not among them. This is because in these mod-

els all tree ramifications are (close to) symmetric with respect to e, which
leads to symmetric distributions and symmetric smiles. But smiles of stocks

and stock indices are to a great extent asymmetric. Typically, their implied

volatility surfaces have the shape of a conic hill with summit at the point

with maximal forward moneyness and shortest maturity. From this summit,

the hill decreases in all directions more or less steeply, and more or less uni-

formly, into a more or less wide plain. The two model types of this subsection

have no problem to generate volatility surfaces that at least principally have

such a shape. Here is an example:

The model that led to this IVS is a steady-state model consisting of a BSM

regime 1 ( = 012) and a skew ramification 2 ( = 005 and  = 500).
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The large value of  represents a crash scenario, in which the asset loses half

of its value in one week (34 in one month), if this scenario is permanently

active. The transition matrix used is

 =

µ
0995 0005

001 099

¶
which means that the stable probability of 1 is 23 and that the system in

the long run will be in the horrible state of a move according to  in 04%

of the time - or about 15 days a year.

Because of the large -value of 2 the tree is growing fast, but vary-

ing time steps and tree-cuts maintain numerical computability. 003% total

probability and 00003% expected value of e are cut off after one year. 22
million remaining nodes and 87 million remaining lines can be counted in

the final tree (horizon 1 year).

The next two figures show smiles / smirks of the model and the volatility

of maturities from 2 days to 1 year for various moneynesses.
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Even the 1-year options have a considerable smirk - the implied volatility

reaches from below 0.2 to 0.4. This is quite different to the following picture:
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For a maturity of 1 year all implied volatilities are between 02 and 03, even

though 2 days running options show a wide range from 02 to 18. These

implied volatilities belong to a combination of a BSM regime ( = 02) and

a jump ramification ( = 3000 and  = 1). So it is no surprise the model

shows some properties that typically belong to jump diffusion models (cf

[Cont Tankov 2004] and [Merton 1976] - the classical model in this model

group). The event of a downward jump in this model means a loss of value

of 40%. On average, this happens once in 7.8 years (risk neutral expected

value), as can be derived from the parameter values.

The regime switching probabilities of the model are 001 (jump ramific-

ation to BSM regime) resp. 0001 (BSM regime to jump ramification). The

initial distribution is set to the stable distribution, which means the BSM re-

gime has probability 0.909 (rounded). Within the jump ramification regime

the event of a jump has intensity  ≈ 14. The IVS of this model looks as
follows:

The implied volatility surfaces of this subsection fit to distributions of the

underlying that are skewed left and steep to the right. For the current model

this looks as follows (3 dates):
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A combination of a BSM model and a jump ramification - distributions of e
Especially for  = 1 the skewness is well visible, whereas for 1 year

it can hardly be recognized at all.

Just as with the preceding model, one single time step can result in big

changes of e (→ ), so an eye has to be kept on the technical data of the

tree. Reassuringly the order of magnitude is the same (2.4 mio. nodes, 9.5

mio. edges) and the exhaustion after tree-cutting even is a little bit better

(probability 99.99%, expected value 99.999%).

4.3 Summary and Prospects

Various combinations of BSM regimes, skew ramifications and jump ramifica-

tions have been realized. With the help of the ideas of chapter 4.1 tree models

could be generated that were small enough to run on standard laptops and

big enough to put the chosen parameter sets into effect. At least, no indic-

ation was found that the tools described in section 4.1 (lattice, varying time

steps and tree-cut) generate unpredictable effects, if used appropriately (but

see remark 16 on page 67). Some of the realised models have extreme para-

meter values and would not be executable without these tools or something

equivalent.
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An overview of the results:

A fairly small tree is sufficient to obtain good approximations of the

Black-Scholes-Merton model for a wide range of maturities simultaneously.

Combinations of BSM regimes lead to models with smiles. The smiles

can be distinctive, but are always symmetric.

The introduction of skew ramifications and jump ramifications makes it

possible to generate skew implied volatility surfaces. The simplest of these

models - combinations of a BSM regime and either a skew ramification or a

jump ramification were investigated more closely.

No other investigated 2-regime model makes it so easy to generate ex-

tremely pronounced smirks for short-running options than the combination

of a BSM regime and a jump ramification. But these smirks typically seem

to fade away quite fast as maturity increases. This is verisimilar, as a loss of

a certain percentage of value appears to be the more drastic, the shorter the

time interval is in which it happens. This property of a fast smile depletion

can also be observed with classical jump diffusion models like the Merton

model [Merton 1976]. As a consequence, the field of application of these

models appears to be limited. But the other model type - a combination of

a BSM regime and a (strongly) skew ramification - is equally parsimonious

(only 2 regimes) and can also generate asymmetric smiles / smirks. These

smirks appear to be more durable, if wanted. All in all, this approach seems

to be able to generate a great variety of smiles / smirks in the frame of a

pretty simple model.

So this model was chosen to be tested for the capability of representing

real market data. The results can be found in the second part of this article.

Part II

A Two-Regimes Tree Model

and DAX Options

5 Introduction to the Studies and the Model

Type

Based on a positive impression of the capability of these rather simple models

in early trials, the model type consisting of a BSM regime and a skew tree

regime was chosen to be tested systematically on historic option prices. The
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second part of this paper covers the results of these investigations.

It was intended to consider more or less quiet phases as well as phases

in which turbulences could be expected. To achieve this, two periods during

2016 and 2017 respectively.were chosen.The first period consists of the 3

months from May to July in 2016. Almost in the middle of this period was

the 23rd of June - the day of the so-called Brexit referendum deciding whether

or not Great Britain should leave the European Community EU. The second

period was a period in April / May 2017, in which the first and the second

ballot of the French presidential election 2017 took place.

The investigated options are Eurex DAX
R°
call options. Thus, both

periods contain political events, that were (are) likely to have influence on

economics, but did not take place in Germany, the home country of the

investigated stock index.

At first it was investigated, how good the model type could produce the

observed implied volatility surfaces (IVS), i.e. how good the option market

prices of each day can be approximated by a model of the chosen type.

Then the dynamics of the prices and models were considered, which is of

fundamental and great importance when it comes to hedging.

5.1 Required Parameters

To define a 2-regime tree model consisting of a BSM-type step (regime 1)

and a skew ramification (2), values have to be given to the following para-

meters (remember that we already fixed 0 = 001 (smallest volatility differ-

ence) and ∆0 = 13285 year (smallest time step) in the first part):

• 1 - a positive integer determining the volatility of 1, i.e. 1 = 10
√
∆

the upward factor and 1 = 11 the downward factor

• 2, 2 - positive integers, analogously leading to upward and down-

ward factor of 2

• 12 and 21 - the probabilities of a change from state 1 to 2 resp. 2
to 1 in a time interval of length ∆ = ∆0 (least possible time step);

both probabilities have to be greater than 0 and less than 1, of course

• (1, 2) - the distribution of the regimes 1, 2 at the start (0 ≤ 1,

2 ≤ 1, 1 + 2 = 1)

Then the transition matrix  and the equilibrium distribution (1 2) of

the regimes are given by

 =

µ
1− 12 12
21 1− 21

¶
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and

1 =
21

12 + 21
2 =

12

12 + 21
(8)

Not all parameter combinations were taken into consideration. The up-

ward factor of 2 was always set to 2 = 1, the smallest possible value. This

in combination with 2  100 underlines the meaning of 2 as skewness

regime.

Special attention was paid to steady-state models, i.e. models with (1,

2) = (1 2). Within these models, not only (1, 2) are determined by

12 and 21, but in many situations the influence of the transition matrix 

on call option prices turned out to be mostly depending on the equilibrium

distribution. So, to reduce the number of parameters, 12 was always set

to 01 for steady-state models. It seems that this arbitrary fixing does not

reduce by much the ability of these models to reproduce observed implied

volatility surfaces. However, looking back, a smaller value - something like

003 - 005 - might have been even better.

Summing up, the steady-state models taken into consideration are de-

termined by three parameters: 1, 2 and 21 (or 1 = 21 (21 + 01)).

In all situations, attempts were made to cope with these models. Where

this could not be done in a satisfactory manner, general augmented models

were taken into consideration. Then the fixing 12 = 01 was also no longer

sustained, and 12 and 21 (or 12 and 1) were considered as independent

parameters. This applies to the central days of the Brexit period and to a

couple of days at the beginning and the end of the French election period in

2017.

Remark 6 To completely specify a model, a few more things have to be

described - most of all the time sheet (which is different for each trading

day). This can be found in A.2.

5.2 How Do the Parameters Work?

The influence of the parameter values on call option prices will be illustrated

by ceteris paribus considerations, i.e. by varying one parameter of a typical

parameter set and keeping the others fixed. But before doing so, it has to

be asked, what the most significant graphical representation of the total-

ity of call option prices of a model is. A popular graphical representation

is given by the implied volatility surface (IVS) (see section 4.2 of the first

part). Being a 3-dimensional picture, such a graphic provides excellent qual-

itative impressions, especially demonstrating the relation of a model to the
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Black-Scholes-Merton model. But figures of IVS are not very helpful to illus-

trate minor quantitative differences between two similar volatility surfaces.

Quantitative data can be read easier from line diagrams, i.e. graphs of func-

tions of one variable. Moreover, in reality standard traded call options do

not exist for each possible combination strike/maturity, but only for quite a

lot of strikes and just a few maturities. This is especially the case with Eurex

DAX
R°
call options, the type of call options that have been studied.

So, instead of drawing an implied volatility surface, it is sometimes prefer-

able to present a handful of cuts through this surface, each one illustrating

the call option prices of a certain maturity. As a further step away from

implied volatility surfaces, the diagrams do not show implied volatilities, but

prices in a normed way: time values (in the forward format) expressed in

percentage of the spot price of the underlying.

The following is the precise definition of the forward form  of the

time value. On this occasion some basic assumptions and notations will also

be described.

The underlying  is assumed to be a stock or a stock index without

dividend payments. 0 denotes the current value of . ( ) is the current

value of a European call option on  with strike  and maturity  . The

inner value  of an option is usually defined as the value of the option

when exercised immediately, so for a call option as above  = (0 −)
+
=

max (0 − 0).

The forward form  of the inner value of a call option with maturity

 is defined similarly, but still takes interest into account. It is the maximum

of 0 and the current value of the forward contract ( −) with maturity

 , i.e.

 ( ) =
³
0 − e´+

The forward form  ( ) of the time value of a call option with strike

 and maturity  is the difference

 ( ) = ( )−  ( )

This value expressed as percentage of 0 is shown in the diagrams, i.e. the

diagrams present

100 ( ) 0
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Option forward time values - market (solid line) and model (05.07.2016)

The Figure above shows an example. As in Part 1, the horizontal axis is

scaled by the forward moneyness

 =
0e

(and not by ). The solid lines show the FTV of the market prices of the

Eurex DAX call options on the 05th of July 2016 with time to maturity

between 10 days and 346 days. The dashed lines show the prices produced

by one of the models we investigate in this part. It is a steady-state model

with parameters 1 = 49, 2 = 443 and 21 = 001093. The diagrams show

that the prices are close together, but there are some minor differences. In

fact, we have found that this model provides the best fit to the prices of that

day by a steady-state model. To measure the difference between two models

or a model and market, the norm distance is introduced in the next chapter

(section 6.2). Here the norm distance is 0121647%, which is a good, but not

excellent value.
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3D charts: forward time value (FTV) and implied volatility surface (IVS)

The figure on this page shows why it was not chosen to draw 3-dimensional

diagrams of prices or implied volatilities. In the upper half 3-dimensional

representations of model and market prices can be seen. Can you discover

any differences? The impression given by the lower half is quite different. The

implied volatility surfaces of the model and market can be seen there (without

the 10d options, where some market prices did not allow to derive implied

volatilities). Noteworthy differences seem to appear in the range of short

running options. But these comparatively large differences of volatilities

only lead to large relative price differences. The absolute price differences

are small. On the other hand, small volatility differences can lead to large

price differenes of long running options (does not occur in the diagram).

So depending on the situation, a given difference of implied volatilities can

sometimes mean large and sometimes mean small absolute price differences.

A more direct impression of the price differences of two models or a model

and a system of market prices is - naturally - given by the prices themselves.

And as the inner value of a call option does not depend on the model, one

can also compare the time values or forward time values. This has already

been done on page 35.
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Now we turn to the influence of the parameters and start with steady-

state models. They have just three parameters: 1, 2 and 21. The figure on

this page shows the effect of a change in 1, the sole parameter of the Black-

Scholes-Merton regime 1. The values are 1 = 34 (dashed line), 49 (solid)

and 64 (dotted). The other parameters are 2 = 443 and 21 = 001093.

The picture looks very much the same as volatility variations in the BSM

model do. Increasing the parameter leads to higher prices in a well balanced

way. The rise increases with maturity and, given a maturity, is on average

bigger for out-of-the-money options than for in-the-money options.

Varying the BSM parameter 1

Someone who is familiar with the BSM model may wonder if the chosen

values of 1 aren’t too great to be in a realistic range. But this is not the

BSM model and “normal times” are not only represented by 1 alone. The

upward step of 2 can belong to them as well. And this latter step has a

much higher probability in a model with typical parameters than any of the

two 1-steps (see section 5.3). As a consequence of this, the value of the

BSM parameter 1 is usually higher than the volatility of a BSM model.
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Varying the skewness parameter 2

The figure above shows why it is justified to call 2 the skewness para-

meter. The parameter values 1 = 49 and 21 = 001093 are completed by

2 = 200 (lower solid line), 400 (dashed line) and 800 (upper solid line). You

can see that raising 2 does lift the option prices, but in a very asymmetrical

way. Deep-in-the-money call options are becoming increasingly expensive,

whereas deep-out-of-the-money options only slightly change their value.

The diagrams contain an additional, dotted line. It belongs to the BSM-

(or CRR-)model with  = 022. The comparison with this line shows that

raising 2 generates skewness. For deep-in-the-money call options the prices

of the non skew BSM model are lowest, whereas deep-out-of the-money op-

tions are most expensive. This is true for all maturities.

For obvious reasons, 2 might as well be called the crash parameter.

The impact of the third parameter 21 on option prices to a high degree

depends on the constellation of the other two parameters. 21 = 0005, 001

and 002 combined with 1 = 49 and 2 = 443 leads to almost the same

picture as is shown in the figure on page 37. This is becaues a high value

of 21 means the stable probability of 1 is also high, whereas the absolute

stable probability of an upward step out of regime 2 decreases. These are
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the major effects on the option prices. The skewness component plays a less

important role, but is affected too.

Varying the probability 21 to leave 2

If one replaces 1 = 49 by 1 = 25 (and leaves everything else unchanged)

the situation is quite different (the figure above; 21 = 0005 (dashed line),

001 (solid) and 002 (dotted)). The option price level as a whole does not

change very much when these changes of 21 are made. But the skewness

changes in a notable way. Raising 21 leads to less skewness. Again, the

reason is the loss of influence of 2 on the process of the value of the under-

lying, but this time it is the influence of the possible crash step according

to 2 that matters. Note that, in contrast to the figure on page 38, out-

of-the-money options are more affected by the changes than in-the-money

options.

Summing up, there is a parameter for the volatility level (1), a parameter

for the level of skewness (2), and a parameter to do the fine-tuning (21).

This makes it possible to generate quite a remarkable variety of implied

volatility surfaces by models with stationary processes of log
³e´ (as will be
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seen in sections 7.2 and 8.2).

But not every arbitrage free volatility surface can be obtained in this

way. In all of the figures on the pages 37 to 39 the gaps between the lines

get bigger, as time to maturity increases. This is a consequence of the fact,

that the distribution of e spreads more and more, as  increases. If general
augmented models are allowed, this restriction can be overcome in a certain

(limited) way. For these models the system can start with an arbitrary 1/

2-distribution and will finally converge to the stable distribution (8).

The figure below illustrates the impact of the initial distribution. The

initial probabilities of 1 are 1 (upper solid line), 05 (dashed line),

1 (dotted line), and 0 (lower solid line). The other parameters are 1 = 45,

2 = 580, 12 = 001 and 21 = 0002. The stable probabilities are 1 = 16

and 2 = 56. This explains why the dotted line and the lower solid line

are so close together. For the short running options (10) the differences are

biggest. The upper solid line almost shows time values of a BSM model, the

lower one represents something like a pure skew model.

Varying the initial distribution
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Varying the speed of convergence

The stable distribution only depends on the ratio 2112. The individual

values of 21 and 12 determine the speed of the convergence. The smaller

the values are, the less the probability is to change the regime in one step,

and hence the slower the convergence is. If 12 = 01 and 21 = 002 had

been taken, the convergence would be much faster. Only the 10-diagram

would show a notable difference between the lines.

The figure on this page shows the speed of convergence by starting with

1 and (12 21) =  (01  002) with  = 1 (solid line) and  = 006

Everything else is as in the preceding figure. Notice that the lines get closer

to each other only slowly. Also observe, that in each partial diagram the

lower curve shows more skewness.

5.3 Different Ways to Look at the Model and Realistic

Parameter Values

As already indicated, the range of realistic values of the BSM parameter 1 is

not the same as the range of (100·) the realistic volatility of a Black-Scholes-
Merton model applied to the same situation. This can be seen by looking at

the model in a different way which will be introduced now. The regimes can
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be “atomized” in a technical way: at each time  regime 1 can be regarded

as the (disjoint) union of two regimes 3 1 and 1, where 1 is given, if

1 rules and the next step is an upward step. If 1 rules and the next step

is a downward step, 1 is active. Analogously, 2 can be divided in 2 and

2. Then each possible “situation" of the system (system = process of e)
belongs to exactly 1 of the 4 created new regimes and the process of these

regimes 1, 1, 2 and 2 is a Markov chain with transition matrix (
→ +1)

 =

⎛⎜⎜⎝
11 1 11 1 12 2 12 2
11 1 11 1 12 2 12 2
21 1 21 1 22 2 22 2
21 1 21 1 22 2 22 2

⎞⎟⎟⎠
where () is the transition matrix of the original regimes 1, 2 for the step

 → +1 (depending on +1− ) and 1 ... 2 are the respective upward /

downward probabilities of these regimes for the same time step. The process

is homogeneous if all time steps have the same length.

Whereas the process Z of 1, 2 only determines the steps of e up to a
probability distribution, the process Y of 1, 1, 2 and 2 determines

the development of e completely. There is a very close relation between

Y and the stochastic process X of the combination
³e´ ( = 1 2).

The correspondence between paths in both processes is illustrated in the

following example. It is not a probability-conserving 1-1 correspondence in

the strict sense, but it is very close, and it surely is justified to call the two

processes equivalent. Thus, the process X with infinitely many states bears
the structure of a finite Markov chain (at least if all time steps have the same

length).

Example 7 The development

(0 1)→ (01 2)→ (012 2)→ (0122 1)→ (01221 )

is the union of two paths of length 4 in X, starting at (0 1). It corresponds

to the path 1 → 2 → 2 → 1 of length 3 in Y in connection with the

initial value 0 of e
The probability of this path is (12 2) (22 2) (21 1) multiplied with the

probability of a start in regime 1. The probability of the ‘development’ in

X is (112) (222) (221) 1 multiplied with the probability of a start in

regime 1. The two probabilities are equal if

(probability of a start in 1) = 1 (probability of a start in 1)

3These are no regimes in the restrictive sense of 3.2, but they fulfil the requirement to

guide the development of e over the next period (in an even stronger sense), which is the
essential property of a regime and hence may be called regimes as well.
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The discussion of the example shows how to get from a general augmented

model X with initial distribution (1 2) of the original regimes 1 and 2
to a corresponding model of the atomic type: one has to use the initial

distribution (11 11 22 22)) of 1, 1, 2 and 2.

Remark 8 If an arbitrary initial distribution of 1, ..., 2 is allowed in Y,
this enlarges the set of possible models. It allows more general developments

of the original regimes in the first time step. It has not been investigated,

whether this is a useful extension of the model.

The atomization of the model given by the regimes (in the extended

sense of this section) 1 ... 2 and the process Y allows to regroup the

atoms according to special aspects. One question is, which regimes belong

to “normal times” of stock exchange. As a first attempt one might think

that 1, i.e. 1 and 1, stand for a normal development and 2 stands

for a crash scenario, but this is not true. If it were, the stable probability

of 2 should be much smaller than the stable probability of 1. But the

optimization processes of the next chapters almost always led to models

where the opposite is true. By far the most steps of the best found models

are ruled by 2, i.e. are steps where e stays almost constant. For instance,
a model with 12 = 01 and 21 = 001093, as illustrated in the preceding

chapter, has steady-state probabilities 1 = 0010901109 ≈ 00983 and

2 ≈ 09017. In general, 2 is bigger than 1 if and only if 12  21 This is

the case in all optimal models found below, but the difference is not always

as big as here.

Back to the example above: If, in addition, 2 is very large compared

to 2 (in the example 2 = 443 and 2 = 1), it is a consequence of the

martingale property of the e-process in regime 2, that on average in more
than (say) 90% of the time 2 is the active regime. This indicates that 2
is a regime that almost completely belongs to “normal times”. A step guided

by 2 is only in exceptional cases a step of type “calm phase in rough times”.

This implies that BSM-parameter 1 can be bigger than typical volatilities

in BSM models. It is a different model with a different meaning of this

parameter. In the studies 1-values up to 60 turned out to be normal and in

special situations values up to 100 occured.

After these observations one may be tempted to regroup the regimes

in two regimes  = 1 ∪ 1 ∪ 2 and 2, following the idea that 

represents normal times and 2 pure crash situations. But this does not

produce a Markov chain4. A better system is given by W =
³e

´


with

4To see this, let 2 = 1 and 1 = 3 (so that 
3
2 = 1) and take a look at the paths
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 ∈ {1 2 2}  This system with three regimes is a Markov chain,

because the first and the second line of matrix  are equal. The transition

matrix  of {1 2 2} is obtained from  by dropping the first line and

then substituting the first two columns by their sum:

 =

⎛⎝ 11 12 2 12 2
21 22 2 22 2
21 22 2 22 2

⎞⎠
If not all time steps have equal length, this matrix of course has to be un-

derstood as time dependent.

The 3 regimes ofW have the following characteristics:

• 1 is a regime of BSM-type with comparatively high volatility

• 2 stands for quiet phases (which can be short), where e stays almost
constant, but the market sentiment is positive

• 2 stands for crash scenarios, where e is on a straight way down
The process of e as a whole is a martingale, as is the process restricted

to 1. Obviously, neither the process restricted to 2 nor the one restricted

to 2 is a martingale.

Remember, that the process we are modelling is not the process of e
under the real world probability measure P, it is the process of e under the
price determining equivalent martingale measure Q. The model is incom-

plete, which means that the requirement of arbitrage free prices alone does

not uniquely determine Q by P. We do not address the question how, in

the reality of trading, Q is selected from the set of all equivalent martin-

gale measures of P, but we call this selection the market opinion or market

opinion of risk neutrality. So at least in a purely technical sense it may be

understood that the probabilities of a suitable model represent the market

opinion. Some interesting characteristic numbers may be derived from the

model. For instance, it is obvious that the stable probability 2 = 22 of

2 might be considered as the part of time the market expects the system

to be in a crash state in the long run and  = 
¡−20√2¢ is the

factor by which the market expects the price of the underlying asset to be

reduced by stock market crash times within an average year. But the studies

did not support this interpretation throughout. The problem is that in some

(0 ) → (20 ) →
¡
220 

¢ → ¡
320 

¢
and (0 ) → (10 ) → (0 ) →

(10 ). Both paths consist of three paths in the original process X, only differing by

the last step in the second component. Now examine the next step.
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situations (during the Brexit vote period) the models with the best fit to

market prices had very high BSM parameters, so that crash-like scenarios

within the model were not completely disjointed from 1 and thus could not

simply be identified with 2. Therefore, to quantify the market’s fear of

crash scenarios in a convincing way, a more complex approach seems to be

required.

Anyway, 2 is the true crash parameter. What are realistic values for

2? To decide this, an idea of how crash movements are in reality is helpful.

Two probability measures on a finite probability space (the tree model) are

equivalent iff the same elements (paths) have a probability greater than zero.

So the possible movements under the price determining martingal measure

are the same as those in (a suitable model for) reality. Only the probabilities

of paths can be different und usually will be. Almost all best models in the

chapters following have 100  2  1000. A day (∆ = 1365) completely

spent in the crash regime 2 leads to a loss of value of 1−exp(−1
p
1365) ≈

51% of e if 2 = 100 and 23% if 2 = 500. If 2 = 1 000, the loss is 4075%.
These are big numbers, but the probability of such a day is extremely small

(in reality and in the risk neutral world).

Remark 9 The system W has some apparent similarity to a model intro-

duced by Rietz ([Rietz 1988]) on which Ang and Timmermann write in

[Ang Timmermann 2012] (cf 2.4.1 Rare Events and Disasters):

“In Rietz (1988), consumption follows a first-order Markov process with three

regimes, two of which correspond to “normal” regimes and the third corres-

ponds to a “crash” regime. The latter has zero probability of staying in the

regime and equal probability of moving to the normal regimes.”

In modelW the martingale property of 2 guarantees that 2 is reached from

wherever with probability close to zero, if 2  2. Equal probability of

where to go from 2 must not be given in W.

5.4 Aspects of Hedging

5In this article we do not treat hedging strategies in detail, but whatever a

hedging strategy in a tree model may be, it is supposed to be able to replicate

the price process of the derivative to be hedged by a self-financing trading

strategy in some well defined assets called the hedging instruments. What

this precisely means can be formulated in various ways. For a discounted tree

5Most of the results of this section do not only apply to the models of this chapter, but

can easily be generalized to all skew tree models - at least under some additional conditions

(like, for instance, the requirement that the transition matrix of regimes contains no

zeroes).
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model it can be expressed in the following way. Suppose a European option

 with maturity  shall be hedged from today ( = 0 = 0) to maturity date

( =  ). The hedging instruments are 1, ..., , where each  equals the

underlying  or is a derivative of . For each node  (at time ) of the tree,

that lies on a path from 0 to  , the (discounted) values of  and of all the

 must be uniquely determined
6. In addition, the prices of the  must be

apparent from market action.

Then a hedging strategy consists of a portfolio

 = − + 0 +

X
=1

 (9)

for each node  as above ( = cash(bond)), such that  has value zero in

 and every adjacent node at time +1. In other words,  helps the option

writer to get from  to +1 without loss (and without gain). At +1 a node

 0 with a portfolio  0 is reached. The option writer can then transform 

to  0 by buying/selling shares of the liquid assets  and is well equipped

for the next period. This is a discrete version of delta-hedging as well as

delta/gamma-hedging. Locally, at the nodes, it is clear what has to be done.

Example 10 Binomial model (for example CRR model). Here, hedging is

possible with cashbond and underlying asset alone, as it is a complete model.

At  let e be the discounted value of the underlying with possible values e
and e at +1. Let e, e and e be the corresponding discounted values of

the option that is to be hedged. Then there are three equations to be fulfilled:

− e + 0 + 1 e = 0

− e + 0 + 1e = 0

− e + 0 + 1e = 0

Because of the martingale condition for  and , the third equation is auto-

matically true, if the other ones are fulfilled. Thus, two variables suffice. 1
is the (discrete) delta of .

Notice that in the binomial model as well as in the general situation of

formula (9) it is sufficient to consider the instantaneous data - as long as the

prices are reliable.

Now, we turn to our special skew tree model, and at first consider nodes

 =
³e 

´
with a well defined regime  ∈ {1 2}. This condition

6This is the reason why the original model trees are only able to price path-independent

options and otherwise need to be extended accordingly.
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only excludes the starting points of non-pure models. We assume that all

considered options  and  are of European type, so that equation (1) can

be applied. This allows to calculate option prices also for non liquid options,

because the “hidden” regime  is not invisible at all. It can be identified

with the help of the prices of the liquid derivatives - at least in the model’s

world.

Let  and  be the upward- resp. downward-factor of . Then there

are four adjacent nodes at +1: 1 =
³
 e1 +1´, 2 =

³
 e2 +1´,

3 =
³
 e1 +1´and 4 =

³
 e2 +1´. This means, there are 5

equations (9) to be respected. Again, the number of hedging instruments

needed can be reduced by the martingale conditions, but it is not possible to

get along without derivatives as the considered model is incomplete.

An important fact is that the adjacent nodes at +1 come up in pairs of

nodes that only differ by the reigning regime. (1 2) and (3 4) are the

two pairs. Now take one of the pairs - say (1 2) - and consider the subtree

of the model tree that consists of all nodes that can be reached from1 or2.

This subtree has two nodes without predecessor: 1 and 2. Join these two

nodes by an upstream augmentation step to get a general augmented model

that starts at +1 (remember the augmentation step requires no time). Let

 be the probability that the augmentation step leads to 1.

Lemma 11 If a portfolio  as in equation (9) satisfies this equation in 1

and in 2, then this equation also holds for  in the root node of the con-

structed general augmented model. This is true for every  (0 ≤  ≤ 1).

Proof. This is an immediate consequence of formula (6).

And an immediate consequence of the lemma is the following result, which

- in a limited sense - allows a change of model within a hedging process:

Theorem 12 At each step of a hedging strategy, an instantaneous change of

augmentation leads to a correct hedging situation, i.e. the formulae (9) are

still true under the modified probabilities.

This means that if - according to a hedging strategy - an option writer

builds up a portfolio  that satisfies the 5 equations in  (node ), (s)he is

not only well prepared for the nodes 1 ... 4 in +1. It is no disadvantage

if the derivative prices then turn out to be the prices of a general augmented

model for some  (0    1 instead of  = 0, 1). If  and the shares of the

liquid derivatives can be bought/sold to prices in line with the market, the

portfolio can be closed without loss and gain. If the hedge is to be continued
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- i.e.  is not bought - a new hedging portfolio has to be created. This has

to be done according to the model that belongs to , and the situation is that

of the starting point of a non-pure augmented model - the situation that has

been excluded so far.

In this situation, it would be nice if it were possible to fill the artifical

augmentation step with life, i.e. to get from a state with e known and regime
insecure to a state with well-defined regime  (and e and  unchanged).

Three equations of type (9) have to be fulfilled, which is not very much, even

though the (constant) underlying is not able to serve as a hedging instrument

for this step. But the problem is that the market prices of options must

explicate the corresponding changes and immediately afterwards the option

holder must rearrange the hedging portfolio - in no time at all. To put it

mildly, it is doubtful, whether this is possible.

What are the alternatives? One possibility is to generate a hedging port-

folio that is well equipped for the challenges of the first two steps without

any rearranging. This is possible, but the number of equations to be fulfilled

inreases considerably from 3 to 11.

There is still some work to be done to find an optimal hedging strategy

that minimizes the number of hedging instruments as well as the hedging

error. The problem is not only restricted to the augmentation step. It

occures as well in connection with “ordinary” steps, as a time step in the

model can be a small step - much smaller than a trading day.

Remark 13 Reaugmentation, i.e. replacing the value of  by another, is a

change of model, but the models are closely related. The paths with positive

probability are the same, but the probabilities are different. So the probability

measures are equivalent. Under all of these measures the process of e is a
martingale.

6 Model and Market

6.1 Market Data

The market data studied in this research are prices of European DAX call

options of Eurex over two periods in 2016 / 2017. DAX
R°
is the blue chip

index of Deutsche Börse AG, and Eurex Deutschland is Germany’s leading

derivatives exchange. It is a public company wholly owned by Deutsche

Börse.

DAX consists of 30 major German companies traded at the Frankfurt

Stock Exchange. A notable property of DAX is that it is a performance index.
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Dividends of the involved companies are included in the index formula. DAX

can be considered as a stock paying no dividend, which makes option pricing

easyer.

Eurex provides DAX call and put options (ODAX) of European type. In

every month there is exactly one final settlement day (maturity date). It is

the third Friday, if this is an exchange day (otherwise the exchange day im-

mediately before). Among the traded maturities are always the three nearest

final settlement days and the nearest March, June, September and December

final settlement days 7. All investigated options have their final settlement

day among these. For each trading day of the study 5 - 7 maturities were

examined.

6.2 Norm Distance and Best BSM Model

The settlement prices of the call options of a trading day (market prices)

define an implied volatility surface (IVS)8, as do the model prices of the

same options for each parameter set. The main task of this study was to

find a parameter set that produces option prices (or IVSs) that are as close

as possible to the prices (or implied volatilities) of the market. In order to

do this, the first question is how to measure the distance between two sets of

option prices. Should price differences be considered or volatlity differences?

Is it adequate to consider absolute differences or is it better to use relative

differences? Should any weights be introduced?

After the discussion of section 5.2 it should be no surprise that the de-

cision was to compare prices (and not implied volatilities). More precisely,

absolute (and not relative) price differences were considered, in order not to

overestimate the influence of low-price options. Another argument is that the

difference of two prices of a call option equals the difference of the forward

time values inherent in the prices.

On this basis the least square method is used. Let  = (1)

be the market prices of  options and let  = (1 ) be their

model prices. Then

2 () =
1



X
=1

( −)
2

(10)

is the mean quadratic distance of the two price vectors. In a first attempt

this is the quantity that has to be minimized by an optimal model. But for

each trading day there are only a couple of maturities that are considered.

7For further details see http://www.eurexchange.com
8Of course, this is only approximately true. There are only finitely many market prices.
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Each maturity should have the same influence on the optimization process.

This is only given by formula (10), if the number of options is the same for

each maturity, which is not the case with Eurex options. So a weight factor

is introduced. Suppose there are  maturities and  options of maturity

 (1 ≤  ≤ ). Let  and  be the vectors of market prices resp.

model prices of options of maturity . Then

2() =
1



X
=1

2 ()

is a weighted sum of the squares of the price differences and this is the quant-

ity that was minimized. Instead of doing this, one might as well minimize

the square root. We call

() =
p
2()

the norm distance of the market prices and the model prices. This quantity

characterizes the average of the absolute values of the price differences better

than 2. This has the same reason as in statistics: the standard deviation

is more an average distance from the mean of a sample than the variance.

Moreover,  is a mathematical norm on R ( =
P

), closely related to

the Euclidean norm.

Just as in section 5.2, prices and related quantities as the norm distance

will always be expressed as percentage of the underlying’s price (in the studies

daily closing price as stated in Eurex’ daily online statistics). In the example

at the beginning of section 5.2 the value of 2 is 0014798%2, so the norm

distance between market prices and model prices is 012165%. This value is

not based on all call option prices listed by Eurex. For instance options with

very low or very high forward moneyness are not included. Details can be

found in A.1.

Best BSM Model. The Black-Scholes-Merton model surely is no con-

tender, if looking for a model that produces smiles and smirks. But it can

serve as an easy-to-compute benchmark. Every model that claims to be able

to deal with skewness must be able to generate prices that are significantly

closer to market prices than those of each BSM model. The norm distance

can be taken as a measure. For each trading day of the study, the BSM

model was determined, which has a minimum norm distance from market

prices. The search was restricted to volatilities  =  0 that are integ-

ral multiples of 0. The figure on the next page shows market prices (solid

lines) and prices of the best BSM model ( = 22) of the example above.

The norm distance is 051126% which is more than 4× the norm distance
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between market prices and prices of the denoted skew tree model.

Market prices (solid line) and prices of best BSM model (05.07.2016)

6.3 Parameter Adjustment

For each trading day the task is to find a parameter set that minimizes the

norm distance  between the model prices and the settlement prices of

that day. In principal, this can be done by searching local minima of 

(or 2) starting from various points and moving in directions where 

decreases, as long as this is possible. If this is done for a sufficiently large

collection of starting points, chances are good that the determined set of local

minima contains a global minimum or at least a parameter set with a norm

distance close to the optimal value. Still the risk of considerably missing the

global minimum cannot be eliminated completely in finite time - at least if

no further structural assumptions are made on the set of market prices.

This risk can also not be excluded by the following more structured ap-

proach for every possible market data constellation, but in many cases the

method turned out to be successful and helped to save time. Almost all of

the most suitable steady-state models were determined the following way:

• First choose a grid of BSM parameters 1 that covers the presumptive
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range for this parameter, for instance 1 ∈ {15 20  95 100}
• Then find the best model for each of these values of 1 (or at least get
close to this). If the search is restricted to steady-state models (with

in addition 12 = 01), this is an optimization problem with just 2

variables 2 and 21. In many cases (not all), the 2 values of these

models form a nice convex curve showing a clear minimum. Moreover,

2 and 21 vary regularly (see the figure and the discussion below).

• Refine the grid near the2−minimal point to get more precise values.

Why do the parameters typically behave as shown in the next figure?

Arguments can be taken from the discussion in 5.2.

Best ND2 value with given BSM parameter and the corresponding 212−
combinations (05.07.2016)

Raising 1 makes all call option prices increase. This has to be compensated

at least partially by changes of the other parameters. Deepening 21 lowers

1 and hence the influence of regime 1 on option prices. Deepening 2 also

lowers call option prices. With only a few and marginal exceptions - which

can also be due to the small inaccurancies that are inevitable in tree models

- a grid of increasing 1-values led to decreasing values of 2 and 21.

There is yet another argument that the optimal values of 2 and 21
change smoothly when the predetermined value of 1 is varied. It is a con-

sequence of the following result:

Lemma 14 a) In a steady-state model with parameters 1 2 and 21 (and

2 = 1, 12 = 01) and first time step of size ∆, the following identity holds

for the expected value of the logarithm of the multiplicative first e-step:
E

³
log
³e1e0´´ = 0

p
∆ [1 (11 − 1‘1) + 2 (2 − 2‘2)]
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Here  ( = 1 2) is the upward probability of regime , ‘ = 1 − .  is

defined as in equation (8).

b) If the first  time steps (1   ∈ N) all have size ∆, then

E

³
log
³ee0´´ =  E

³
log
³e1e0´´ (11)

Proof. a) Steady-state models start with the equilibrium distribution of the

regimes. The rest follows directly from definition.

b) For each  the regimes are distributed according to the equilibrium dis-

tribution. This implies that for each  (0 ≤  ≤  − 1) the random variable

log
³e+1e´ has the same distribution and hence the same expected value

as log
³e1e0´. Now, by elementary properties of logarithm

log
³ee0´ = −1X

=0

log
³e+1e´

The summands are not independent, but that is no problem. The expected

value of a sum of random variables is the sum of their expected values (if

defined), even if they are not mutually independent.

Now, let 1 and 2 be two steady-state models that both provide

good approximations to market prices of options of maturity  ∆. Then,

under the price determining equivalent martingale measure, the probability

distributions of ee0 have to be almost identical for both models because
this distribution is determined by the totality of all prices of call options of

this maturity. It follows that

E

³
log
³ee0´´

1

≈ E

³
log
³ee0´´

2

Especially for  large, formula (11) forces E

³
log
³e1e0´´

1

and

E

³
log
³e1e0´´

2

to be even closer together. Thus, if an optimal model

1 with a predetermined 1 =  is known, the requirement

E

³
log
³e1e0´´

1

≈ E

³
log
³e1e0´´

2

(12)

almost reduces the 2-parameter search for an optimal model 2 with con-

straint 1 = +∆ to a 1-parameter search. It is only “almost” because ‘≈’ is
not ‘=’. ‘=’ is not even wanted, the formula just leads to promising starting

points for iteration.
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The following table shows parameters and the expected valueE

³
log
³e1e0´´

of the best determined model for BSM parameters 1 from 25 to 110 (DAX

call options 05.07.2016).

 2 12 E

³
log
³e1e0´´

25 1043 0.08663 -1.31795E-05

30 613 0.04123 -1.07231E-05

35 519 0.02563 -1.01865E-05

40 479 0.01788 -9.96467E-06

45 456 0.01335 -9.83428E-06

50 441 0.01043 -9.75004E-06

55 431 0.00841 -9.69863E-06

60 424 0.00694 -9.66491E-06

65 416 0.00587 -9.61842E-06

70 411 0.00502 -9.59267E-06

75 407 0.00436 -9.58296E-06

80 402 0.00383 -9.55494E-06

85 399 0.00339 -9.54757E-06

90 394 0.00304 -9.52382E-06

95 390 0.00274 -9.5065E-06

100 387 0.00248 -9.49566E-06

105 382 0.00227 -9.47282E-06

110 377 0.00209 -9.45242E-06

(13)

Remark 15 a) For models with varying time steps this works too, as it is

always assumed that the model is a good approximation of its refinement with

constant time steps.

b) General augmented models are asymptotically steady-stated. The quality

of equation (12) then depends on the speed of convergence.

6.4 Best Initial Distribution of Regimes

Given all other parameters, it is sufficient to find the minimum of a quad-

ratic function to determine the initial distribution (1 2) of regimes, which

minimizes the norm distance.

Let  be a European option with maturity  and letg ( |  ) be the
value of this option at time  (0 ≤  ≤  ) in the model with 1 = . By

formula (6) g ( |  ) =  g ( | 0) + (1− ) g ( | 1)
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where g ( | ) ( = 0 1) is the value in the pure model that starts in
2−. Let  be the number of maturities in the sample and  be the number
of options with maturity “” in the sample. Then

 =
1



1



is the weight of the options with this maturity in the formula of the square

of the norm distance:

2 =

X
=1

X
=1


¡
()−  

¢2
=

X
=1

X
=1


¡£
 (0) + (1−  )(1)

¤−  

¢2
(() =

g  (0 |  ) and   the market price of option  at

 = 0). The right hand side is quadratic in :

2 = 2 
2 − 21  + 0

where

2 =

X
=1

X
=1


¡
(0)− (1)

¢2
1 =

X
=1

X
=1


¡
(0)− (1)

¢ ¡
  − (1)

¢
0 =

X
=1

X
=1


¡
  − (1)

¢2
So, the minimum of a quadratic function on the interval [0 1] has to be

determined, which either is one of the boundary points or the only critical

point 0 = 12. As 1 6= 2 in all sensible cases, 2 is always positive. From

this it follows that 0 ∈ (0 1) if and only if 2  1  0. This need not be the

case, but if it is because of convexity 0 always minimizes 2 and hence

.

7 DAX Options and the Brexit Referendum

7.1 Introduction

On Thursday, 23rd of June 2016, the so-called EU referendum or Brexit vote

took place in Great Britain. The eligible voters of the United Kingdom were
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asked to decide whether Great Britain should leave the European Union or

remain a member. The referendum was originally initiated by prime minister

David Cameron of the Conservative Party to get strong support for a basically

proEuropean political attitude. While in the first months of 2016 it seemed

to add up to this, the opinion polls became closer and closer as the election

day came nearer 9, and finally the result was that 51.89% voted for Britain

to leave the EU.

This was a political decision, of course, but surely one with a huge impact

on financial markets - at least in Europe. For example, what London’s role

as a financial market will be, is a question that instantly arises.

The growing uncertainty before the voting day in 2016, the result of the

vote and the new situation thereafter must have left traces in many finan-

cial data - not only in Great Britain, but also in other European countries,

especially in France and Germany.

In this chapter we present the results of a study of Eurex DAX
R°
call

option prices in a period from the 02nd of May 2016 to the 29th of July

2016. This period contains 65 days with published daily market statistics by

Eurex, among them 1 official bank holiday in Germany (Whit Monday; stock

exchange closed) and 2 partial bank holidays (Ascension Day and Corpus

Christi; reduced stock exchange). All these days have been included.

To discover the influence of the Brexit vote on call option prices is only

the second of two purposes of this study. The first one is to basically find out,

to what extent the selected skew tree model is able to produce call option

prices of a real market - in calm and in rough times. This question again has

two components: The first one is how precise (measured in norm distance)

real implied volatility surfaces can be generated by the model, and the second

one is how stable the parameters are.

We begin with some fundamental data. The following figure shows a

chart of the daily DAX closing prices from May to July 2016. On the first

day of the period (02.05.), the DAX started with a closing price of 10,123.27.

Some lesser ups and downs occured until the end of May, but by the 13th of

June at the very latest a more volatile phase was entered. On the 23rd of

June, the voting day, the closing price was 10,257.03 and hence even a little

bit higher than on the first day. But then the index lost nearly 10% within

the next two trading days (6.82% on 24.06.) and closed at 9,268.66 on the

27th of June. But these losses did not last long. At the end of July, the DAX

closed at 10,337.50, the highest closing price of the whole period.

9see https://whatukthinks.org/eu/
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DAX - daily closing prices from 02.05.2016 to 29.07.2016

Volatility in % (line and left scaling) and norm distance in % of DAX



7 DAX OPTIONS AND THE BREXIT REFERENDUM 58

A first orientation about option prices can be obtained by a look at the

best BSM models (figure on previous page bottom). They were determined

on the basis of the same market prices as the main study was, which means

that on each trading day at least 372 option prices were included (15.07.)

and at most 520 (15.06.). The average is 444 prices. More details can be

found in the appendix A.1.

Description of the result: the volatility of the best BSM model was 22-

23% from the 02nd of May to the 24th of May. Then it even sank to 20-22%

from the 25th of May to the 09th of June. From the 10th of June to the 27th

of June the volatility was never less than 23% and never greater than 25% -

with the exception of the voting day itself, when the value was 22%. From

the 28th of June on, the best BSM model volatility was mostly lower than

23 (only 2 exceptions) and afterwards sank further to 20-21% in the last 12

trading days. These data suggest that by the end of July to a great extent

normality had returned.

The columns of the diagram show the norm distance between the best

BSM model’s prices and the market prices. In advance, this distance was

not suppposed to be very small, and indeed, it isn’t. Hardly ever was the

norm distance less than 0.5 percent of the underlying’s price. On many days

- especially near the voting day - it was much higher and worst of all the

value was almost 1 percent of the DAX closing price on the 22nd of June.

These values have to be undercut very clearly by a model that claims to be

able to reproduce market prices.

On the other side, a norm distance of 0.1 percent or better is in the

range of the local volatility model [Dupire 1994], a model that is proven

to be able to reproduce every continuous arbitrage free IVS (at the cost

of some desirable regularity and dynamical properties of the process (cf

[Musiela Rutkowski 2007] p 256 and [Hagan et al 2002]).

7.2 Steady-State Models

As written above, in this section the search for the best fitting model of a

trading day is restricted to models that start with the equilibrium distribu-

tion of the regimes 1, 2, and have 12 = 01 (12 = the probality that 1
(as actual regime) is left in the model’s smallest time step).

And this is what has been found:
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Best fitting steady-state models

The diagram at the top left shows the norm distance between the option

prices of the market and the best model found for each trading day. The

other 3 diagrams show the parameters of these models: BSM parameter 1,

crash parameter 2 and - instead of 21 - the more vivid stable probability

1 of 1. This probability is also the portion of time that the (risk neutral)

system will approximately be in regime 1 in the long run.

The figure on the next page provides another view of the model-market

fit. It shows minimum, maximum and average of the difference model price

minus market price. For each trading day all of the (at least 372) price

differences lie in the plotted range. This is important as not all market

prices refer to real trades (cf. A.1).

Both approaches lead to the same conclusion: the total period is divided

into three subperiods. In period 1 and 3 for each trading day parameter

sets have been found that define good to very good replications of the mar-

ket prices of that day. In the second period, which lasts from the 13th to

(about) the 28th of June, this is not the case. From 4 of the 5 diagrams it

can be seen at first glance, that something unusual was happening here. We

shall return to this later, but first discuss period 1 (02.05. to 10.06.) and 3

(29.06. to 29.07.).
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Max, min and average price difference

In these periods norm distances and spreads are small and the parameters

vary only moderately. This can be read from the diagrams and is expressed

in the numbers of the following table:

per 1 per 3

min Ø max min Ø max

norm dist. (% u.) 0.0713 0.1202 0.2015 0.0890 0.1231 0.1812

BSM parameter 43 49.8 58 44 52.3 60

crash parameter 299 407 558 300 377 475

1 0.0522 0.0850 0.1226 0.0452 0.0737 0.1096

An impression of the congruence between market and best model per-

haps can be given by the next two figures, which show the prices of the worst

(03.05.;  = 02015)) and the best (24.05.;  = 00713) fit in the sense

of norm distance (). The situation on the 05th of July, as presented fre-

quently in the preceding chapters, represents a fit of midrange quality among

the trading days of periods 1 and 3.
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Worst best fit (03.05.2016)

Best best fit (24.05.2016)
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Now, after having registered the almost perfect fit of the 24th of May

we turn our attention to period 2, which consists of the two and a half

weeks from the 13th of June to the 28th of June - almost centered by the

voting day (23.06.). The picture is quite different. Instead of a convin-

cing model-market-fit a picture of disharmony appears. The skewness para-

meter explodes and crashes down again several times, as does the stable

1-probability. But all these efforts are in vain and cannot help the norm

distance to raise up to 04878 on the 22nd of June, the eve of the vote. The

average value during the period is 03353. On the voting day itself it is like

the quietness in the center of a hurricane: the parameters are “normal” and

the norm distance model / market is 02223 - a value that is nearly in the

range of periods 1 and 3. One day later, the norm distance between best

fitting model and market is up again at 03430.

As already written, the worst model / market fit is that of the 22nd of

June. The second worst is on Thursday, the 16th of June, with = 04583.

This one has been picked to show in detail, as this trading day has all the

typical properties of the prices of this period (figure on this page; maturity

March 2017 not shown, but included in the investigations). Moreover, this

trading day can be used to show an additional effect.

At first, the typical behaviour: A comparison of market prices and prices

2nd worst best fit in period 2 (16.06.2016)
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of the best fitting steady-state model shows that in the market short running

options (especially maturity in Jul (29 d) or Aug (64 d)) are very expens-

ive, much more than long running ones. The market expected the Brexit

vote to have much more impact on financial markets in the near than in the

remote future. The price level as a whole is heightened (as can already be

seen from the best BSM model, see page 57). This higher price level is not

a problem for a steady-state model, but the velocity in which options get

cheaper as maturity increases is. This apparently cannot be produced by

one of the steady state models - presumably because of their stationary in-

crements. Every suitable model either has too cheap short running options,

or too expensive long running ones - or both. The best fitting model can only

be a compromise and has no chance of being a true good fit. The question

arises if this is a defect of this class of models or if the market is to blame,

i.e. comprises temporary arbitrage possibilities in this special situation. In

the next section general augmented models are studied, which can answer

this question to a great deal.

The announced additonal effect: In the figure of the 16th of June the

shortest running option (Jun) has just one day left to maturity and hence

was known to be expired long before voting day. So there is no reason visible

why this option should be influenced by the Brexit vote. And so it is. Only

the July to September options are much more expensive in the market than

in the model.

7.3 General Augmented Models

The very exceptional and known in advance event of the Brexit vote surely

suggests the assumption that in the days surrounding the event some special

effects were active on option prices. It was tried to get better results for

phase 2 (13.06.2016 - 28.06.2016) by allowing general augmented models

(with 12 not necessarily equal to 01), thereby following the idea that a

special situation is given near the trading day, but eventually returns to

normal times afterwards. General augmented models have asymptotically

stationary increments.

And indeed, this approach worked. In case of the 16th of June (cf last

section) the norm distance could be improved from 0.4583 to 0.2387. The

figure on page 64 shows prices resp. forward time values of the model.
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16.06.2016: FTV of best general augmented model (dashed lines)

The parameters of this model in comparison to those of the best steady-

state model are as follows:

1 2 12 21 1
steady-state 33 1452 01 004001 1
gen. augm. 65 645 00164 000078 1

(1 ≈ 02858) Apparently 1 = 1 in combination with 12 = 00164 makes 1
rule the beginning phase of the process. The expected value of the first time,

2 is entered, is∆0  12 ≈ 68 days. Later on, the process stays in regime 2
most of the time (in the general augmented model 1 has a stable probability

of no more than 00454). So the BSM parameter 1 = 65 makes the prices of

options with early maturity rise (as desired), but plays only a supplementary

role in the long run. In this way, the prices of model and market are brought

closer together. But there are some unwanted spin-offs. The assured start

in 1 in combination with an unlikely leaving of this regime makes it almost

impossible to impose skewness to the process in the beginning. In this case

it is very similar to a BSM process, as can especially be seen with maturity
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29 d. Although the prices of the general augmented model are pretty close

to the market prices, the character of skewness is better represented by the

steady-state model.

This is even more true for maturity 1 d, but cannot be seen very well be-

cause of the smallness of the time values and some side-effects of that. But

the 1 d maturity option prices make another effect blatant: the model prices

of these options are too high. So this is the way the phenomenon described

at the end of the last section appears in this model, with just 2 regimes still

fairly simple. The high volatility BSM model that is meant to generate high

option prices for options that expire a short time after the voting day cannot

also generate low prices for options expiring before. So, in this case, the little

important accordance of the prices of 1 d options had to be sacrificed.

Parameters and related quantities of the best found models

The trading day 16th of June is typical for the whole period from 13th

of June to 28th of June. With the help of general augmented models the

average norm distance can be improved from 03386 to 01885. Only 3 days
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have   02: 15th of June (02091), 16th of June (02387) and 22nd of

June (03026). All models of period 2 have 1 = 1, i.e. they start with a BSM

regime (with high volatility from the 16th of June on - not on the first days of

period 2!) that has a low stable probability. The probability of leaving this

regime is low in the models near the beginning of period 2, but in the end

of period 2 rises to the standard value 01 of the steady-state models. The

skewness parameter 2 is slightly increased but stays in “normal” regions

and avoids the extreme heights of some of the steady-state models of period

2. The figure above shows the parameters (1 instead of 21) of the general

augmented models of period 2. For the trading days of period 1 and 3 the

diagrams of this and the next page show the data of the best steady-state

models - similar to page 59. For periods 1 and 3 no best general augmen-

ted models were searched for systematically. However, some attempts were

made to find notably better general augmented models, but they were not

successful (see next page for one exception).

Market prices vs prices of best models

The figure above consists of two diagrams. The upper one shows the norm



7 DAX OPTIONS AND THE BREXIT REFERENDUM 67

distance between the market prices and the so far best found model prices.

In the lower one the minimal, maximal and average spread between these

prices can be found. For period 2 the values refer to the models detected by

search in the bigger set of the general augmented models, for period 1 and

3 improved steady-state models are shown. ‘Improved’ means that almost

all parameters are unchanged, only the initial distribution (1, 2) is not the

equilibrium distribution. Instead, it is the distribution that minimizes the

norm distance between model and market prices under the constraint that

the other parameters are fixed. This is meaningful, as it improves the average

norm distance (period 1: 0.1154 instead of 0.1202; period 3: 0.1187 instead

of 0.1231), can be done with little effort and does not modify the model

in depth (cf Section 6.4). As usual, all values are to be understood as %

underlying. Hence 0.2 means 20 Cents, if the underlying’s price is 100 .

7.4 Stability of Prices

So far it could be demonstrated that the skew tree model can reproduce the

market prices of call options during the whole period from May to July for

each trading day at least in a satisfactory, but mostly a good to very good

way. This leads to the following benefit: First it shows that the market

prices are close to an arbitrage free system because all the models are free

of arbitrage possibilities. This does not exclude minor theoretical arbitrage

possibilities in reality (as the difference between model prices and market

prices is not zero), but it should not be easy to generate profit by them.

As a next step, a well fitting model can be used to determine prices of

nonstandard options. At least these prices are arbitrage free (in combination

with the underlying and all European call and put options), which is not a

bad argument in favour of them.

Remark 16 In this context one automatically thinks of path dependent op-

tions like barrier options, but they require some caution. If varying time steps

are used in the implemented model - which will almost always be the case, as

this is one of the key features that enable models like this to be implemented

- one must bear in mind, that these models have very special paths. Only

for a sequence of small time steps does the e-path look similar to a path of
a Brownian motion, for big time steps it looks more like a polygonal line.

Brownian bridges should be helpful.

Most of all it is desirable that a model tells how options can be hedged. We

do not treat hedging in depth in this article, but some fundamental aspects

of hedging in theory can be found in 5.4. Whatever a hedging strategy in a



7 DAX OPTIONS AND THE BREXIT REFERENDUM 68

tree model may be, in its pure form it will consist of portfolios in the chosen

hedging instruments that have to be adjusted in the trading times . Surely,

riskless borrowing/lending and the underlying asset can or even has to be

among the hedging instruments. But as the models are incomplete, some

additional instruments are needed - derivatives of the underlying which are

traded on liquid markets are natural candidates.

In theory, every option pricing model has the requirement to be appro-

priate until the option expires. But as already shown by [Hull Suo 2002],

hedging on this premise does not produce good results at all. In reality, it is

a widespread practice to adjust a hedging portfolio by use of a current model

(i.e. set of parameters) and then later on readjust it on basis of the model

(set of parameters) that is valid then. This is done in the hope that this sys-

tematic friction does only produce white noise error and will eventually sum

up to zero. Ideally, in the moment of system change, both the old and the

new model have the same prices for all hedging instruments. This situation,

of course, would be given if both models were the same, i.e. had the same

parameters. The figures of this chapter show that the parameters sometimes

are quite stable (period 1 and 3), but vary strongly in other times. Still,

different parameters do not necessarily mean very different option prices or

values of hedging portfolios. In theorem 12 of section 5.4 it is shown that

a change of augmentation (reaugmentation) may change option prices, but

does not change the value of a correct hedging portfolio.

It has been investigated how stable the model parameters and model

option prices were locally in May, June and July 2016. From the second

trading day on, the prices of the options in the foregoing day’s best model

have been calculated and the norm differences to the market prices have

been computed. Observe that ‘foregoing trading day’ does not mean ‘−1 in
model’.

The next table shows the average norm distance in the 3 periods as well as

the overall average norm distance. The first line repeats the known results of

the actual best models. The second line contains the norm distance between

the market prices and the prices of the previous trading day’s model. In

this line, a trading day has only been included if that day and the previous

trading day both lie in the considered period.

 per. 1 per. 2 per. 3 per. 1 - 3

actual model 0.1154 0.1885 0.1187 0.1300

previous day’s model 0.1696 0.3780 0.1684 0.2090

prev. day plus reaugm. 0.1568 0.3222 0.1590 0.1892
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The third line contains the norm difference between market prices and the

prices of the previous trading day’s model with reaugmentation, such that

the norm distance to market prices is minimized. This is allowed and mean-

ingful, as already pointed out in Chapter 5.4. In period 2 reaugmentation

betters the average norm distance from 0.3780 to 0.3222. The biggest effect

of reaugmentation has been detected on the 23rd of June (the voting day)

when applied to the model of the previous day: more than 0.20. In period

1 and 3 the average norm distance has been reduced at least by more than

0.01% of the underlying or more than 5% of its own value. For the whole

period 1-3 including all Brexit days by reaugmentation the average norm

distance could be reduced to a value below 0.19.

Comparing lines 1 and 3 shows that the reaugmented previous day’s mod-

els lead to average norm distances that are at least 30% larger than the results

of the actual models (in period 2 more than 70%). This is clearly worse than

the actual day’s models results, but it should be noticed that at least the

results of per. 1, per. 3 and per. 1 - 3 are still good results.

No single model, i.e. single parameter set, has been found that, when

applied to all days of period 1, leads to an average norm distance of 0.16

or better in period 1 - even if reaugmentation is permitted. In period 3 no

single model with average norm distance better than 0.20 was found.

Although this search for a unique model for a period was not done thor-

oughly and there may very well be better unique parameter sets, it looks

more promising to continue to use the actual day’s best model to build up

a hedging portfolio and then live with the differences to next day’s prices.

Moreover, this approach is easyer to practice.

Remark 17 ‘Previous day’ is not totally correct. It is not completely identi-

cal with the prices the model of the previous day had foreseen under the

assumption that today a certain node is appropriate. ‘Previous day’ means

the prices that the model with the parameters of the previous day (regimes

and transition matrix) creates, when applied today. If variable time steps are

used, that will not be completely the same. But the difference should be small.

Remark 18 A comparison with other models would be interesting, of course.

There are the “classical” models of Heston [Heston 1993], Merton

[Merton 1976] and Bates [Bates 1996], for instance, as well as younger ap-

proaches ([Cavet et al 2015] or [Hauser Shahverdyan 2015] for instance, and

many others). Of special interest would be a comparison with the local volat-

ility model of Dupire [Dupire 1994]. In theory, this model is not to beat under

the aspect of reproducing a given arbitage free (continuous) implied volatil-

ity surface. In former studies, local volatility models with norm distance to
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market prices less than 0.1% of the underlying’s spot price could usually be

found ([Graf 2008], [Wilbert 2008]). As seen before, the skew tree model of

this chapter comes close to this value, at least in normal times, but stays a

bit behind. So in order to be competitive the skew tree model should be better

in other disciplines - first of all in price dynamics. What justifies the hope

for this? It is the same reason as with the classical models cited above: the

high degree of regularity of the process. All skew tree models have stationary

increments or at least asymptotically stationary increments. The local volat-

ility model, on the other side, allows for all types of irregularities. In fact,

this is the reason why this model is so flexible, but does not have convincing

dynamics. Anyway, a systematic comparative study of this aspect has yet to

be conducted.

Norm distances and spreads in context with “yesterday‘s model” (see text)

We end this chapter with a short discussion of the two diagrams of the figure

on this page. The diagram in the upper half contains norm distances between

model prices and market prices. The solid line shows them for the prices

of the previous day‘s best models, whereas the columns refer to the actual

model. Many values of “yesterday’s model” are ok (  02), but there are
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some bad exceptions, the worst being on the 24th of June ( = 06017),

followed by the 23rd ( = 05015), the 22nd ( = 04368) and the 13th

of June ( = 03980). It is no surprise that the voting day and it‘s direct

neighbours are on this list. At least, “yesterday’s model” is always clearly

better than the actual day‘s best BSM model (dotted line).

The lower half diagram shows the minimal, maximal and average differ-

ence between the prices generated by the previous day‘s model (reaugmented)

and market prices. As usual, all values are ‘% underlying’. The extreme val-

ues of min and max are −10283 (24.06.) resp. 12412 (23.06.). All other
values of min and max are between -1 and +1, the average value of the dif-

ference (max - min) of a trading day is 0.73 (0.62 with best models instead

of “yesterday’s models”). The total average value of the price differences is

0.0210.

8 The French Presidential Election 2017

8.1 Political Proceedings and the DAX Charts

In 2017, ordinary presidential elections took place in France. The first ballot

was on Sunday, 23rd of April with a run-off ballot between the two candidates

with the highest number of votes to follow two weeks later (07th of May). Five

years ago, in 2012, François Hollande of the socialist party (PS) had been

victorious in a traditional duel against the candidate of the conservative

Union pour un mouvement populaire (UMP), but this time the situation

was different. In 2017, the traditional parties had lost much popularity and

their canditates seemed to have no chance of winning the election. Instead,

new “movements” were founded, among them En marche (social liberal,

candidate Emmanuel Macron) and La France insoumise (far left, candidate

Jean-Luc Mélenchon). Moreover, the opinion polls indicated that Marine Le

Pen (Front National, far right) had good chances of winning the first ballot.

No doubt there was something special about the French presidential elec-

tion 2017, but, at the same time, it was was much more of a “normal” event

than the Brexit vote. But like the Brexit vote it was a political event that

was likely to influence the financial markets not only in France but also -

among other countries - in neighbouring Germany, a strong political part-

ner. So the same investigation of DAX option prices was carried out as with

the Brexit vote. Within the same model type of 2-regime skew tree models

the best possible reproduction of Eurex DAX call option prices was searched

for each trading day in the period from the 18th of April to the 22nd of

May. Again there were the two aims to - first - find out how good and how
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stable the option prices can be reproduced by this model type and - second

- what information can be obtained from these models about the behaviour

of the actors in the financial market. A third aim was to identify differences

between the periods 2016 and 2017 - if they existed.

DAX - daily closing prices during the time of the French presidential election 2017

The period contains 24 trading days, the only holiday was the 1st of May.

A first impression of the period is given by the closing prices of the DAX

(figure above) and the best BSM models (next page). The index DAX is

about 2,000 points higher than in the Brexit days. There is a big rise after

the first voting day: From 12,048.57 on 21st of April 406.41 points (3.37%)

are gained to a closing price of 12.454,98 on Monday, the 24th of April. This

was a reaction of the stock exchange markets to the results of the first voting

day, which was won by Emmanuel Macron (24.0%) followed by Marine Le

Pen (21,3%) and saw Jean-Luc Mélenchon (19,6%) failing to qualify for the

second ballot. It had been feared before, that the extreme candidates Le

Pen (right) and Mélenchon (left) could be the winners of the first voting.

That presumably would have put France in a chaotic political status with

unpredictable implications.

The second voting two weeks later did not cause any visible reaction on

the DAX closing prices. The financial markets supposed Macron to cruise

to victory, which he did (66.1% vs 33.9%). The friendly mood of the market

lasted until the 16th of May. Then a slightly retreating market could be

observed.
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Best BSM model: volatility parameter and norm distance to market prices

Compared to the phase of the Brexit vote, the option courses were clearly

less volatile. This is underlined by the best BSM models. The volatility

parameter of these models is less than 20% throughout and very stable (solid

line and left scaling). From the 24th of April onwards the only values are

16% and 17%. Moreover, the norm distance between the market prices and

the prices of the best BSMmodels is only 0.436% of the underlying’s price on

average (0.570 in the Brexit period). This means that the implied volatility

surfaces bear less smile/smirk than those of the Brexit days. But still, 0.436%

is not a good value. It does not make the best BSM model a candidate for

an overall option pricing model. It would be disappointing if the skew tree

model could not produce much better values.

8.2 Best Skew Tree Models

Just as in the Brexit investigation, as a first step a best fitting steady-state

model (with additionally 12 = 01) was searched for each trading day. After

that it was tried to find better suited models by allowing general augmented

models. Further details can be found in the appendix.
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Norm distance to market prices and parameters of the best found steady-state models

This figure shows the characteristic data - norm distance to market prices

and parameters (or related values) - of the best fitting steady-state models.

With the exception of the stable probability each diagram has the same scale

as the corresponding one on page 59.

The situation is quite different to that of the Brexit study. The norm

distance to market prices is fairly constant. It is never much bigger than 0.2

(% of the underlyings price) and almost always less than this value. But on

the other side, no value is less than 0.1. The average value is 0.167.

Two parameters behave very regularly. The BSM parameter is always

close to 20 and slightly larger than the volatility of the best BSM model.

The crash parameter has its highest values before the first ballot and then

slowly keeps sinking from about 350 to near 200.

Only the stable probability of regime 1 looks quite volatile, but tenden-

tially is larger than in the Brexit case. Due to the comparatively low values

of the BSM parameter, a longer stay in 1 does not automatically result in

high option prices.
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Since there are no really bad results and the norm distance to market

prices is always at least twice as good as with the best BSM model, one

might be happy with the stable state models. But it is possible to better the

fit with general augmented models notably - not for each trading day, but

especially on those days with comparatively large norm distance to market

prices. As a result of optimization efforts the whole period has been divided

into 3 subperiods and in two of these (period 1: 18.04. - 21.04; period 3:

10.05. - 22.05.) the steady-state models have been replaced by better suited

general augmented models.

Parameters or related values of the best detected general models (French election)

For period 2 (24.04. - 09.05.) no significantly better general augmented

models were found, which justified holding on to the best detected steady-

state models - reaugmented (although this did not improve the result very

much here). All in all by this operation a norm distance clearly better than

0.2 10 could be realized for each trading day and the average norm distance

could be improved to 0.147 - a value, that is pretty good, but not as good as

10As always, norm distance () is expressed in percentage of the underlying’s price
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the final overall average value in the Brexit study (0.130, see page 68). The

figures on page 75 and 76 show the same data for the French presidential

election period as the figures on the pages 65 and 66 do for the Brexit vote

study.

French election 2017: best found models

The reason why the approximation of the market prices could be improved

by general augmented models is a different one for period 1 than for period

3. In period 1 - the time before the decisive first ballot - it is similar to the

Brexit voting days: short running options are expensive, long running ones

are not - and the steady-state models cannot handle this perfectly. In period

3 - after the second ballot - the situation is inverse: short-running options are

comparatively too cheap compared to long running ones to reproduce this

situation with the stationary-increment steady-state models (at least those

with 12 = 01). General augmented models can overcome this problem by

starting with regime 2, but there is a price to pay: a skewness kink in the

model prices that the market prices do not show.
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Comparison best steady-state and best general augmented model (part 1)

The prices of the 15th of May (figures on this page (short running options)

and next page (long running options)) illustrate this phenomenon (solid lines

=market prices). The following table shows the parameters of the twomodels

and the norm distance to the market prices (  ):

1 2 12 21 1  

steady-state 20 215 01 002692 1 02110

gen. augm. 33 136 0000401 000021 0 01490

(1 = 21 (12 + 21) ≈ 0 2121). Whereas in the steady-state model both
regimes are entered and left again frequently, the best found general model

starts in 2 und is likely to stay there for a long time. The expected value

of the first time 1 is entered is 529 days!
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Comparison best steady-state and best general augmented model (part 2)

As a consequence, the kink is well visible in the forward time values of all

maturities. Nevertheless, the improvement of  is remarkable. Only for

maturity 214 days is the contribution of the best steady-state model to 

better than that of the best general model. With 305 days maturity, however,

the difference is small and the spread of the steady-state model is better (=

smaller: 034  099), whereas the average difference speaks in favour of the

general augmented model (00038 vs 02557).

8.3 Stability

As in section 7.4 the overall best results in predicting tomorrow’s option

prices were obtained by the best model of today (reaugmented). The results

of the individual trading days are shown in the following figure. The norm

distance is very good throughout - with one exception. On Monday, the 24th

of April, the day after the first ballot, the model of the preceding Friday

generated option prices with a norm distance of 0433 to the market prices -

after reaugmentation.This can be a consequence of the fact that the selected

model type does not provide for very large upward price jumps.
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Quality of previous day’s models

The second and third highest values are 0212 (02.05.) and 0205 (04.05.).

All other values are less than 02. The average norm distance is 0174. No

forecasting strategy has been found that produces a better  value than

that. Although the best steady-state models have a higher stability in para-

meters and seem to be structurally more in accordance with market prices

than the best general augmented models (see the example 15.05.), they only

achieve an  value of 0197.

Also, no single set of parameters has been found (the “true model”), that

produces a lower average norm distance when applied to all trading days.

All investigated single sets of parameters have   024. Even if only the

days after the first ballot are included (24.04. - 22.05.), the best value is still

 0185.

When comparing the French election period with the days of the Brexit

vote, once again the French election period’s 0174 is better than the corres-

ponding total average of the Brexit vote study (0189). Removing the 24th of

April, the “bad apple in the bunch”, would even better the average to 0163,

a value that is close to, but just not as good as that of subperiod 1 or 3 of

the Brexit vote study (cf page 68).
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9 Summary

In the first part a model kit for option pricing models is introduced. Com-

ponents are three types of regimes that can be represented by binary trees

and are glued together by finite ergodic Markov chains. In these models,

the process of the logarithm of the discounted value of a stock or a stock

index under the price determining martingale measure is a stochastic pro-

cess with stationary but not independent increments (steady-state models)

or asymptotically stationary but not independent increments (general aug-

mented models).

An important role is played by some features / modifications which are

described by the names lattice, variable time steps and tree-cut. They allow

to realize models with parameter combinations that would be out of reach

otherwise on standard laptops. And they allow to treat maturities from 1

day to more than 1 year in one model. It is the empirical impression from

the studies, that these modifications, in the way they are applied, do not

distort relevant option prices. But, of course, an eye has to be kept on this

aspect in the field.

Part 1 ends with a demonstration of several models that can be built with

the model kit. From this it can be seen that quite a great variety of implied

volatility surfaces (smiles and smirks) are in the scope of these models.

In Part 2 one of the simplest but nontrivial models, that can be built with

the model kit, is tested on real option prices in times that were partially

uneasy for political reasons. The models consist of two regimes - a BSM

model and a skew ramification, the options are DAX
R°
call options of Eurex.

The periods investigated are three months containing the day of the Brexit

vote in 2016 and about a month in 2017, in which the French presidential

election took place.

Part 2 starts with a deeper introduction to the model type, which includes

an illustration of the affect of the parameters on the option prices. Then the

norm distance as measure between two sets of option prices is introduced (it

is closely related to mean squares), and the optimization algorithm to find

the best model-to-market fit is discussed. This is followed by the description

of the results of the studies. It turns out that, with the exception of a few

critical days, the option prices can be generated by steady-state models with

good to very good accuracy. By general augmented models even the prices

of the central critical days can be approximated at least to a good level.

The attempt to find a single model (i.e. one parameter set) that works

well for all trading days of a complete period, was not completely successful.

Better results in terms of norm distance are obtained if one always uses the

best model of the preceeding trading day. This result supports a popular
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way of acting and maybe gets applauded by practitioners.

It may still be possible to find models that fit the market prices for a

consecutive couple of days. But the studies show clearly that this will not

be the case over a long period of time. Implied volatility surfaces from the

Brexit period can easily be told from those of the days of the French election.

What remains to be done. First of all, certain clean-up operations

must be carried out. For example, the relationship to continuous models must

be fathomed more precisely and secured in such a way that, with sufficiently

short time intervals, only the real parameters of the models are of essential

importance and not the “secret ones” (see appendix).

Then, of course, systematic investigations on hedging are necessary in

order to arrive at a sound assessment of the approaches in sections 7.4 and

8.3. In particular, a hedging strategy appropriate to the model must be

developed, which means more than to solve the linear equations (9) on page

46.

A Appendix

A.1 Investigated Market Data: More Details

The data for this study were taken from the daily online market statistics

of Eurex (daily settlement price of the options and closing price of the un-

derlying), which are freely available for several weeks from the trading day

on.

Maturities. The following maturities were included in the studies:



Brexit study (2016)

02.05.-20.05. Jun Jul Sep Dec Mar

23.05.-31.05. Jun Jul Aug Sep Dec Mar

01.06.-23.06. Jun Jul Aug Sep Dec Mar Jun

24.06.-14.07. Jul Aug Sep Dec Mar Jun

15.07. Aug Sep Dec Mar Jun

18.07.-29.07. Aug Sep Oct Dec Mar Jun

French election (2017)

18.04.-20.04. Apr May Jun Sep Dec Mar

21.04. May Jun Sep Dec Mar

24.04.-17.05. May Jun Jul Sep Dec Mar
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French election (2017) (cont.)

18.05. Jun Jul Sep Dec Mar

22.05. Jun Jul Aug Sep Dec Mar

Non traded Options. Eurex publishes daily settlement prices not only

for options that have been traded on that day, but also for many others

(including restricted trading days on partial holidays as well as nationwide

holidays with no trading at all (e.g. Whit Monday)). How these prices are

computed cannot be seen in detail from the Eurex homepage. So the question

was whether these prices should be used in the study or if investigations

should better be restricted to traded options. Both ways were tested and the

results were similar. But the impression was that the inclusion of options that

were not traded on that day, led to somewhat smoother results. So the final

decision was to use both, traded and not traded options (with or without open

interest). This is all the more justified, as besides the norm distance some

characteristic numbers like minimal / maximal difference between market

price and model price were noted and can be found in chapters 7 and 8, that

can only be better on a subset of the set of all prices than on the whole set.

Forward Moneyness. Call and put options only have a noteworthy

(forward) time value if their forward moneyness is not too far away from

1. This is notably true for options with little time left to maturity. So in

order not to give too much influence to options with almost zero time value,

only options have been investigated with forward time value between 0.75

and 1.25. This is a compromise, as options with only a few days to maturity

still have almost zero time value and options with a year or more time-to-

maturity can have notable time value even if their forward moneyness is only

0.7.

Number of Option Prices. The approach explained above led to at

least 370 and at most 555 option prices being included in the market data of

each trading day. On average more than 430 prices were used. The number

of maturities always was at least 5 and at most 7. The tables on page 81

show exactly what maturities were included.

Interest rates. The study was undertaken in times of very low and even

negative interest rates. Whenever interest rates were needed in computations

for any time period, the EONIA (Euro OverNight Index Average) of the first

day of that period was taken. This was done in the strong belief that the

precise value of interest rates close to zero does not have great influence on

the prices of call options with not more than a year time to maturity.

During the whole periods, EONIA always was close to -0.3% p.a.

Time periods. The length of a time period was always taken to be the

calendar length. That means, 1 day is 1/365 of a year (thereby ignoring that
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2016 was a leap year). Financial usages like 1 year = 250 trading days played

no role.

A.2 Further Settings: Secret Parameters

In addition to the “official” parameters such as the upward and downward

factors of the regimes, as well as the transition matrix and the initial dis-

tribution of the regimes, further specifications are required in order to set

up a valuation tree. These values - also parameters in the strict sense - are

required to have as little influence as possible on the option prices, ideally

none at all. However, they are very important because they determine the

calculability of a tree. The parameters used obviously led to calculable trees

and have changed the option prices only reasonably. At least that’s the

impression, it is not formally proven.

Lattice parameters. See equations (7) in part I.

Variable time steps. These varied a little, but in the studies of the 2nd

part the following basic pattern was used throughout:

 1 2 3 4 5 6 7 8 9 10

 37 15 13 10 8 10 10 10 10 10

(this means that the first 37 time intervals have length ∆0, the next 15 have

length 22∆0 etc.)

However, slight changes were necessary throughout as the maturities had

to be met exactly.

Tree-cut. When building the tree, nodes with a probability of less than

10−8 were in danger of being cut off. But that was only a necessary criterion.
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